1
|
Li G, Pu P, Pan M, Weng X, Qiu S, Li Y, Abbas SJ, Zou L, Liu K, Wang Z, Shao Z, Jiang L, Wu W, Liu Y, Shao R, Liu F, Liu Y. Topological reorganization and functional alteration of distinct genomic components in gallbladder cancer. Front Med 2024; 18:109-127. [PMID: 37721643 DOI: 10.1007/s11684-023-1008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/05/2023] [Indexed: 09/19/2023]
Abstract
Altered three-dimensional architecture of chromatin influences various genomic regulators and subsequent gene expression in human cancer. However, knowledge of the topological rearrangement of genomic hierarchical layers in cancer is largely limited. Here, by taking advantage of in situ Hi-C, RNA-sequencing, and chromatin immunoprecipitation sequencing (ChIP-seq), we investigated structural reorganization and functional changes in chromosomal compartments, topologically associated domains (TADs), and CCCTC binding factor (CTCF)-mediated loops in gallbladder cancer (GBC) tissues and cell lines. We observed that the chromosomal compartment A/B switch was correlated with CTCF binding levels and gene expression changes. Increased inter-TAD interactions with weaker TAD boundaries were identified in cancer cell lines relative to normal controls. Furthermore, the chromatin short loops and cancer unique loops associated with chromatin remodeling and epithelial-mesenchymal transition activation were enriched in cancer compared with their control counterparts. Cancer-specific enhancer-promoter loops, which contain multiple transcription factor binding motifs, acted as a central element to regulate aberrant gene expression. Depletion of individual enhancers in each loop anchor that connects with promoters led to the inhibition of their corresponding gene expressions. Collectively, our data offer the landscape of hierarchical layers of cancer genome and functional alterations that contribute to the development of GBC.
Collapse
Affiliation(s)
- Guoqiang Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai, 200082, China
| | - Peng Pu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai, 200082, China
| | - Mengqiao Pan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China
| | - Xiaoling Weng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China
| | - Shimei Qiu
- Department of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200082, China
| | - Yiming Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai, 200082, China
| | - Sk Jahir Abbas
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China
| | - Lu Zou
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai, 200082, China
| | - Ke Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai, 200082, China
| | - Zheng Wang
- Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Ziyu Shao
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200082, China
| | - Lin Jiang
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai, 200082, China
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200082, China
| | - Wenguang Wu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai, 200082, China
| | - Yun Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China.
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai, 200082, China.
| | - Rong Shao
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Fatao Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China.
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai, 200082, China.
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China.
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai, 200082, China.
| |
Collapse
|
2
|
Hu K, Deya Edelen E, Zhuo W, Khan A, Orbegoso J, Greenfield L, Rahi B, Griffin M, Ilich JZ, Kelly OJ. Understanding the Consequences of Fatty Bone and Fatty Muscle: How the Osteosarcopenic Adiposity Phenotype Uncovers the Deterioration of Body Composition. Metabolites 2023; 13:1056. [PMID: 37887382 PMCID: PMC10608812 DOI: 10.3390/metabo13101056] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Adiposity is central to aging and several chronic diseases. Adiposity encompasses not just the excess adipose tissue but also body fat redistribution, fat infiltration, hypertrophy of adipocytes, and the shifting of mesenchymal stem cell commitment to adipogenesis. Bone marrow adipose tissue expansion, inflammatory adipokines, and adipocyte-derived extracellular vesicles are central to the development of osteopenic adiposity. Adipose tissue infiltration and local adipogenesis within the muscle are critical in developing sarcopenic adiposity and subsequent poorer functional outcomes. Ultimately, osteosarcopenic adiposity syndrome is the result of all the processes noted above: fat infiltration and adipocyte expansion and redistribution within the bone, muscle, and adipose tissues, resulting in bone loss, muscle mass/strength loss, deteriorated adipose tissue, and subsequent functional decline. Increased fat tissue, typically referred to as obesity and expressed by body mass index (the latter often used inadequately), is now occurring in younger age groups, suggesting people will live longer with the negative effects of adiposity. This review discusses the role of adiposity in the deterioration of bone and muscle, as well as adipose tissue itself. It reveals how considering and including adiposity in the definition and diagnosis of osteopenic adiposity, sarcopenic adiposity, and osteosarcopenic adiposity will help in better understanding the pathophysiology of each and accelerate possible therapies and prevention approaches for both relatively healthy individuals or those with chronic disease.
Collapse
Affiliation(s)
- Kelsey Hu
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Elizabeth Deya Edelen
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Wenqing Zhuo
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Aliya Khan
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Josselyne Orbegoso
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Lindsey Greenfield
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Berna Rahi
- Department of Human Sciences, Sam Houston State University College of Health Sciences, Huntsville, TX 77341, USA;
| | - Michael Griffin
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Jasminka Z. Ilich
- Institute for Successful Longevity, Florida State University, Tallahassee, FL 32304, USA;
| | - Owen J. Kelly
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| |
Collapse
|
3
|
Lee SY, Park JL, Kim K, Bae JS, Kim JY, Kim SY, Jung CK. Identification of NIFTP-Specific mRNA Markers for Reliable Molecular Diagnosis of Thyroid Tumors. Endocr Pathol 2023; 34:311-322. [PMID: 37658903 PMCID: PMC10511606 DOI: 10.1007/s12022-023-09781-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/05/2023]
Abstract
Non-invasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP) is a low-risk thyroid tumor with a favorable prognosis. Nonetheless, differentiating NIFTP from other thyroid tumors remains challenging, necessitating reliable diagnostic markers. This study is aimed at discovering NIFTP-specific mRNA markers through RNA sequencing analysis of thyroid tumor tissues. We performed mRNA expression profiling for 74 fresh frozen thyroid tissue samples, including NIFTP and benign and malignant follicular-cell-derived tumors. NIFTP/malignant tumors showed 255 downregulated genes and 737 upregulated genes compared to benign tumors. Venn diagram analysis revealed 19 significantly upregulated and 7 downregulated mRNAs in NIFTP. Akaike information criterion analysis allowed us to select OCLN, ZNF423, LYG1, and AQP5 mRNA markers. We subsequently developed a predictive model based on logistic regression analysis using these four mRNAs, which we validated in independent samples (n = 90) using a qRT-PCR assay. This model demonstrated high accuracy in predicting NIFTP in discovery dataset (AUC (area under the receiver operating characteristic) = 0.960) and the validation dataset (AUC = 0.757). Our results suggest that OCLN, ZNF423, LYG1, and AQP5 mRNA markers might serve as reliable molecular markers for identifying NIFTP among other thyroid tumors, ultimately aiding in accurate diagnosis and management of NIFTP patients.
Collapse
Affiliation(s)
- So-Yeon Lee
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 34141 Daejeon, Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, 34134 Korea
| | - Jong-Lyul Park
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 34141 Daejeon, Korea
| | - Kwangsoon Kim
- Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ja Seong Bae
- Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jae-Yoon Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 34141 Daejeon, Korea
| | - Seon-Young Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 34141 Daejeon, Korea
| | - Chan Kwon Jung
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
- College of Medicine, Cancer Research Institute, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
4
|
Dokoshi T, Seidman JS, Cavagnero KJ, Li F, Liggins MC, Taylor BC, Olvera J, Knight R, Chang JT, Salzman NH, Gallo RL. Skin inflammation activates intestinal stromal fibroblasts and promotes colitis. J Clin Invest 2021; 131:147614. [PMID: 34720087 DOI: 10.1172/jci147614] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 09/16/2021] [Indexed: 01/01/2023] Open
Abstract
Inflammatory disorders of the skin are frequently associated with inflammatory bowel diseases (IBDs). To explore mechanisms by which these organs communicate, we performed single-cell RNA-Seq analysis on fibroblasts from humans and mice with IBD. This analysis revealed that intestinal inflammation promoted differentiation of a subset of intestinal stromal fibroblasts into preadipocytes with innate antimicrobial host defense activity. Furthermore, this process of reactive adipogenesis was exacerbated if mouse skin was inflamed as a result of skin wounding or infection. Since hyaluronan (HA) catabolism is activated during skin injury and fibroblast-to-adipocyte differentiation is dependent on HA, we tested the hypothesis that HA fragments could alter colon fibroblast function by targeted expression of human hyaluronidase-1 in basal keratinocytes from mouse skin. Hyaluronidase expression in the skin activated intestinal stromal fibroblasts, altered the fecal microbiome, and promoted excessive reactive adipogenesis and increased inflammation in the colon after challenge with dextran sodium sulfate. The response to digested HA was dependent on expression of TLR4 by preadipocytes. Collectively, these results suggest that the association between skin inflammation and IBD may be due to recognition by mesenchymal fibroblasts in the colon of HA released during inflammation of the skin.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rob Knight
- Department of Pediatrics, UCSD, La Jolla, California, USA
| | | | - Nita H Salzman
- Departments of Pediatrics, Microbiology, and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | |
Collapse
|
5
|
Qin S, Ingle JN, Kim W, Gao H, Weinshilboum RM, Wang L. ZNF423 modulates the AMP-activated protein kinase pathway and metformin response in a single nucleotide polymorphisms, estrogen and selective estrogen receptor modulator dependent fashion. Pharmacogenet Genomics 2021; 31:155-164. [PMID: 34001842 PMCID: PMC8340948 DOI: 10.1097/fpc.0000000000000435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/24/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES We previously discovered that the single nucleotide polymorphisms (SNP) rs9940645 in the ZNF423 gene regulate ZNF423 expression and serve as a potential biomarker for response to selective estrogen receptor modulators (SERMs). Here we explored pathways involved in ZNF423-mediated SERMs response and drugs that potentially sensitize SERMs. METHODS RNA sequencing and label-free quantitative proteomics were performed to identify genes and pathways that are regulated by ZNF423 and the ZNF423 SNP. Both cultured cells and mouse xenograft models with different ZNF423 SNP genotypes were used to study the cellular responses to metformin. RESULTS We identified ribosome and AMP-activated protein kinase (AMPK) signaling as potential pathways regulated by ZNF423 or ZNF423 rs9940645 SNP. Moreover, using clustered regularly interspaced short palindromic repeats/Cas9-engineered ZR75-1 breast cancer cells with different ZNF423 SNP genotypes, striking differences in cellular responses to metformin, either alone or in the combination of tamoxifen, were observed in both cell culture and the mouse xenograft model. CONCLUSIONS We found that AMPK signaling is modulated by the ZNF423 rs9940645 SNP in estrogen and SERM-dependent fashion. The ZNF423 rs9940645 SNP affects metformin response in breast cancer and could be a potential biomarker for tailoring the metformin treatment.
Collapse
Affiliation(s)
- Sisi Qin
- Department of Molecular Pharmacology and Experimental Therapeutics
| | - James N. Ingle
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Wootae Kim
- Department of Molecular Pharmacology and Experimental Therapeutics
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics
| | | | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics
| |
Collapse
|
6
|
Primary cilia and the DNA damage response: linking a cellular antenna and nuclear signals. Biochem Soc Trans 2021; 49:829-841. [PMID: 33843966 DOI: 10.1042/bst20200751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/17/2022]
Abstract
The maintenance of genome stability involves integrated biochemical activities that detect DNA damage or incomplete replication, delay the cell cycle, and direct DNA repair activities on the affected chromatin. These processes, collectively termed the DNA damage response (DDR), are crucial for cell survival and to avoid disease, particularly cancer. Recent work has highlighted links between the DDR and the primary cilium, an antenna-like, microtubule-based signalling structure that extends from a centriole docked at the cell surface. Ciliary dysfunction gives rise to a range of complex human developmental disorders termed the ciliopathies. Mutations in ciliopathy genes have been shown to impact on several functions that relate to centrosome integrity, DNA damage signalling, responses to problems in DNA replication and the control of gene expression. This review covers recent findings that link cilia and the DDR and explores the various roles played by key genes in these two contexts. It outlines how proteins encoded by ciliary genes impact checkpoint signalling, DNA replication and repair, gene expression and chromatin remodelling. It discusses how these diverse activities may integrate nuclear responses with those that affect a structure of the cell periphery. Additional directions for exploration of the interplay between these pathways are highlighted, with a focus on new ciliary gene candidates that alter genome stability.
Collapse
|
7
|
Zhang S, Zhang J, Guo D, Peng C, Tian M, Pei D, Wang Q, Yang F, Cao J, Chen Y. Biotoxic effects and gene expression regulation of urban PM 2.5 in southwestern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141774. [PMID: 33207436 DOI: 10.1016/j.scitotenv.2020.141774] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/16/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
Atmospheric fine particulate matter (PM2.5) causes severe haze in China and is regarded as a threat to human health. The health effects of PM2.5 vary location by location due to the variation in size distribution, chemical composition, and sources. In this study, the cytotoxicity effect, oxidative stress, and gene expression regulation of PM2.5 in Chengdu and Chongqing, two typical urban areas in southern China, were evaluated. Urban PM2.5 in summer and winter significantly inhibited cell viability and increased reactive oxygen species (ROS) levels in A549 cells. Notably, PM2.5 in winter exhibited higher cytotoxicity and ROS level than summer. Moreover, in this study, PM2.5 commonly induced cancer-related gene expression such as cell adhesion molecule 1 (PECAM1), interleukin 24 (IL24), and cytochrome P450 (CYP1A1); meanwhile, PM2.5 commonly acted on cancer-related biological functions such as cell-substrate junction, cell-cell junction, and focal adhesion. In particular, PM2.5 in Chengdu in summer had the highest carcinogenic potential among PM2.5 at the two sites in summer and winter. Importantly, cancer-related genes were uniquely targeted by PM2.5, such as epithelial splicing regulatory protein 1 (ESRP1) and membrane-associated ring-CH-type finger 1 (1-Mar) by Chengdu summer PM2.5; collagen type IX alpha 3 chain (COL9A3) by Chengdu winter PM2.5; SH2 domain-containing 1B (SH2D1B) by Chongqing summer PM2.5; and interleukin 1 receptor-like 1 (IL1RL1) and zinc finger protein 42 (ZNF423) by Chongqing winter PM2.5. Meanwhile, important cancer-related biological functions were specially induced by PM2.5, such as cell cycle checkpoint by Chengdu summer PM2.5; macromolecule methylation by Chengdu winter PM2.5; endoplasmic reticulum-Golgi intermediate compartment membrane by Chongqing summer PM2.5; and cellular lipid catabolic process by Chongqing winter PM2.5. Conclusively, in the typical urban areas of southern China, both summer and winter PM2.5 illustrated significant gene regulation effects. This study contributes to evaluating the adverse health effects of PM2.5 in southern China and providing public health suggestions for policymakers.
Collapse
Affiliation(s)
- Shumin Zhang
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Jingping Zhang
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Dongmei Guo
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Chao Peng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Mi Tian
- School of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400044, China
| | - Desheng Pei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| | - Qiyuan Wang
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG) and Key Laboratory of Aerosol Chemistry and Physics (KLACP), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China
| | - Fumo Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Junji Cao
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG) and Key Laboratory of Aerosol Chemistry and Physics (KLACP), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China
| | - Yang Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
8
|
Scicchitano S, Giordano M, Lucchino V, Montalcini Y, Chiarella E, Aloisio A, Codispoti B, Zoppoli P, Melocchi V, Bianchi F, De Smaele E, Mesuraca M, Morrone G, Bond HM. The stem cell-associated transcription co-factor, ZNF521, interacts with GLI1 and GLI2 and enhances the activity of the Sonic hedgehog pathway. Cell Death Dis 2019; 10:715. [PMID: 31558698 PMCID: PMC6763495 DOI: 10.1038/s41419-019-1946-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 08/17/2019] [Accepted: 08/29/2019] [Indexed: 01/18/2023]
Abstract
ZNF521 is a transcription co-factor with recognized regulatory functions in haematopoietic, osteo-adipogenic and neural progenitor cells. Among its diverse activities, ZNF521 has been implicated in the regulation of medulloblastoma (MB) cells, where the Hedgehog (HH) pathway, has a key role in the development of normal cerebellum and of a substantial fraction of MBs. Here a functional cross-talk is shown for ZNF521 with the HH pathway, where it interacts with GLI1 and GLI2, the major HH transcriptional effectors and enhances the activity of HH signalling. In particular, ZNF521 cooperates with GLI1 and GLI2 in the transcriptional activation of GLI (glioma-associated transcription factor)-responsive promoters. This synergism is dependent on the presence of the N-terminal, NuRD-binding motif in ZNF521, and is sensitive to HDAC (histone deacetylase) and GLI inhibitors. Taken together, these results highlight the role of ZNF521, and its interaction with the NuRD complex, in determining the HH response at the level of transcription. This may be of particular relevance in HH-driven diseases, especially regarding the MBs belonging to the SHH (sonic HH) subgroup where a high expression of ZNF521 is correlated with that of HH pathway components.
Collapse
Affiliation(s)
- Stefania Scicchitano
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100, Catanzaro, Italy
| | - Marco Giordano
- Unit of Gynecological Oncology Research, European Institute of Oncology IRCCS, Via G. Ripamonti 435, 20141, Milano, Italy
| | - Valeria Lucchino
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100, Catanzaro, Italy.,German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany
| | - Ylenia Montalcini
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100, Catanzaro, Italy
| | - Emanuela Chiarella
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100, Catanzaro, Italy
| | - Annamaria Aloisio
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100, Catanzaro, Italy
| | - Bruna Codispoti
- Tecnologica Research Institute-Marrelli Hospital, 88900, Crotone, Italy
| | - Pietro Zoppoli
- Laboratory of Pre-clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Valentina Melocchi
- Fondazione IRCCS - Casa Sollievo della Sofferenza, Laboratory of Cancer Biomarkers, San Giovanni Rotondo, 71013, (FG), Italy
| | - Fabrizio Bianchi
- Fondazione IRCCS - Casa Sollievo della Sofferenza, Laboratory of Cancer Biomarkers, San Giovanni Rotondo, 71013, (FG), Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, University La Sapienza, 00161, Rome, Italy
| | - Maria Mesuraca
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100, Catanzaro, Italy.
| | - Giovanni Morrone
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100, Catanzaro, Italy
| | - Heather M Bond
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100, Catanzaro, Italy.
| |
Collapse
|
9
|
Osmanbeyoglu HU, Shimizu F, Rynne-Vidal A, Alonso-Curbelo D, Chen HA, Wen HY, Yeung TL, Jelinic P, Razavi P, Lowe SW, Mok SC, Chiosis G, Levine DA, Leslie CS. Chromatin-informed inference of transcriptional programs in gynecologic and basal breast cancers. Nat Commun 2019; 10:4369. [PMID: 31554806 PMCID: PMC6761109 DOI: 10.1038/s41467-019-12291-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/02/2019] [Indexed: 02/08/2023] Open
Abstract
Chromatin accessibility data can elucidate the developmental origin of cancer cells and reveal the enhancer landscape of key oncogenic transcriptional regulators. We develop a computational strategy called PSIONIC (patient-specific inference of networks informed by chromatin) to combine chromatin accessibility data with large tumor expression data and model the effect of enhancers on transcriptional programs in multiple cancers. We generate a new ATAC-seq data profiling chromatin accessibility in gynecologic and basal breast cancer cell lines and apply PSIONIC to 723 patient and 96 cell line RNA-seq profiles from ovarian, uterine, and basal breast cancers. Our computational framework enables us to share information across tumors to learn patient-specific TF activities, revealing regulatory differences between and within tumor types. PSIONIC-predicted activity for MTF1 in cell line models correlates with sensitivity to MTF1 inhibition, showing the potential of our approach for personalized therapy. Many identified TFs are significantly associated with survival outcome. To validate PSIONIC-derived prognostic TFs, we perform immunohistochemical analyses in 31 uterine serous tumors for ETV6 and 45 basal breast tumors for MITF and confirm that the corresponding protein expression patterns are also significantly associated with prognosis.
Collapse
Affiliation(s)
- Hatice U Osmanbeyoglu
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Computational & Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Fumiko Shimizu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Angela Rynne-Vidal
- Department of Gynecologic Oncology and Reproductive Medicine-Research, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Direna Alonso-Curbelo
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hsuan-An Chen
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hannah Y Wen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tsz-Lun Yeung
- Department of Gynecologic Oncology and Reproductive Medicine-Research, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Petar Jelinic
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Pedram Razavi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott W Lowe
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel C Mok
- Department of Gynecologic Oncology and Reproductive Medicine-Research, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Douglas A Levine
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Christina S Leslie
- Computational & Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
10
|
Chaiprasert T, Armartmuntree N, Techasen A, Sakonsinsiri C, Pinlaor S, Ungarreevittaya P, Khuntikeo N, Namwat N, Thanan R. Roles of Zinc Finger Protein 423 in Proliferation and Invasion of Cholangiocarcinoma through Oxidative Stress. Biomolecules 2019; 9:biom9070263. [PMID: 31284679 PMCID: PMC6681239 DOI: 10.3390/biom9070263] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/26/2019] [Accepted: 07/03/2019] [Indexed: 12/21/2022] Open
Abstract
Zinc finger protein 423 (ZNF423) is a transcriptional factor involved in the development and progression of cancers but has not yet been examined in cholangiocarcinoma (CCA), an oxidative stress-driven cancer of biliary epithelium. In this study, we hypothesized that oxidative stress mediated ZNF423 expression regulates its downstream genes resulting in CCA genesis. ZNF423 protein expression patterns and 8-oxodG (an oxidative stress marker) formation in CCA tissues were investigated using immunohistochemical analysis. The results showed that ZNF423 was overexpressed in CCA cells compared to normal bile duct cells adjacent of the tumor. Notably, ZNF423 expression was positively correlated with 8-oxodG formation. Moreover, ZNF423 expression in an immortalized cholangiocyte cell line (MMNK1) was increased by hydrogen peroxide-treatment, suggesting that oxidative stress induces ZNF423 expression. To investigate the roles of ZNF423 in CCA progression, ZNF423 mRNA was silenced using specific siRNA in CCA cell lines, KKU-100 and KKU-213. Silencing of ZNF423 significantly inhibits cell proliferation and invasion of both CCA cell lines. Taking all these results together, the present study denoted that ZNF423 is an oxidative stress-responsive gene with an oncogenic property contributing to the regulation of CCA genesis.
Collapse
Affiliation(s)
- Timpika Chaiprasert
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Napat Armartmuntree
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Anchalee Techasen
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chadamas Sakonsinsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somchai Pinlaor
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Piti Ungarreevittaya
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Narong Khuntikeo
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Raynoo Thanan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
11
|
Mackeh R, Marr AK, Fadda A, Kino T. C2H2-Type Zinc Finger Proteins: Evolutionarily Old and New Partners of the Nuclear Hormone Receptors. NUCLEAR RECEPTOR SIGNALING 2018; 15:1550762918801071. [PMID: 30718982 PMCID: PMC6348741 DOI: 10.1177/1550762918801071] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/02/2017] [Indexed: 12/21/2022]
Abstract
Nuclear hormone receptors (NRs) are evolutionarily conserved ligand-dependent
transcription factors. They are essential for human life, mediating the actions
of lipophilic molecules, such as steroid hormones and metabolites of fatty acid,
cholesterol, and external toxic compounds. The C2H2-type zinc finger proteins
(ZNFs) form the largest family of the transcription factors in humans and are
characterized by multiple, tandemly arranged zinc fingers. Many of the C2H2-type
ZNFs are conserved throughout evolution, suggesting their involvement in
preserved biological activities, such as general transcriptional regulation and
development/differentiation of organs/tissues observed in the early embryonic
phase. However, some C2H2-type ZNFs, such as those with the Krüppel-associated
box (KRAB) domain, appeared relatively late in evolution and have significantly
increased family members in mammals including humans, possibly modulating their
complicated transcriptional network and/or supporting the morphological
development/functions specific to them. Such evolutional characteristics of the
C2H2-type ZNFs indicate that these molecules influence the NR functions
conserved through evolution, whereas some also adjust them to meet with specific
needs of higher organisms. We review the interaction between NRs and C2H2-type
ZNFs by focusing on some of the latter molecules.
Collapse
|
12
|
Jaiswal RK, Kumar P, Kumar M, Yadava PK. hTERT promotes tumor progression by enhancing TSPAN13 expression in osteosarcoma cells. Mol Carcinog 2018; 57:1038-1054. [PMID: 29722072 DOI: 10.1002/mc.22824] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/06/2018] [Accepted: 04/14/2018] [Indexed: 01/11/2023]
Abstract
Telomerase complex maintains the length of the telome, cbre, and protects erosion of the physical ends of the eukaryotic chromosome in all actively dividing cells including cancer cells. Telomerase activation extends the lifespan of cells in culture by maintaining the length of the telomere. Compared to terminally differentiated somatic cells, telomerase activity remains high in over 90% of cancer cells. It has now become clear that the role of telomerase is much more complex than just telomere lengthening. The remaining 10% of cancers deploy ALT (alternative lengthening of telomeres) pathway to maintain telomere length. Telomerase inhibitors offer a good therapeutic option. Also, telomerase-associated molecules can be targeted provided their roles are clearly established. In any case, it is necessary to understand the major role of telomerase in cancer cells. Many studies have already been done to explore gene profiling of a telomerase positive cell by knocking down expression of hTERT (telomerase reverse transcriptase). To complement these studies, we performed global gene profiling of a telomerase negative cell by ectopically expressing hTERT and studied changes in the global gene expression patterns. Analysis of microarray data for telomerase negative cells ectopically expressing telomerase showed 76 differentially regulated genes, out of which 39 genes were upregulated, and 37 were downregulated. Three upregulated genes such as TSPAN13, HMGCS2, DLX5, and three downregulated genes like DHRS2, CRYAB, and PDLIM1 were validated by real-time PCR. Knocking down of TSAPN13 in hTERT overexpressing U2OS cells enhanced the apoptosis of the cells. TSPAN13 knockdown in these cells suppressed mesenchymal properties and enhanced epithelial character.
Collapse
Affiliation(s)
- Rishi K Jaiswal
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pramod Kumar
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.,Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India
| | - Manoj Kumar
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pramod K Yadava
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
13
|
Bond HM, Scicchitano S, Chiarella E, Amodio N, Lucchino V, Aloisio A, Montalcini Y, Mesuraca M, Morrone G. ZNF423: A New Player in Estrogen Receptor-Positive Breast Cancer. Front Endocrinol (Lausanne) 2018; 9:255. [PMID: 29867779 PMCID: PMC5968090 DOI: 10.3389/fendo.2018.00255] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/03/2018] [Indexed: 01/13/2023] Open
Abstract
Preventive therapy can target hormone-responsive breast cancer (BC) by treatment with selective estrogen receptor modulators (SERMs) and reduce the incidence of BC. Genome-wide association studies have identified single nucleotide polymorphisms (SNPs) with relevant predictive values, SNPs in the ZNF423 gene were associated with decreased risk of BC during SERM therapy, and SNPs in the Cathepsin O gene with an increased risk. ZNF423, which was not previously associated with BC is a multifunctional transcription factor known to have a role in development, neurogenesis, and adipogenesis and is implicated in other types of cancer. ZNF423 is transcriptionally controlled by the homolog ZNF521, early B cell factor transcription factor, epigenetic silencing of the promoter by CpG island hyper-methylation, and also by ZNF423 itself in an auto-regulatory loop. In BC cells, ZNF423 expression is found to be induced by estrogen, dependent on the binding of the estrogen receptor and calmodulin-like 3 to SNPs in ZNP423 intronic sites in proximity to consensus estrogen response elements. ZNF423 has also been shown to play a mechanistic role by trans-activating the tumor suppressor BRCA1 and thus modulating the DNA damage response. Even though recent extensive trial studies did not classify these SNPs with the highest predictive values, for inclusion in polygenic SNP analysis, the mechanism unveiled in these studies has introduced ZNF423 as a factor important in the control of the estrogen response. Here, we aim at providing an overview of ZNF423 expression and functional role in human malignancies, with a specific focus on its implication in hormone-responsive BC.
Collapse
Affiliation(s)
- Heather M. Bond
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
- *Correspondence: Heather M. Bond, ; Maria Mesuraca, ; Giovanni Morrone,
| | - Stefania Scicchitano
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Emanuela Chiarella
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Nicola Amodio
- Laboratory of Medical Oncology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Valeria Lucchino
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Annamaria Aloisio
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Ylenia Montalcini
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Maria Mesuraca
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
- *Correspondence: Heather M. Bond, ; Maria Mesuraca, ; Giovanni Morrone,
| | - Giovanni Morrone
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
- *Correspondence: Heather M. Bond, ; Maria Mesuraca, ; Giovanni Morrone,
| |
Collapse
|
14
|
Qin S, Ingle JN, Liu M, Yu J, Wickerham DL, Kubo M, Weinshilboum RM, Wang L. Calmodulin-like protein 3 is an estrogen receptor alpha coregulator for gene expression and drug response in a SNP, estrogen, and SERM-dependent fashion. Breast Cancer Res 2017; 19:95. [PMID: 28821270 PMCID: PMC5562991 DOI: 10.1186/s13058-017-0890-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/04/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND We previously performed a case-control genome-wide association study in women treated with selective estrogen receptor modulators (SERMs) for breast cancer prevention and identified single nucleotide polymorphisms (SNPs) in ZNF423 as potential biomarkers for response to SERM therapy. The ZNF423rs9940645 SNP, which is approximately 200 bp away from the estrogen response elements, resulted in the SNP, estrogen, and SERM-dependent regulation of ZNF423 expression and, "downstream", that of BRCA1. METHODS Electrophoretic mobility shift assay-mass spectrometry was performed to identify proteins binding to the ZNF423 SNP and coordinating with estrogen receptor alpha (ERα). Clustered, regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing was applied to generate ZR75-1 breast cancer cells with different ZNF423 SNP genotypes. Both cultured cells and mouse xenograft models with different ZNF423 SNP genotypes were used to study the cellular responses to SERMs and poly(ADP-ribose) polymerase (PARP) inhibitors. RESULTS We identified calmodulin-like protein 3 (CALML3) as a key sensor of this SNP and a coregulator of ERα, which contributes to differential gene transcription regulation in an estrogen and SERM-dependent fashion. Furthermore, using CRISPR/Cas9-engineered ZR75-1 breast cancer cells with different ZNF423 SNP genotypes, striking differences in cellular responses to SERMs and PARP inhibitors, alone or in combination, were observed not only in cells but also in a mouse xenograft model. CONCLUSIONS Our results have demonstrated the mechanism by which the ZNF423 rs9940645 SNP might regulate gene expression and drug response as well as its potential role in achieving more highly individualized breast cancer therapy.
Collapse
Affiliation(s)
- Sisi Qin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - James N Ingle
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Mohan Liu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Jia Yu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - D Lawrence Wickerham
- Section of Cancer Genetics and Prevention, Allegheny Health Network Cancer Institute, Pittsburgh, PA, USA.,National Surgical Adjuvant Breast and Bowel Project (NRG Oncology), Pittsburgh, PA, USA
| | - Michiaki Kubo
- Laboratory for Genotyping Development, Center for Genomic Medicine, RIKEN, Yokohama, Japan
| | - Richard M Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
15
|
Xiang H, Zhong ZX, Peng YD, Jiang SW. The Emerging Role of Zfp217 in Adipogenesis. Int J Mol Sci 2017; 18:ijms18071367. [PMID: 28653987 PMCID: PMC5535860 DOI: 10.3390/ijms18071367] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/12/2017] [Accepted: 06/21/2017] [Indexed: 12/16/2022] Open
Abstract
Zinc finger protein 217 (Zfp217), a member of the krüppel-type zinc finger protein family, plays diverse roles in cell differentiation and development of mammals. Despite extensive research on the functions of Zfp217 in cancer, pluripotency and reprogramming, its physiological roles in adipogenesis remain unknown. Our previous RNA sequencing data suggest the involvement of Zfp217 in adipogenesis. In this study, the potential function of Zfp217 in adipogenesis was investigated through bioinformatics analysis and a series of experiments. The expression of Zfp217 was found to be gradually upregulated during the adipogenic differentiation in C3H10T1/2 cells, which was consistent with that of the adipogenic marker gene Pparg2. Furthermore, there was a positive, significant relationship between Zfp217 expression and adipocyte differentiation. It was also observed that Zfp217 could not only trigger proliferative defect in C3H10T1/2 cells, but also interact with Ezh2 and suppress the downstream target genes of Ezh2. Besides, three microRNAs (miR-503-5p, miR-135a-5p and miR-19a-3p) which target Zfp217 were found to suppress the process of adipogenesis. This is the first report showing that Zfp217 has the capacity to regulate adipogenesis.
Collapse
Affiliation(s)
- Hong Xiang
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhu-Xia Zhong
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yong-Dong Peng
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Hebei Key Laboratory of Veterinary Preventive Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China.
| | - Si-Wen Jiang
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
16
|
Buckberry S, Bianco-Miotto T, Bent SJ, Clifton V, Shoubridge C, Shankar K, Roberts CT. Placental transcriptome co-expression analysis reveals conserved regulatory programs across gestation. BMC Genomics 2017; 18:10. [PMID: 28049421 PMCID: PMC5209944 DOI: 10.1186/s12864-016-3384-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 12/07/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Mammalian development in utero is absolutely dependent on proper placental development, which is ultimately regulated by the placental genome. The regulation of the placental genome can be directly studied by exploring the underlying organisation of the placental transcriptome through a systematic analysis of gene-wise co-expression relationships. RESULTS In this study, we performed a comprehensive analysis of human placental co-expression using RNA sequencing and intergrated multiple transcriptome datasets spanning human gestation. We identified modules of co-expressed genes that are preserved across human gestation, and also identifed modules conserved in the mouse indicating conserved molecular networks involved in placental development and gene expression patterns more specific to late gestation. Analysis of co-expressed gene flanking sequences indicated that conserved co-expression modules in the placenta are regulated by a core set of transcription factors, including ZNF423 and EBF1. Additionally, we identified a gene co-expression module enriched for genes implicated in the pregnancy pathology preeclampsia. By using an independnet transcriptome dataset, we show that these co-expressed genes are differentially expressed in preeclampsia. CONCLUSIONS This study represents a comprehensive characterisation of placental co-expression and provides insight into potential transcriptional regulators that govern conserved molecular programs fundamental to placental development.
Collapse
Affiliation(s)
- Sam Buckberry
- The Robinson Research Institute, The University of Adelaide, School of Paediatrics and Reproductive Health, Adelaide, 5005, Australia.,University of Western Australia, Harry Perkins Institute of Medical Research, Perth, 6009, Australia.,University of Western Australia, Australian Research Council Centre of Excellence in Plant Energy Biology, Perth, 6009, Australia
| | - Tina Bianco-Miotto
- The Robinson Research Institute, The University of Adelaide, School of Paediatrics and Reproductive Health, Adelaide, 5005, Australia.,The University of Adelaide, School of agriculture, food and wine, Adelaide, 5005, Australia
| | - Stephen J Bent
- The Robinson Research Institute, The University of Adelaide, School of Paediatrics and Reproductive Health, Adelaide, 5005, Australia
| | - Vicki Clifton
- The Robinson Research Institute, The University of Adelaide, School of Paediatrics and Reproductive Health, Adelaide, 5005, Australia
| | - Cheryl Shoubridge
- The Robinson Research Institute, The University of Adelaide, School of Paediatrics and Reproductive Health, Adelaide, 5005, Australia
| | - Kartik Shankar
- University of Arkansas for Medical Sciences, The Department of Pediatrics, Little Rock, 72202, USA
| | - Claire T Roberts
- The Robinson Research Institute, The University of Adelaide, School of Paediatrics and Reproductive Health, Adelaide, 5005, Australia.
| |
Collapse
|