1
|
Fernandes BF, Silva N, Da Cruz MB, Garret G, Carvalho Ó, Silva F, Mata A, Francisco H, Marques JF. Cell Biological and Antibacterial Evaluation of a New Approach to Zirconia Implant Surfaces Modified with MTA. Biomimetics (Basel) 2024; 9:155. [PMID: 38534840 DOI: 10.3390/biomimetics9030155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Peri-implantitis continues to be one of the major reasons for implant failure. We propose a new approach to the incorporation of MTA into zirconia implant surfaces with Nd:YAG laser and investigate the biological and the microbiological responses of peri-implant cells. Discs of zirconia stabilized with yttria and titanium were produced according to the following four study groups: Nd:YAG laser-textured zirconia coated with MTA (Zr MTA), Nd:YAG laser-textured zirconia (Zr textured), polished zirconia discs, and polished titanium discs (Zr and Ti). Surface roughness was evaluated by contact profilometry. Human osteoblasts (hFOB), gingival fibroblasts (HGF hTERT) and S. oralis were cultured on discs. Cell adhesion and morphology, cell differentiation markers and bacterial growth were evaluated. Zr textured roughness was significantly higher than all other groups. SEM images reveal cellular adhesion at 1 day in all samples in both cell lines. Osteoblasts viability was lower in the Zr MTA group, unlike fibroblasts viability, which was shown to be higher in the Zr MTA group compared with the Zr textured group at 3 and 7 days. Osteocalcin and IL-8 secretion by osteoblasts were higher in Zr MTA. The Zr textured group showed higher IL-8 values released by fibroblasts. No differences in S. oralis CFUs were observed between groups. The present study suggests that zirconia implant surfaces coated with MTA induced fibroblast proliferation and osteoblast differentiation; however, they did not present antibacterial properties.
Collapse
Affiliation(s)
- Beatriz Ferreira Fernandes
- Oral Biology and Biochemistry Research Group-Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisboa, Portugal
| | - Neusa Silva
- Oral Biology and Biochemistry Research Group-Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisboa, Portugal
| | - Mariana Brito Da Cruz
- Oral Biology and Biochemistry Research Group-Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisboa, Portugal
| | - Gonçalo Garret
- Department of Mechanical Engineering, Center for Microelectromechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal
| | - Óscar Carvalho
- Department of Mechanical Engineering, Center for Microelectromechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal
| | - Filipe Silva
- Department of Mechanical Engineering, Center for Microelectromechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal
| | - António Mata
- Oral Biology and Biochemistry Research Group-Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), LIBPhys-FCT UIDB/04559/2020, Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisboa, Portugal
- CEMDBE-Cochrane Portugal, Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisboa, Portugal
| | - Helena Francisco
- Grupo de Investigação Implantologia e Regeneração Óssea (UICOB), Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisboa, Portugal
| | - Joana Faria Marques
- Oral Biology and Biochemistry Research Group-Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisboa, Portugal
| |
Collapse
|
2
|
Sun W, Ma D, Bolscher JGM, Nazmi K, Veerman ECI, Bikker FJ, Sun P, Lin H, Wu G. Human Salivary Histatin-1 Promotes Osteogenic Cell Spreading on Both Bio-Inert Substrates and Titanium SLA Surfaces. Front Bioeng Biotechnol 2020; 8:584410. [PMID: 33195147 PMCID: PMC7649783 DOI: 10.3389/fbioe.2020.584410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Promoting cell spreading is crucial to enhance bone healing and implant osteointegration. In this study, we investigated the stimulatory effect of human salivary histatin-1 (Hst-1) on the spreading of osteogenic cells in vitro as well as the potential signaling pathways involved. Osteogenic cells were seeded on bio-inert glass slides with or without the presence of Hst1 in dose-dependent or time-course assays. 1 scrambled and 6 truncated Hst1 variants were also evaluated. Cell spreading was analyzed using a well-established point-counting method. Fluorescent microscopy was adopted to examine the cellular uptake of fluorescently labeled Hst1 (F-Hst1) and also the cell spreading on sandblasted and acid etched titanium surfaces. Signaling inhibitors, such as U0126, SB203580, and pertussis toxin (PTx) were used to identify the potential role of extracellular-signal-regulated kinase, p38 and G protein-coupled receptor pathways, respectively. After 60 min incubation, Hst1 significantly promoted the spreading of osteogenic cells with an optimal concentration of 10 μM, while truncated and scrambled Hst1 did not. F-Hst1 was taken up and localized in the vicinity of the nuclei. U0126 and SB2030580, but not PTx, inhibited the effect of Hst1. 10 μM Hst1 significantly promoted the spreading of osteogenic cells on both bio-inert substrates and titanium SLA surfaces, which involved ERK and p38 signaling. Human salivary histatin-1 might be a promising peptide to enhance bone healing and implant osteointegration in clinic.
Collapse
Affiliation(s)
- Wei Sun
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China.,Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Dandan Ma
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jan G M Bolscher
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Enno C I Veerman
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ping Sun
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Haiyan Lin
- Savaid Stomatology School, Hangzhou Medical College, Hangzhou, China
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Movement Science, Amsterdam, Netherlands
| |
Collapse
|
3
|
Szymański T, Mieloch AA, Richter M, Trzeciak T, Florek E, Rybka JD, Giersig M. Utilization of Carbon Nanotubes in Manufacturing of 3D Cartilage and Bone Scaffolds. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4039. [PMID: 32933020 PMCID: PMC7560098 DOI: 10.3390/ma13184039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/27/2022]
Abstract
Cartilage and bone injuries are prevalent ailments, affecting the quality of life of injured patients. Current methods of treatment are often imperfect and pose the risk of complications in the long term. Therefore, tissue engineering is a rapidly developing branch of science, which aims at discovering effective ways of replacing or repairing damaged tissues with the use of scaffolds. However, both cartilage and bone owe their exceptional mechanical properties to their complex ultrastructure, which is very difficult to reproduce artificially. To address this issue, nanotechnology was employed. One of the most promising nanomaterials in this respect is carbon nanotubes, due to their exceptional physico-chemical properties, which are similar to collagens-the main component of the extracellular matrix of these tissues. This review covers the important aspects of 3D scaffold development and sums up the existing research tackling the challenges of scaffold design. Moreover, carbon nanotubes-reinforced bone and cartilage scaffolds manufactured using the 3D bioprinting technique will be discussed as a novel tool that could facilitate the achievement of more biomimetic structures.
Collapse
Affiliation(s)
- Tomasz Szymański
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10 Street, 61-614 Poznan, Poland; (T.S.); (A.A.M.); (M.R.); (M.G.)
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznan, Poland
| | - Adam Aron Mieloch
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10 Street, 61-614 Poznan, Poland; (T.S.); (A.A.M.); (M.R.); (M.G.)
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznan, Poland
| | - Magdalena Richter
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10 Street, 61-614 Poznan, Poland; (T.S.); (A.A.M.); (M.R.); (M.G.)
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, 28 czerwca 1956r. Street No. 135/147, 61-545 Poznan, Poland;
| | - Tomasz Trzeciak
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, 28 czerwca 1956r. Street No. 135/147, 61-545 Poznan, Poland;
| | - Ewa Florek
- Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland;
| | - Jakub Dalibor Rybka
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10 Street, 61-614 Poznan, Poland; (T.S.); (A.A.M.); (M.R.); (M.G.)
| | - Michael Giersig
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10 Street, 61-614 Poznan, Poland; (T.S.); (A.A.M.); (M.R.); (M.G.)
- Department of Physics, Institute of Experimental Physics, Freie Universität, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
4
|
Madhusoodan AP, Das K, Mili B, Kumar K, Kumar A, Saxena AC, Singh P, Dutt T, Bag S. In vitro proliferation and differentiation of canine bone marrow derived mesenchymal stem cells over hydroxyl functionalized CNT substrates. ACTA ACUST UNITED AC 2019; 24:e00387. [PMID: 31799142 PMCID: PMC6881647 DOI: 10.1016/j.btre.2019.e00387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/06/2019] [Accepted: 10/14/2019] [Indexed: 11/26/2022]
Abstract
Nanotopography of culture substrate acts as a positive cue in cell-biomaterial based tissue regeneration. Considering the potentiality of carbon nanotubes (CNTs) this study was designed to evaluate its two functionalized form by an in vitro culture condition using canine mesenchymal stem cells as cellular model. Cells were isolated and its behaviour, proliferation and differentiation processes were elucidated onto CNT substrates. Beside the variations in cellular behaviour it was remarkably noted that even though proliferation was reduced but osteogenic and chondrogenic differentiation was enhanced over multi-walled CNTs, whereas neuronal differentiation was better supported by single walled CNTs as evidenced by our cytochemical, immunocytochemical, gene expression and flow cytometry assays. The former one was noticed more cytocompatible by our different apoptosis studies. The outcome of these experiments collectively indicated that hydroxylated functionalized CNTs could be a potential scaffold constituent for future experimentations as well as for the application in regenerative medicine.
Collapse
Affiliation(s)
- A P Madhusoodan
- Division of Physiology and Climatology, ICAR - Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Kinsuk Das
- Division of Physiology and Climatology, ICAR - Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Bhabesh Mili
- Division of Physiology and Climatology, ICAR - Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Kuldeep Kumar
- Division of Physiology and Climatology, ICAR - Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Ajay Kumar
- Biochemistry and Food Science Section, ICAR - Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - A C Saxena
- Division of Surgery, Izatnagar, ICAR - Indian Veterinary Research Institute, Uttar Pradesh, India
| | - Praveen Singh
- Biophysics, Electron Microscopy and Instrumentation Section, ICAR - Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Triveni Dutt
- Division of Livestock Production and Management, ICAR - Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Sadhan Bag
- Division of Physiology and Climatology, ICAR - Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| |
Collapse
|
5
|
Duvvuru MK, Han W, Chowdhury PR, Vahabzadeh S, Sciammarella F, Elsawa SF. Bone marrow stromal cells interaction with titanium; Effects of composition and surface modification. PLoS One 2019; 14:e0216087. [PMID: 31116747 PMCID: PMC6530826 DOI: 10.1371/journal.pone.0216087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/12/2019] [Indexed: 01/12/2023] Open
Abstract
Inflammation and implant loosening are major concerns when using titanium implants for hard tissue engineering applications. Surface modification is one of the promising tools to enhance tissue-material integration in metallic implants. Here, we used anodization technique to modify the surface of commercially pure titanium (CP-Ti) and titanium alloy (Ti-6Al-4V) samples. Our results show that electrolyte composition, anodization time and voltage dictated the formation of well-organized nanotubes. Although electrolyte containing HF in water resulted in nanotube formation on Ti, the presence of NH4F and ethylene glycol was necessary for successful nanotube formation on Ti-6Al-4V. Upon examination of the interaction of bone marrow stromal cells (BMSCs) with the modified samples, we found that Ti-6Al-4V without nanotubes induced cell proliferation and cluster of differentiation 40 ligand (CD40L) expression which facilitates B-cell activation to promote early bone healing. However, the expression of glioma associated protein 2 (GLI2), which regulates CD40L, was reduced in Ti-6Al-4V and the presence of nanotubes further reduced its expression. The inflammatory cytokine interleukin-6 (IL-6) expression was reduced by nanotube presence on Ti. These results suggest that Ti-6Al-4V with nanotubes may be suitable implants because they have no effect on BMSC growth and inflammation.
Collapse
Affiliation(s)
- Murali Krishna Duvvuru
- Department of Mechanical Engineering, Northern Illinois University, Dekalb, Illinois, United States of America
| | - Weiguo Han
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Prantik Roy Chowdhury
- Department of Mechanical Engineering, Northern Illinois University, Dekalb, Illinois, United States of America
| | - Sahar Vahabzadeh
- Department of Mechanical Engineering, Northern Illinois University, Dekalb, Illinois, United States of America
- * E-mail: (SE); (SV)
| | - Federico Sciammarella
- Department of Mechanical Engineering, Northern Illinois University, Dekalb, Illinois, United States of America
| | - Sherine F. Elsawa
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, United States of America
- * E-mail: (SE); (SV)
| |
Collapse
|
6
|
Song G, Guo X, Zong X, DU L, Zhao J, Lai C, Jin X. Toxicity of functionalized multi-walled carbon nanotubes on bone mesenchymal stem cell in rats. Dent Mater J 2018; 38:127-135. [PMID: 30449827 DOI: 10.4012/dmj.2017-313] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Carbon nanotubes (CNTs) are promising biomaterials in the medical field, especially in tissue engineering of bone. However, the use of CNTs is largely confined by its unfavorable solubility and toxicity. To improve solubility and biocompatibility of CNTs, functionalization has been proven to be an effective strategy. Although various functionalized CNTs have been extensively studied, only few CNTs have the desired qualities. We compared the toxicity of several promising functionalized multi-walled carbon nanotubes (MWCNTs) on rat bone-marrow derived stem cells (BMSCs). Cell experiments showed that while acid oxidation (AO)-MWCNTs and Raw-MWCNTs exhibited significant toxicity on BMSCs, polyethylene glycols (PEG)-MWCNTs and hydroxyapatit (HA)-MWCNTs had favorable biocompatibility and a trivial effect on BMSCs. Possible mechanisms for the cytotoxicity on BMSCs included mitochondrisome and deoxyribonucleic acid damage, increased oxidative stress and damaging of cellular membranes. Our data indicated that PEG-MWCNTs and HA-MWCNTs may be promising materials for bio-related applications.
Collapse
Affiliation(s)
- Guodong Song
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Xiaoshuang Guo
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Xianlei Zong
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Le DU
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Jingyi Zhao
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Chenzhi Lai
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Xiaolei Jin
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| |
Collapse
|
7
|
Chittepu VCSR, Kalhotra P, Gallardo-Velázquez T, Robles-de la Torre RR, Osorio-Revilla G. Designed Functional Dispersion for Insulin Protection from Pepsin Degradation and Skeletal Muscle Cell Proliferation: In Silico and In Vitro Study. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E852. [PMID: 30347680 PMCID: PMC6215209 DOI: 10.3390/nano8100852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 12/25/2022]
Abstract
Functionalized single-walled carbon nanotubes with polyethylene glycol (PEGylated SWCNTs) are a promising nanomaterial that recently has emerged as the most attractive "cargo" to deliver chemicals, peptides, DNA and RNAs into cells. Insulin therapy is a recommended therapy to treat diabetes mellitus despite its side effects. Recently, functional dispersion made up of bioactive peptides, bioactive compounds and functionalized carbon nanomaterials such as PEGylated SWCNTs have proved to possess promising applications in nanomedicine. In the present study, molecular modeling simulations are utilized to assist in designing insulin hormone-PEGylated SWCNT composites, also called functional dispersion; to achieve this experimentally, an ultrasonication tool was utilized. Enzymatic degradation assay revealed that the designed functional dispersion protects about 70% of free insulin from pepsin. In addition, sulforhodamine B (SRB) assay, the quantification of insulin and glucose levels in differentiated skeletal muscle cell supernatants, reveals that functional dispersion regulates glucose and insulin levels to promote skeletal muscle cell proliferation. These findings offer new perspectives for designed functional dispersion, as potential pharmaceutical preparations to improve insulin therapy and promote skeletal muscle cell health.
Collapse
Affiliation(s)
- Veera C S R Chittepu
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu S/N, Col. Unidad Profesional Adolfo López Mateos, Zacatenco, CP. Ciudad de Mexico 07738, Mexico.
| | - Poonam Kalhotra
- Departamento de Biofísica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, CP. Ciudad de Mexico 11340, Mexico.
| | - Tzayhri Gallardo-Velázquez
- Departamento de Biofísica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, CP. Ciudad de Mexico 11340, Mexico.
| | - Raúl René Robles-de la Torre
- Centro de Investigación en Biotecnología Aplicada CIBA, Instituto Politécnico Nacional, Carretera Estatal, Tecuexcomac-Tepetitla, Km 1.5, CP. Tlaxcala 90700, Mexico.
| | - Guillermo Osorio-Revilla
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu S/N, Col. Unidad Profesional Adolfo López Mateos, Zacatenco, CP. Ciudad de Mexico 07738, Mexico.
| |
Collapse
|
8
|
Xu C, Liu Q, Liu H, Zhang C, Shao W, Gu A. Toxicological assessment of multi-walled carbon nanotubes in vitro: potential mitochondria effects on male reproductive cells. Oncotarget 2018; 7:39270-39278. [PMID: 27248475 PMCID: PMC5129931 DOI: 10.18632/oncotarget.9689] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/23/2016] [Indexed: 12/13/2022] Open
Abstract
Multi-walled carbon nanotubes (MWCNTs) have been widely used in many fields and were reported to cause reversible testis damage in mice at high-dose. However the reproductive effects of low dose MWCNTs remained elusive. Herein, we used the mice spermatocyte cell line (GC-2spd) to assess the reproductive effects of MWCNTs. Size distribution, zeta potential, and intensity of MWCNTs were characterized. A maximal concentration of 0.5 μg/mL MWCNTs was found to be nonlethal to GC-2spd. At this dose, cell cycles and the ROS levels were in normal status. We also found MWCNTs accumulated in mitochondria, which caused potential mitochondrial DNA damage in spermatocyte. Furthermore, the expression level of mitochondria-related genes, the oxygen consumption rate, and cellular ATP content were declined compared to controls, even at the nonlethal dose. Our results suggested for the first time that, in germ cells, mitochondrion was a cellular organelle that accumulated MWCNTs.
Collapse
Affiliation(s)
- Cheng Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hui Liu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chunlan Zhang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wentao Shao
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Celluzzi A, Paolini A, D'Oria V, Risoluti R, Materazzi S, Pezzullo M, Casciardi S, Sennato S, Bordi F, Masotti A. Biophysical and biological contributions of polyamine-coated carbon nanotubes and bidimensional buckypapers in the delivery of miRNAs to human cells. Int J Nanomedicine 2018. [PMID: 29296082 DOI: 10.2147/ijn.s144155.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Recent findings in nanomedicine have revealed that carbon nanotubes (CNTs) can be used as potential drug carriers, therapeutic agents and diagnostics tools. Moreover, due to their ability to cross cellular membranes, their nanosize dimension, high surface area and relatively good biocompatibility, CNTs have also been employed as a novel gene delivery vector system. In our previous work, we functionalized CNTs with two polyamine polymers, polyethyleneimine (PEI) and polyamidoamine dendrimer (PAMAM). These compounds have low cytotoxicity, ability to conjugate microRNAs (such as miR-503) and, at the same time, transfect efficiently endothelial cells. The parameters contributing to the good efficiency of transfection that we observed were not investigated in detail. In fact, the diameter and length of CNTs are important parameters to be taken into account when evaluating the effects on drug delivery efficiency. In order to investigate the biophysical and biological contributions of polymer-coated CNTs in delivery of miRNAs to human cells, we decided to investigate three different preparations, characterized by different dimensions and aspect ratios. In particular, we took into account very small CNTs, a suspension of CNTs starting from the commercial product and a 2D material based on CNTs (ie, buckypapers [BPs]) to examine the transfection efficiency of a rigid scaffold. In conclusion, we extensively investigated the biophysical and biological contributions of polyamine-coated CNTs and bidimensional BPs in the delivery of miRNAs to human cells, in order to optimize the transfection efficiency of these compounds to be employed as efficient drug delivery vectors in biomedical applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Marco Pezzullo
- Bambino Gesù Children's Hospital, IRCCS, Research Laboratories
| | - Stefano Casciardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institution for Insurance Against Accidents at Work (INAIL Research), Monte Porzio Catone
| | - Simona Sennato
- CNR-ISC UOS Roma, Department of Physics, Sapienza University of Rome, Roma, Italy
| | - Federico Bordi
- CNR-ISC UOS Roma, Department of Physics, Sapienza University of Rome, Roma, Italy
| | - Andrea Masotti
- Bambino Gesù Children's Hospital, IRCCS, Research Laboratories
| |
Collapse
|
10
|
Celluzzi A, Paolini A, D'Oria V, Risoluti R, Materazzi S, Pezzullo M, Casciardi S, Sennato S, Bordi F, Masotti A. Biophysical and biological contributions of polyamine-coated carbon nanotubes and bidimensional buckypapers in the delivery of miRNAs to human cells. Int J Nanomedicine 2017; 13:1-18. [PMID: 29296082 PMCID: PMC5739113 DOI: 10.2147/ijn.s144155] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Recent findings in nanomedicine have revealed that carbon nanotubes (CNTs) can be used as potential drug carriers, therapeutic agents and diagnostics tools. Moreover, due to their ability to cross cellular membranes, their nanosize dimension, high surface area and relatively good biocompatibility, CNTs have also been employed as a novel gene delivery vector system. In our previous work, we functionalized CNTs with two polyamine polymers, polyethyleneimine (PEI) and polyamidoamine dendrimer (PAMAM). These compounds have low cytotoxicity, ability to conjugate microRNAs (such as miR-503) and, at the same time, transfect efficiently endothelial cells. The parameters contributing to the good efficiency of transfection that we observed were not investigated in detail. In fact, the diameter and length of CNTs are important parameters to be taken into account when evaluating the effects on drug delivery efficiency. In order to investigate the biophysical and biological contributions of polymer-coated CNTs in delivery of miRNAs to human cells, we decided to investigate three different preparations, characterized by different dimensions and aspect ratios. In particular, we took into account very small CNTs, a suspension of CNTs starting from the commercial product and a 2D material based on CNTs (ie, buckypapers [BPs]) to examine the transfection efficiency of a rigid scaffold. In conclusion, we extensively investigated the biophysical and biological contributions of polyamine-coated CNTs and bidimensional BPs in the delivery of miRNAs to human cells, in order to optimize the transfection efficiency of these compounds to be employed as efficient drug delivery vectors in biomedical applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Marco Pezzullo
- Bambino Gesù Children's Hospital, IRCCS, Research Laboratories
| | - Stefano Casciardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institution for Insurance Against Accidents at Work (INAIL Research), Monte Porzio Catone
| | - Simona Sennato
- CNR-ISC UOS Roma, Department of Physics, Sapienza University of Rome, Roma, Italy
| | - Federico Bordi
- CNR-ISC UOS Roma, Department of Physics, Sapienza University of Rome, Roma, Italy
| | - Andrea Masotti
- Bambino Gesù Children's Hospital, IRCCS, Research Laboratories
| |
Collapse
|
11
|
Chen S, Bai B, Lee DJ, Diachina S, Li Y, Wong SW, Wang Z, Tseng HC, Ko CC. Dopaminergic enhancement of cellular adhesion in bone marrow derived mesenchymal stem cells (MSCs). ACTA ACUST UNITED AC 2017; 7. [PMID: 29354319 DOI: 10.4172/2157-7633.1000395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dopamine (DA) is a well-known neurotransmitter and critical element in the mussel adhesive protein that has gained increasing attention for its role in cellular growth enhancement in biomaterials, including cellular adhesion improvement. As the mechanism underlying this remains unclear, the objective of this study was to explore the effects of DA on the adhesion properties of bone marrow derived rat mesenchymal stem cells (rMSCs) using an hydroxyapatite gelatin nanocomposite biomaterial and to test whether the effects are mediated through various endogenously expressed DA receptors. Primary rMSCs were pretreated with D1-like antagonist, D2-like antagonist, or a combination of these antagonists followed by treatment with 50 μM DA and cellular adhesion quantification at 0.5, 1, 2 and 4 hours post DA addition. DA was found to increase rMSC adhesion and spreading at the 0.5 hour time-point and the dopaminergic effect on cell adhesion was partially blocked by DA antagonists. In addition, the D1-like and D2-like antagonists appeared to have a similar effect on rMSCs. Immunofluorescent staining indicated that the rMSC spreading area was significantly increased in the DA treated group versus the control group. Treatment of the D1-like DA antagonists with DA revealed that the actin filaments of rMSCs could not connect the membrane with the nucleus. In summary, DA was found to enhance early rMSC adhesion partially via DA receptor activation.
Collapse
Affiliation(s)
- Si Chen
- Oral and Craniofacial Health Sciences Research, School of Dentistry, University of North Carolina, CB #7455, Chapel Hill, NC 27599, USA.,Department of Orthodontics, Peking University School and Hospital of Stomatology, PRC
| | - Bing Bai
- Oral and Craniofacial Health Sciences Research, School of Dentistry, University of North Carolina, CB #7455, Chapel Hill, NC 27599, USA.,Department of Prosthodontics, China Medical University School of Stomatology, PRC
| | - Dong Joon Lee
- Oral and Craniofacial Health Sciences Research, School of Dentistry, University of North Carolina, CB #7455, Chapel Hill, NC 27599, USA
| | - Shannon Diachina
- Oral and Craniofacial Health Sciences Research, School of Dentistry, University of North Carolina, CB #7455, Chapel Hill, NC 27599, USA
| | - Yina Li
- Oral and Craniofacial Health Sciences Research, School of Dentistry, University of North Carolina, CB #7455, Chapel Hill, NC 27599, USA
| | - Sing Wai Wong
- Oral and Craniofacial Health Sciences Research, School of Dentistry, University of North Carolina, CB #7455, Chapel Hill, NC 27599, USA
| | - Zhengyan Wang
- Department of Pediatric Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - Henry C Tseng
- Duke Eye Center and Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ching-Chang Ko
- Oral and Craniofacial Health Sciences Research, School of Dentistry, University of North Carolina, CB #7455, Chapel Hill, NC 27599, USA.,Department of Orthodontics, School of Dentistry, University of North Carolina, CB #7454, Chapel Hill, NC 27599, USA
| |
Collapse
|
12
|
Das K, Madhusoodan AP, Mili B, Kumar A, Saxena AC, Kumar K, Sarkar M, Singh P, Srivastava S, Bag S. Functionalized carbon nanotubes as suitable scaffold materials for proliferation and differentiation of canine mesenchymal stem cells. Int J Nanomedicine 2017; 12:3235-3252. [PMID: 28458543 PMCID: PMC5402918 DOI: 10.2147/ijn.s122945] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the field of regenerative medicine, numerous potential applications of mesenchymal stem cells (MSCs) can be envisaged, due to their ability to differentiate into a range of tissues on the basis of the substrate on which they grow. With the advances in nanotechnology, carbon nanotubes (CNTs) have been widely explored for use as cell culture substrate in tissue engineering applications. In this study, canine bone marrow-derived MSCs were considered as the cellular model for an in vitro study to elucidate the collective cellular processes, using three different varieties of thin films of functionalized carbon nanotubes (COOH-single-walled CNTs [SWCNTs], COOH-multiwalled CNTs [MWCNTs] and polyethylene glycol [PEG]-SWCNTs), which were spray dried onto preheated cover slips. Cells spread out better on the CNT films, resulting in higher cell surface area and occurrence of filopodia, with parallel orientation of stress fiber bundles. Canine MSCs proliferated at a slower rate on all types of CNT substrates compared to the control, but no decline in cell number was noticed during the study period. Expression of apoptosis-associated genes decreased on the CNT substrates as time progressed. On flow cytometry after AnnexinV-fluorescein isothiocyanate/propidium iodide (PI) staining, total number of apoptotic and necrotic cells remained lower in COOH-functionalized films compared to PEG-functionalized ones. Collectively, these results indicate that COOH-MWCNT substrate provided an environment of low cytotoxicity. Canine MSCs were further induced to differentiate along osteogenic, chondrogenic, and neuronal lineages by culturing under specific differentiation conditions. The cytochemical and immunocytochemical staining results, as well as the expression of the bone marker genes, led us to hypothesize that the COOH-MWCNT substrate acted as a better cue, accelerating the osteogenic differentiation process. However, while chondrogenesis was promoted by COOH-SWCNT, neuronal differentiation was promoted by both COOH-SWNCT and COOH-MWCNT. Taken together, these findings suggest that COOH-functionalized CNTs represent a promising scaffold component for future utilization in the selective differentiation of canine MSCs in regenerative medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Praveen Singh
- Biophysics, Electron Microscopy and Instrumentation Section
| | - Sameer Srivastava
- Division of Veterinary Biotechnology, Indian Council of Agricultural Research - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | | |
Collapse
|
13
|
Das K, Mili B, A.P. M, Saxena AC, Kumar A, Singh P, Verma MR, Sarkar M, Bag S. Proliferation of canine bone marrow derived mesenchymal stem cells on different nanomaterial based thin film scaffolds. Tissue Cell 2017; 49:270-274. [DOI: 10.1016/j.tice.2017.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 01/31/2017] [Accepted: 02/05/2017] [Indexed: 12/21/2022]
|
14
|
Perkins BL, Naderi N. Carbon Nanostructures in Bone Tissue Engineering. Open Orthop J 2016; 10:877-899. [PMID: 28217212 PMCID: PMC5299584 DOI: 10.2174/1874325001610010877] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/15/2015] [Accepted: 05/31/2016] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Recent advances in developing biocompatible materials for treating bone loss or defects have dramatically changed clinicians' reconstructive armory. Current clinically available reconstructive options have certain advantages, but also several drawbacks that prevent them from gaining universal acceptance. A wide range of synthetic and natural biomaterials is being used to develop tissue-engineered bone. Many of these materials are currently in the clinical trial stage. METHODS A selective literature review was performed for carbon nanostructure composites in bone tissue engineering. RESULTS Incorporation of carbon nanostructures significantly improves the mechanical properties of various biomaterials to mimic that of natural bone. Recently, carbon-modified biomaterials for bone tissue engineering have been extensively investigated to potentially revolutionize biomaterials for bone regeneration. CONCLUSION This review summarizes the chemical and biophysical properties of carbon nanostructures and discusses their functionality in bone tissue regeneration.
Collapse
Affiliation(s)
- Brian Lee Perkins
- Health Informatics Group, Swansea University Medical School, Swansea, SA2 8PP, United Kingdom
| | - Naghmeh Naderi
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Science (ILS), Swansea University Medical School, Swansea, SA2 8PP, United Kingdom
- Welsh Centre for Burns & Plastic Surgery, Abertawe Bro Morgannwg University Health Board, Swansea, United Kingdom
| |
Collapse
|
15
|
Valverde TM, Castro EG, Cardoso MHS, Martins-Júnior PA, Souza LMO, Silva PP, Ladeira LO, Kitten GT. A novel 3D bone-mimetic scaffold composed of collagen/MTA/MWCNT modulates cell migration and osteogenesis. Life Sci 2016; 162:115-24. [PMID: 27523047 DOI: 10.1016/j.lfs.2016.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/30/2016] [Accepted: 08/05/2016] [Indexed: 12/11/2022]
Abstract
AIMS This study characterized a three-dimensional (3D) biocomposite scaffolds produced using type I collagen, mineral trioxide aggregate (MTA) and multi-walled carbon nanotubes (MWCNT) to be used in bone tissue regeneration. MAIN METHODS The scaffolds were analyzed via scanning (SEM) and transmission (TEM) electron microscopy, as well as the viability and migration of osteoblasts and mineralization of the scaffolds. KEY FINDINGS SEM and TEM analyses showed that MTA and MWCNT were distributed as both large agglomerates entrapped within the collagen network and as smaller accumulations or individual molecules dispersed throughout the scaffold. Ultrastructural analysis revealed that osteoblastic MC3T3-E1 cells grown in the biocomposite endocytosed MWCNT, which were localized in the cytoplasm and in vesicles. Analysis of cells grown in the 3D scaffolds demonstrated that >95% of the cells remained viable in all tested combinations and concentrations of the biocomposite. MC3T3-E1 osteoblasts migrated into scaffolds formed with concentrations of type I collagen between 1.75 and 3.0mg/mL. Cells displayed increased migration into scaffolds formed with collagen and a range of low to high concentrations of MTA. In contrast, the presence of MWCNT in the biocomposite had a slight negative effect on migration. Collagen gels containing specific concentrations of MTA, or MWCNT, or combinations of MTA/MWCNT, caused an increase in mineralization of scaffolds. SIGNIFICANCE Scaffolds composed of defined concentrations of type I collagen, MTA and MWCNT are biocompatible, promote migration and mineralization of osteoblasts, and hence may be useful as bone tissue mimetics.
Collapse
Affiliation(s)
- Thalita M Valverde
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| | - Elisandra G Castro
- Laboratório de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia 74605-220, Brazil
| | - Maíssa H S Cardoso
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Paulo A Martins-Júnior
- Faculdade de Odontologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Lívia M O Souza
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Patrícia P Silva
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Luiz O Ladeira
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Gregory T Kitten
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| |
Collapse
|