1
|
Han JH, Heo KS, Myung CS. Cytokine-induced apoptosis inhibitor 1 (CIAPIN1) accelerates vascular remodelling via p53 and JAK2-STAT3 regulation in vascular smooth muscle cells. Br J Pharmacol 2021; 178:4533-4551. [PMID: 34289085 DOI: 10.1111/bph.15631] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Abnormal vascular smooth muscle cell (VSMC) proliferation and migration lead to neointima formation, which eventually results in cardiovascular hyperplastic diseases. The molecular mechanisms underlying these cellular processes have not been fully understood. Cytokine-induced apoptosis inhibitor 1 (CIAPIN1) has been identified as an anti-apoptotic molecule, but little is known about its target genes and related pathways in VSMC dysfunction or its clinical implication in neointima formation following vascular injury. EXPERIMENTAL APPROACH Determination, using loss/gain-of-function approaches by gene delivery, of whether CIAPIN1 modulates VSMC proliferation, migration and neointima formation and the underlying mechanisms was carried out. Balloon injury or ligation and local delivery of lentivirus were performed on rat or mouse carotid arteries. Rat aortic smooth muscle cells, the primary cell, was used as the model to evaluate the effect of CIAPIN1 on proliferation and migration. KEY RESULTS CIAPIN1 was overexpressed in the neointimal region of rat arteries. CIAPIN1 deficiency markedly inhibited injury-induced or ligation-induced intimal hyperplasia and suppressed PDGF-BB-induced VSMC proliferation, migration and cell cycle progression, while overexpression promoted proliferation, migration and neointima formation. CIAPIN1 negatively regulated Tp53 transcription, which promoted cell cycle progression and migration via cyclin E1-CDK2/pRb/PCNA and the MMP2 pathway. CIAPIN1 also increased JAK2 expression, enhancing JAK2 and STAT3 phosphorylation by vascular injury, which forced phenotypic switching from contractile to synthetic state in injured arteries. CONCLUSIONS AND IMPLICATIONS These findings provide new insights into the mechanism by which CIAPIN1 regulates vascular remodelling and suggest a novel therapeutic target for treating vascular proliferative diseases.
Collapse
Affiliation(s)
- Joo-Hui Han
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, Republic of Korea
| | - Kyung-Sun Heo
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, Republic of Korea
| | - Chang-Seon Myung
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, Republic of Korea
| |
Collapse
|
2
|
He S, Carman CV, Lee JH, Lan B, Koehler S, Atia L, Park CY, Kim JH, Mitchel JA, Park JA, Butler JP, Lu Q, Fredberg JJ. The tumor suppressor p53 can promote collective cellular migration. PLoS One 2019; 14:e0202065. [PMID: 30707705 PMCID: PMC6358060 DOI: 10.1371/journal.pone.0202065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 11/19/2018] [Indexed: 12/21/2022] Open
Abstract
Loss of function of the tumor suppressor p53 is known to increase the rate of migration of cells transiting the narrow pores of the traditional Boyden chamber assay. Here by contrast we investigate how p53 impacts the rate of cellular migration within a 2D confluent cell layer and a 3D collagen-embedded multicellular spheroid. We use two human carcinoma cell lines, the bladder carcinoma EJ and the colorectal carcinoma HCT116. In the confluent 2-D cell layer, for both EJ and HCT cells the migratory speeds and effective diffusion coefficients for the p53 null cells were significantly smaller than in p53-expressing cells. Compared to p53 expressers, p53-null cells exhibited more organized cortical actin rings together with reduced front-rear cell polarity. Furthermore, loss of p53 caused cells to exert smaller traction forces upon their substrates, and reduced formation of cryptic lamellipodia. In the 3D multicellular spheroid, loss of p53 consistently reduced collective cellular migration into surrounding collagen matrix. As regards the role of p53 in cellular migration, extrapolation from the Boyden chamber assay to other cellular microenvironments is seen to be fraught even in terms of the sign of the effect. Together, these paradoxical results show that the effects of p53 on cellular migration are context-dependent.
Collapse
Affiliation(s)
- Shijie He
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Christopher V. Carman
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Jung Hyun Lee
- Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United states of America
| | - Bo Lan
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Stephan Koehler
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Lior Atia
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Chan Young Park
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Jae Hun Kim
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Jennifer A. Mitchel
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Jin-Ah Park
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - James P. Butler
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Quan Lu
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Jeffrey J. Fredberg
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| |
Collapse
|
3
|
Uehara S, Udagawa N, Kobayashi Y. Non-canonical Wnt signals regulate cytoskeletal remodeling in osteoclasts. Cell Mol Life Sci 2018; 75:3683-3692. [PMID: 30051162 PMCID: PMC6154041 DOI: 10.1007/s00018-018-2881-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/11/2022]
Abstract
Osteoclasts are multinucleated cells responsible for bone resorption. Osteoclasts adhere to the bone surface through integrins and polarize to form actin rings, which are formed by the assembly of podosomes. The area contained within actin rings (also called sealing zones) has an acidic pH, which causes dissolution of bone minerals including hydroxyapatite and the degradation of matrix proteins including type I collagen by the protease cathepsin K. Osteoclasts resorb bone matrices while moving on bone surfaces. Osteoclasts change their cell shapes and exhibit three modes for bone resorption: motile resorbing mode for digging trenches, static resorbing mode for digging pits, and motile non-resorbing mode. Therefore, the actin cytoskeleton is actively remodeled in osteoclasts. Recent studies have revealed that many molecules, such as Rac, Cdc42, Rho, and small GTPase regulators and effectors, are involved in actin cytoskeletal remodeling during the formation of actin rings and resorption cavities on bone slices. In this review, we introduce how these molecules and non-canonical Wnt signaling regulate the bone-resorbing activity of osteoclasts.
Collapse
Affiliation(s)
- Shunsuke Uehara
- Department of Biochemistry, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Yasuhiro Kobayashi
- Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano, 399-0781, Japan.
| |
Collapse
|
4
|
Cao RY, Eves R, Jia L, Funk CD, Jia Z, Mak AS. Effects of p53-knockout in vascular smooth muscle cells on atherosclerosis in mice. PLoS One 2017; 12:e0175061. [PMID: 28362832 PMCID: PMC5376331 DOI: 10.1371/journal.pone.0175061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 03/20/2017] [Indexed: 12/20/2022] Open
Abstract
In vitro and in vivo evidence has indicated that the tumor suppressor, p53, may play a significant role in the regulation of atherosclerotic plaque formation. In vivo studies using global knockout mice models, however, have generated inconclusive results that do not address the roles of p53 in various cell types involved in atherosclerosis. In this study, we have specifically ablated p53 in vascular smooth muscle cells (VSMC) in the ApoE-/- mouse model to investigate the roles of p53 in VSMC in atherosclerotic plaque formation and stability. We found that p53 deficiency in VSMC alone did not affect the overall size of atherosclerotic lesions. However, there was a significant increase in the number of p53-/- VSMC in the fibrous caps of atherosclerotic plaques in the early stages of plaque development. Loss of p53 results in migration of VSMC at a faster rate using wound healing assays and augments PDGF-induced formation of circular dorsal ruffles (CDR), known to be involved in cell migration and internalization of surface receptors. Furthermore, aortic VSMC from ApoE-/- /p53-/- mice produce significantly more podosomes and are more invasive. We conclude that p53-/- VSMC are enriched in the fibrous caps of lesions at early stages of plaque formation, which is caused in part by an increase in VSMC migration and invasion as shown by p53-/- VSMC in culture having significantly higher rates of migration and producing more CDRs and invasive podosomes.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Apolipoproteins E/genetics
- Apolipoproteins E/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Cell Movement/genetics
- Cell Movement/physiology
- Cells, Cultured
- Disease Models, Animal
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Fluorescence
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/metabolism
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/metabolism
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Richard Yang Cao
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Robert Eves
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Lilly Jia
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Colin D. Funk
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Alan S. Mak
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
5
|
Abstract
Cell invasion of the extracellular matrix is prerequisite to cross tissue migration of tumor cells in cancer metastasis, and vascular smooth muscle cells in atherosclerosis. The tumor suppressor p53, better known for its roles in the regulation of cell cycle and apoptosis, has ignited much interest in its function as a suppressor of cell migration and invasion. How p53 and its gain-of-function mutants regulate cell invasion remains a puzzle and a challenge for future studies. In recent years, podosomes and invadopodia have also gained center stage status as veritable apparatus specialized in cell invasion. It is not clear, however, whether p53 regulates cell invasion through podosomes and invadopodia. In this review, evidence supporting a negative role of p53 in podosomes formation in vascular smooth muscle cells will be surveyed, and signaling nodes that may mediate this regulation in other cell types will be explored.
Collapse
Affiliation(s)
- Alan S Mak
- Department of Biomedical and Molecular Sciences; Queen's University; Kingston, ON Canada
| |
Collapse
|
6
|
Kim NY, Kohn JC, Huynh J, Carey SP, Mason BN, Vouyouka AG, Reinhart-King CA. Biophysical induction of vascular smooth muscle cell podosomes. PLoS One 2015; 10:e0119008. [PMID: 25785437 PMCID: PMC4364673 DOI: 10.1371/journal.pone.0119008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 01/20/2015] [Indexed: 01/07/2023] Open
Abstract
Vascular smooth muscle cell (VSMC) migration and matrix degradation occurs with intimal hyperplasia associated with atherosclerosis, vascular injury, and restenosis. One proposed mechanism by which VSMCs degrade matrix is through the use of podosomes, transient actin-based structures that are thought to play a role in extracellular matrix degradation by creating localized sites of matrix metalloproteinase (MMP) secretion. To date, podosomes in VSMCs have largely been studied by stimulating cells with phorbol esters, such as phorbol 12,13-dibutyrate (PDBu), however little is known about the physiological cues that drive podosome formation. We present the first evidence that physiological, physical stimuli mimicking cues present within the microenvironment of diseased arteries can induce podosome formation in VSMCs. Both microtopographical cues and imposed pressure mimicking stage II hypertension induce podosome formation in A7R5 rat aortic smooth muscle cells. Moreover, wounding using a scratch assay induces podosomes at the leading edge of VSMCs. Notably the effect of each of these biophysical stimuli on podosome stimulation can be inhibited using a Src inhibitor. Together, these data indicate that physical cues can induce podosome formation in VSMCs.
Collapse
Affiliation(s)
- Na Young Kim
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| | - Julie C. Kohn
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| | - John Huynh
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| | - Shawn P. Carey
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| | - Brooke N. Mason
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| | - Ageliki G. Vouyouka
- Divison of Vascular Surgery at Mount Sinai Hospital, New York, New York, United States of America
| | - Cynthia A. Reinhart-King
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
7
|
Wu JX, Zhang DG, Zheng JN, Pei DS. Rap2a is a novel target gene of p53 and regulates cancer cell migration and invasion. Cell Signal 2015; 27:1198-207. [PMID: 25728512 DOI: 10.1016/j.cellsig.2015.02.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/06/2015] [Accepted: 02/23/2015] [Indexed: 02/08/2023]
Abstract
The p53 transcription factor is a critical regulator of the cell cycle, DNA repair, and apoptosis. Recent evidences suggest that p53 may contribute to the regulation of cell invasion and migration. Rap2a, a member of the small GTPase superfamily, mediates diverse cellular events such as cell adhesion, migration and proliferation through various signaling pathways. In this study, we identify that Rap2a is a novel target of p53 and is induced upon DNA damage in a p53-dependent manner. Upon DNA damage, p53 directly binds to the promoter of Rap2a and activates its transcription. We show that Rap2a is significantly upregulated in many types of tumors. In addition, the ectopic expression of Rap2a enhances the migration and invasive ability of cancer cells and increases activities of matrix metalloproteinase MMP2 and MMP9. In contrast, the inactivation of Rap2a inhibits cell invasion and activities of MMP2 and MMP9. We also show that Rap2a regulates the phosphorylation level of Akt. Collectively, our results show that ectopic expression of Rap2a has a key role in enhancing migration, invasion and metastasis by upregulating p-Akt.
Collapse
Affiliation(s)
- Jin-Xia Wu
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou 221002, China
| | - Ding-Guo Zhang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou 221002, China
| | - Jun-Nian Zheng
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou 221002, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, China.
| | - Dong-Sheng Pei
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou 221002, China.
| |
Collapse
|
8
|
The roles of akt isoforms in the regulation of podosome formation in fibroblasts and extracellular matrix invasion. Cancers (Basel) 2015; 7:96-111. [PMID: 25575302 PMCID: PMC4381253 DOI: 10.3390/cancers7010096] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 12/22/2014] [Indexed: 01/15/2023] Open
Abstract
Mesenchymal cells employ actin-based membrane protrusions called podosomes and invadopodia for cross-tissue migration during normal human development such as embryogenesis and angiogenesis, and in diseases such as atherosclerosis plaque formation and cancer cell metastasis. The Akt isoforms, downstream effectors of phosphatidylinositol 3 kinase (PI3K), play crucial roles in cell migration and invasion, but their involvement in podosome formation and cell invasion is not known. In this study, we have used Akt1 and/or Akt2 knockout mouse embryonic fibroblasts and Akt3-targeted shRNA to determine the roles of the three Akt isoforms in Src and phorbol ester-induced podosome formation, and extracellular matrix (ECM) digestion. We found that deletion or knockdown of Akt1 significantly reduces Src-induced formation of podosomes and rosettes, and ECM digestion, while suppression of Akt2 has little effect. In contrast, Akt3 knockdown by shRNA increases Src-induced podosome/rosette formation and ECM invasion. These data suggest that Akt1 promotes, while Akt3 suppresses, podosome formation induced by Src, and Akt2 appears to play an insignificant role. Interestingly, both Akt1 and Akt3 suppress, while Akt2 enhances, phorbol ester-induced podosome formation. These data show that Akt1, Akt2 and Akt3 play different roles in podosome formation and ECM invasion induced by Src or phorbol ester, thus underscoring the importance of cell context in the roles of Akt isoforms in cell invasion.
Collapse
|
9
|
Bernadzki KM, Rojek KO, Prószyński TJ. Podosomes in muscle cells and their role in the remodeling of neuromuscular postsynaptic machinery. Eur J Cell Biol 2014; 93:478-85. [DOI: 10.1016/j.ejcb.2014.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/23/2014] [Accepted: 06/05/2014] [Indexed: 11/28/2022] Open
|
10
|
Payne LJ, Eves RL, Jia L, Mak AS. p53 Down regulates PDGF-induced formation of circular dorsal ruffles in rat aortic smooth muscle cells. PLoS One 2014; 9:e108257. [PMID: 25247424 PMCID: PMC4172730 DOI: 10.1371/journal.pone.0108257] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/27/2014] [Indexed: 01/15/2023] Open
Abstract
The tumor suppressor, p53, negatively regulates cell migration and invasion in addition to its role in apoptosis, cell cycle regulation and senescence. Here, we study the roles of p53 in PDGF-induced circular dorsal ruffle (CDR) formation in rat aortic smooth muscle (RASM) cells. In primary and immortalized RASM cells, up-regulation of p53 expression or increase in activity with doxorubicin inhibits CDR formation. In contrast, shRNA-knockdown of p53 or inhibition of its activity with pifithrin α promotes CDR formation. p53 acts by up-regulating PTEN expression, which antagonizes Rac and Cdc42 activation. Both lipid and protein phosphatase activities of PTEN are required for maximal suppression of CDR, but the lipid activity clearly plays the dominant role. N-WASP, the downstream effector of Cdc42, is the major positive contributor to CDR formation in RASM, and is an indirect target of p53. The Rac effector, WAVE2, appears to also play a minor role, while WAVE1 has no significant effect in CDR formation. In sum, we propose that p53 suppresses PDGF-induced CDR formation in RASM cells by upregulating PTEN leading mainly to the inhibition of the Cdc42-N-WASP pathway.
Collapse
Affiliation(s)
- Laura J. Payne
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Robert L. Eves
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Lilly Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Alan S. Mak
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
11
|
Fang Z, Luna EJ. Supervillin-mediated suppression of p53 protein enhances cell survival. J Biol Chem 2013; 288:7918-7929. [PMID: 23382381 DOI: 10.1074/jbc.m112.416842] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Integrin-based adhesions promote cell survival as well as cell motility and invasion. We show here that the adhesion regulatory protein supervillin increases cell survival by decreasing levels of the tumor suppressor protein p53 and downstream target genes. RNAi-mediated knockdown of a new splice form of supervillin (isoform 4) or both isoforms 1 and 4 increases the amount of p53 and cell death, whereas p53 levels decrease after overexpression of either supervillin isoform. Cellular responses to DNA damage induced by etoposide or doxorubicin include down-regulation of endogenous supervillin coincident with increases in p53. In DNA-damaged supervillin knockdown cells, p53 knockdown or inhibition partially rescues the loss of cell metabolic activity, a measure of cell proliferation. Knockdown of the p53 deubiquitinating enzyme USP7/HAUSP also reverses the supervillin phenotype, blocking the increase in p53 levels seen after supervillin knockdown and accentuating the decrease in p53 levels triggered by supervillin overexpression. Conversely, supervillin overexpression decreases the association of USP7 and p53 and attenuates USP7-mediated p53 deubiquitination. USP7 binds directly to the supervillin N terminus and can deubiquitinate and stabilize supervillin. Supervillin also is stabilized by derivatization with the ubiquitin-like protein SUMO1. These results show that supervillin regulates cell survival through control of p53 levels and suggest that supervillin and its interaction partners at sites of cell-substrate adhesion constitute a locus for cross-talk between survival signaling and cell motility pathways.
Collapse
Affiliation(s)
- Zhiyou Fang
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605.
| | - Elizabeth J Luna
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605.
| |
Collapse
|
12
|
Dos Santos Hidalgo G, Meola J, Rosa E Silva JC, Paro de Paz CC, Ferriani RA. TAGLN expression is deregulated in endometriosis and may be involved in cell invasion, migration, and differentiation. Fertil Steril 2011; 96:700-3. [PMID: 21763649 DOI: 10.1016/j.fertnstert.2011.06.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/02/2011] [Accepted: 06/17/2011] [Indexed: 12/24/2022]
Abstract
We found an increased expression of the TAGLN gene in endometriotic lesions compared with the eutopic endometrium of the same patients by real-time polymerase chain reaction. It is possible that this deregulation contributes to the development and maintenance of endometriosis by being involved in the pathways of organization of cytoskeletal architecture.
Collapse
Affiliation(s)
- Gabriela Dos Santos Hidalgo
- Department of Gynecology and Obstetrics, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil.
| | | | | | | | | |
Collapse
|