1
|
Ren X, Shi P, Su J, Wei T, Li J, Hu Y, Wu C. Loss of Myo19 increases metastasis by enhancing microenvironmental ROS gradient and chemotaxis. EMBO Rep 2024; 25:971-990. [PMID: 38279020 PMCID: PMC10933354 DOI: 10.1038/s44319-023-00052-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 01/28/2024] Open
Abstract
Tumor metastasis involves cells migrating directionally in response to external chemical signals. Reactive oxygen species (ROS) in the form of H2O2 has been demonstrated as a chemoattractant for neutrophils but its spatial characteristics in tumor microenvironment and potential role in tumor cell dissemination remain unknown. Here we investigate the spatial ROS distribution in 3D tumor spheroids and identify a ROS concentration gradient in spheroid periphery, which projects into a H2O2 gradient in tumor microenvironment. We further reveal the role of H2O2 gradient to induce chemotaxis of tumor cells by activating Src and subsequently inhibiting RhoA. Finally, we observe that the absence of mitochondria cristae remodeling proteins including the mitochondria-localized actin motor Myosin 19 (Myo19) enhances ROS gradient and promotes tumor dissemination. Myo19 downregulation is seen in many tumors, and Myo19 expression is negatively associated with tumor metastasis in vivo. Together, our study reveals the chemoattractant role of tumor microenvironmental ROS and implies the potential impact of mitochondria cristae disorganization on tumor invasion and metastasis.
Collapse
Affiliation(s)
- Xiaoyu Ren
- Institute of Systems Biomedicine, Peking University Health Science Center, Key Laboratory of Tumor Systems Biology, Beijing, 100191, China
| | - Peng Shi
- Institute of Systems Biomedicine, Peking University Health Science Center, Key Laboratory of Tumor Systems Biology, Beijing, 100191, China.
- International Cancer Institute, Peking University, Beijing, 100191, China.
| | - Jing Su
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Tonghua Wei
- Institute of Systems Biomedicine, Peking University Health Science Center, Key Laboratory of Tumor Systems Biology, Beijing, 100191, China
| | - Jiayi Li
- Institute of Systems Biomedicine, Peking University Health Science Center, Key Laboratory of Tumor Systems Biology, Beijing, 100191, China
| | - Yiping Hu
- Institute of Systems Biomedicine, Peking University Health Science Center, Key Laboratory of Tumor Systems Biology, Beijing, 100191, China
| | - Congying Wu
- Institute of Systems Biomedicine, Peking University Health Science Center, Key Laboratory of Tumor Systems Biology, Beijing, 100191, China.
- International Cancer Institute, Peking University, Beijing, 100191, China.
| |
Collapse
|
2
|
Ding Y, Wang G, Zhan M, Sun X, Deng Y, Zhao Y, Liu B, Liu Q, Wu S, Zhou Z. Hippo signaling suppresses tumor cell metastasis via a Yki-Src42A positive feedback loop. Cell Death Dis 2021; 12:1126. [PMID: 34862372 PMCID: PMC8642408 DOI: 10.1038/s41419-021-04423-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/11/2021] [Accepted: 11/23/2021] [Indexed: 12/22/2022]
Abstract
Metastasis is an important cause of death from malignant tumors. It is of great significance to explore the molecular mechanism of metastasis for the development of anti-cancer drugs. Here, we find that the Hippo pathway hampers tumor cell metastasis in vivo. Silence of hpo or its downstream wts promotes tumor cell migration in a Yki-dependent manner. Furthermore, we identify that inhibition of the Hippo pathway promotes tumor cell migration through transcriptional activating src42A, a Drosophila homolog of the SRC oncogene. Yki activates src42A transcription through direct binding its intron region. Intriguingly, Src42A further increases Yki transcriptional activity to form a positive feedback loop. Finally, we show that SRC is also a target of YAP and important for YAP to promote the migration of human hepatocellular carcinoma cells. Together, our findings uncover a conserved Yki/YAP-Src42A/SRC positive feedback loop promoting tumor cell migration and provide SRC as a potential therapeutic target for YAP-driven metastatic tumors.
Collapse
Affiliation(s)
- Yan Ding
- grid.440622.60000 0000 9482 4676State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 271018 Tai’an, China
| | - Guiping Wang
- grid.216938.70000 0000 9878 7032Tianjin Key Laboratory of Protein Sciences, State Key Laboratory of Medical Chemical Biology, College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Meixiao Zhan
- grid.452930.90000 0004 1757 8087Center of Intervention radiology, Zhuhai Precision Medicine Center, Zhuhai People’s Hospital, 519000 Zhuhai, China
| | - Xiaohan Sun
- grid.440622.60000 0000 9482 4676State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 271018 Tai’an, China
| | - Yanran Deng
- grid.254147.10000 0000 9776 7793Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 210009 Nanjing, China
| | - Yunhe Zhao
- grid.440622.60000 0000 9482 4676State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 271018 Tai’an, China
| | - Bin Liu
- grid.440622.60000 0000 9482 4676State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 271018 Tai’an, China
| | - Qingxin Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 271018, Tai'an, China.
| | - Shian Wu
- Tianjin Key Laboratory of Protein Sciences, State Key Laboratory of Medical Chemical Biology, College of Life Sciences, Nankai University, 300071, Tianjin, China.
| | - Zizhang Zhou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 271018, Tai'an, China.
| |
Collapse
|
3
|
Fear-of-intimacy-mediated zinc transport controls fat body cell dissociation through modulating Mmp activity in Drosophila. Cell Death Dis 2021; 12:874. [PMID: 34564691 PMCID: PMC8464599 DOI: 10.1038/s41419-021-04147-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022]
Abstract
Matrix metalloproteinases (Mmps) are pivotal extracellular proteinases that have been implicated in tumour invasion and metastasis. Drosophila fat body is important for energy storage and utilization, as well as biosynthetic and metabolic activities. The fat body undergoes remodelling during metamorphosis which is characterized by the dissociation of the fat body into individual cells. Mmps play important roles in the regulation of fat body cell dissociation. Here we show that a zinc transporter fear-of-intimacy (foi) is necessary for the cell dissociation of fat body in Drosophila. The progression of fat body cell dissociation was delayed by fat body-specific foi knockdown while it was accelerated by foi overexpression (OE). In essence, these phenotypes are closely associated with intracellular zinc homeostasis, which can be modulated by dietary zinc intervention or genetic modulation of other zinc transporters. Further study indicated that Mmp1 and Mmp2 levels could be transcriptionally regulated by zinc in vivo. Consistently, the retarded fat body cell dissociation caused by Mmp1 or Mmp2 RNAi could be regulated by modulating the expression of foi. Further, by using Drosophila models of malignant tumour RafGOFscrib−/− and RasV12lgl−/−, we showed that the tumour growth, invasion and migration could be markedly inhibited by foi knockdown. These findings demonstrate a close connection between zinc levels and cell dissociation in vivo, and also suggest that manipulation of zinc levels may provide a novel therapeutic strategy for cancer.
Collapse
|
4
|
Du J, Lin Z, Volovych O, Lu Z, Zou Z. A RhoGAP venom protein from Microplitis mediator suppresses the cellular response of its host Helicoverpa armigera. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 108:103675. [PMID: 32173445 DOI: 10.1016/j.dci.2020.103675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
Female parasitoid wasps normally inject virulence factors together with eggs into their host to counter host immunity defenses. A newly identified RhoGAP protein in the venom of Microplitis mediator compromises the cellular immunity of its host, Helicoverpa armigera. RhoGAP1 proteins entered H. armigera hemocytes, and the host cellular cytoskeleton was disrupted. Depletion of MmGAP1 by injection of dsRNA or antibody increased the wasp egg encapsulation rate. An immunoprecipitation assay of overexpressed MmGAP1 protein in a Helicoverpa cell line showed that MmGAP1 interacts with many cellular cytoskeleton associated proteins as well as Rho GTPases. A yeast two-hybrid and a pull-down assay demonstrated that MmGAP1 interacts with H. armigera RhoA and Cdc42. These results show that the RhoGAP protein in M. mediator can destroy the H. armigera hemocyte cellular cytoskeleton, restrain host cellular immune defense, and increase the probability of successful parasitism.
Collapse
Affiliation(s)
- Jie Du
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Olga Volovych
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, 311300, China.
| |
Collapse
|
5
|
Petersen RC, Reddy MS, Liu PR. Advancements in Free-Radical Pathologies and an Important Treatment Solution with a Free-Radical Inhibitor. SF JOURNAL OF BIOTECHNOLOGY AND BIOMEDICAL ENGINEERING 2018; 1:1003. [PMID: 29984367 PMCID: PMC6034992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Unsaturated carbon-carbon double bonds particularly at exposed end groups of nonsolid fluids are susceptible to free-radical covalent bonding on one carbon atom creating a new free radical on the opposite carbon atom. Subsequent reactive secondary sequence free-radical polymerization can then continue across extensive carbon-carbon double bonds to form progressively larger molecules with ever-increasing viscosity and eventually produce solids. In a fluid solution when carbon-carbon double bonds are replaced by carbon-carbon single bonds to decrease fluidity, increasing molecular organization can interfere with molecular oxygen (O2) diffusion. During normal eukaryote cellular energy synthesis O2 is required by mitochondria to combine with electrons from the electron transport chain and hydrogen cations from the proton gradient to form water. When O2 is absent during periods of irregular hypoxia in mitochondrial energy synthesis, the generation of excess electrons can develop free radicals or excess protons can produce acid. Free radicals formed by limited O2 can damage lipids and proteins and greatly increase molecular sizes in growing vicious cycles to reduce oxygen availability even more for mitochondria during energy synthesis. Further, at adequate free-radical concentrations a reactive crosslinking unsaturated aldehyde lipid breakdown product can significantly support free-radical polymerization of lipid oils into rubbery gel-like solids and eventually even produce a crystalline lipid peroxidation with the double bond of O2. Most importantly, free-radical inhibitor hydroquinone intended for medical treatments in much pathology such as cancer, atherosclerosis, diabetes, infection/inflammation and also ageing has proven extremely effective in sequestering free radicals to prevent chain-growth reactive secondary sequence polymerization.
Collapse
Affiliation(s)
- RC Petersen
- Departments of Biomaterials and Restorative Sciences, University of Alabama at Birmingham, USA
| | - MS Reddy
- Office of the Dean, School of Dentistry, University of Alabama at Birmingham, USA
| | - P-R Liu
- Department of Restorative Sciences, University of Alabama at Birmingham, USA
| |
Collapse
|
6
|
Dong JY, Song F, Qing C, Lu SL. Histomorphological observation of surgical debridement combined with negative pressure therapy in treatment of diabetic foot. Chin J Traumatol 2017; 20:202-206. [PMID: 28526612 PMCID: PMC5555242 DOI: 10.1016/j.cjtee.2016.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 02/09/2017] [Accepted: 02/12/2017] [Indexed: 02/04/2023] Open
Abstract
PURPOSE To further study the mechanism of epithelization on the fascia side of the flap after surgical incision and the treatment of the negative pressure therapy. METHODS With the patients' informed consent, parts of tissue samples were obtained from a 51-year-old diabetic patient who was suffering lower extremity ulcers. The samples were processed with hematoxylin and eosin (HE) staining and Masson trichrome staining. The keratin 19, keratin 15 and carcino-embryonic antigen (CEA) were immunohistochemically detected. RESULTS The results of HE staining showed that the specimen was divided into two regions, newborn area and original epithelial area. There were more inflammatory cells infiltrating in the dermis in the newborn epithelial area, compared with the original epithelial area. Cells in newborn epithelial area were more active and many dinuclear and polynuclear cells were observed in newborn epithelial area. But there were more cuticular layers and obvious rete pegs in original epithelial area. In addition, the cells with keratin 19 and CEA positive were found around hair follicle, while keratin 15 was negative. Masson trichrome staining showed that there was a lot of de novo collagen in newborn epithelial area. CONCLUSION Epidermal cells on the fascia side of the flap could be derived from the stem cells. Negative pressure wound therapy would attract not only cells but also other elements such as growth factors, cytokines, some nutrients and extracellular matrix. With the formation of the appropriate microenvironment after debridement, the migrated cells can grow, differentiate and spread, eventually leading to the epithelization on the fascia side of the flap in diabetic foot.
Collapse
|
7
|
The molecular biology in wound healing & non-healing wound. Chin J Traumatol 2017; 20:189-193. [PMID: 28712679 PMCID: PMC5555286 DOI: 10.1016/j.cjtee.2017.06.001] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/09/2017] [Accepted: 06/18/2017] [Indexed: 02/04/2023] Open
Abstract
The development of molecular biology and other new biotechnologies helps us to recognize the wound healing and non-healing wound of skin in the past 30 years. This review mainly focuses on the molecular biology of many cytokines (including growth factors) and other molecular factors such as extracellular matrix (ECM) on wound healing. The molecular biology in cell movement such as epidermal cells in wound healing was also discussed. Moreover many common chronic wounds such as pressure ulcers, leg ulcers, diabetic foot wounds, venous stasis ulcers, etc. usually deteriorate into non-healing wounds. Therefore the molecular biology such as advanced glycation end products (AGEs) and other molecular factors in diabetes non-healing wounds were also reviewed.
Collapse
|
8
|
Dziewięcka M, Karpeta-Kaczmarek J, Augustyniak M, Rost-Roszkowska M. Short-term in vivo exposure to graphene oxide can cause damage to the gut and testis. JOURNAL OF HAZARDOUS MATERIALS 2017; 328:80-89. [PMID: 28092742 DOI: 10.1016/j.jhazmat.2017.01.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 01/04/2017] [Accepted: 01/08/2017] [Indexed: 06/06/2023]
Abstract
Graphene oxide (GO) has unique physicochemical properties and also has a potentially widespread use in every field of daily life (industry, science, medicine). Demand for nanotechnology is growing every year, and therefore many aspects of its toxicity and biocompatibility still require further clarification. This research assesses the in vivo toxicity of pure and manganese ion-contaminated GO that were administrated to Acheta domesticus with food (at 200mgkg-1 of food) throughout their ten-day adult life. Our results showed that short-term exposure to graphene oxide in food causes an increase in the parameters of oxidative stress of the tested insects (catalase - CAT, total antioxidant capacity - TAC), induces damage to the DNA at a level of approximately 35% and contributes to a disturbance in the stages of the cell cycle and causes an increase of apoptosis. Moreover, upon analyzing histological specimens, we found numerous degenerative changes in the cells of the gut and testis of Acheta domesticus as early as ten days after applying GO. A more complete picture of the GO risk can help to define its future applications and methods for working with the material, which may help us to avoid any adverse effects and damage to the animal.
Collapse
Affiliation(s)
- Marta Dziewięcka
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, PL 40-007 Katowice, Poland.
| | - Julia Karpeta-Kaczmarek
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, PL 40-007 Katowice, Poland
| | - Maria Augustyniak
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, PL 40-007 Katowice, Poland
| | - Magdalena Rost-Roszkowska
- Department of Animal Histology and Embryology, University of Silesia in Katowice, Bankowa 9, PL 40-007 Katowice, Poland
| |
Collapse
|
9
|
Petersen RC. Free-radicals and advanced chemistries involved in cell membrane organization influence oxygen diffusion and pathology treatment. AIMS BIOPHYSICS 2017; 4:240-283. [PMID: 29202036 PMCID: PMC5707132 DOI: 10.3934/biophy.2017.2.240] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A breakthrough has been discovered in pathology chemistry related to increasing molecular structure that can interfere with oxygen diffusion through cell membranes. Free radicals can crosslink unsaturated low-viscosity fatty acid oils by chain-growth polymerization into more viscous liquids and even solids. Free radicals are released by mitochondria in response to intermittent hypoxia that can increase membrane molecular organization to reduce fluidity and oxygen diffusion in a possible continuing vicious cycle toward pathological disease. Alternate computational chemistry demonstrates molecular bond dynamics in free energy for cell membrane physiologic movements. Paired electrons in oxygen and nitrogen atoms require that oxygen bonds rotate and nitrogen bonds invert to seek polar nano-environments and hide from nonpolar nano-environments thus creating fluctuating instability at a nonpolar membrane and polar biologic fluid interface. Subsequent mechanomolecular movements provide free energy to increase diffusion by membrane transport of molecules and oxygen into the cell, cell-membrane signaling/recognition/defense in addition to protein movements for enzyme mixing. In other chemistry calcium bonds to membrane phosphates primarily on the outer plasma cell membrane surface to influence the membrane firing threshold for excitability and better seal out water permeation. Because calcium is an excellent metal conductor and membrane phosphate headgroups form a semiconductor at the biologic fluid interface, excess electrons released by mitochondria may have more broad dissipation potential by safe conduction through calcium atomic-sized circuits on the outer membrane surface. Regarding medical conditions, free radicals are known to produce pathology especially in age-related disease in addition to aging. Because cancer cell membranes develop extreme polymorphism that has been extensively followed in research, accentuated easily-visualized free-radical models are developed. In terms of treatment, use of vitamin nutrient supplements purported to be antioxidants that remove free radicals has not proved worthwhile in clinical trials presumably due to errors with early antioxidant measurements based on inaccurate colorimetry tests. However, newer covalent-bond shrinkage tests now provide accurate measurements for free-radical inhibitor hydroquinone and other molecules toward drug therapy.
Collapse
Affiliation(s)
- Richard C Petersen
- Biomaterials, SDB 539, 1919 7th Avenue South, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Biomedical Research Technologies, 3830 Avenida Del Presidente, M/S 36, San Clemente, CA, 92674, USA
| |
Collapse
|
10
|
Waghmare I, Kango-Singh M. Loss of Cell Adhesion Increases Tumorigenic Potential of Polarity Deficient Scribble Mutant Cells. PLoS One 2016; 11:e0158081. [PMID: 27327956 PMCID: PMC4915667 DOI: 10.1371/journal.pone.0158081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 06/09/2016] [Indexed: 11/18/2022] Open
Abstract
Epithelial polarity genes are important for maintaining tissue architecture, and regulating growth. The Drosophila neoplastic tumor suppressor gene scribble (scrib) belongs to the basolateral polarity complex. Loss of scrib results in disruption of its growth regulatory functions, and downregulation or mislocalization of Scrib is correlated to tumor growth. Somatic scribble mutant cells (scrib-) surrounded by wild-type cells undergo apoptosis, which can be prevented by introduction of secondary mutations that provide a growth advantage. Using genetic tools in Drosophila, we analyzed the phenotypic effects of loss of scrib in different growth promoting backgrounds. We investigated if a central mechanism that regulates cell adhesion governs the growth and invasive potential of scrib mutant cells. Here we show that increased proliferation, and survival abilities of scrib- cells in different genetic backgrounds affect their differentiation, and intercellular adhesion. Further, loss of scrib is sufficient to cause reduced cell survival, activation of the JNK pathway and a mild reduction of cell adhesion. Our data show that for scrib cells to induce aggressive tumor growth characterized by loss of differentiation, cell adhesion, increased proliferation and invasion, cooperative interactions that derail signaling pathways play an essential role in the mechanisms leading to tumorigenesis. Thus, our study provides new insights on the effects of loss of scrib and the modification of these effects via cooperative interactions that enhance the overall tumorigenic potential of scrib deficient cells.
Collapse
Affiliation(s)
- Indrayani Waghmare
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Madhuri Kango-Singh
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, Ohio, United States of America
- Premedical Programs, University of Dayton, Dayton, Ohio, United States of America
- SupraMolecular Applied Research and Technology Center (SMART), University of Dayton, Dayton, Ohio, United States of America
- * E-mail:
| |
Collapse
|
11
|
Abstract
Carbon fibers have multiple potential advantages in developing high-strength biomaterials with a density close to bone for better stress transfer and electrical properties that enhance tissue formation. As a breakthrough example in biomaterials, a 1.5 mm diameter bisphenol-epoxy/carbon-fiber-reinforced composite rod was compared for two weeks in a rat tibia model with a similar 1.5 mm diameter titanium-6-4 alloy screw manufactured to retain bone implants. Results showed that carbon-fiber-reinforced composite stimulated osseointegration inside the tibia bone marrow measured as percent bone area (PBA) to a great extent when compared to the titanium-6-4 alloy at statistically significant levels. PBA increased significantly with the carbon-fiber composite over the titanium-6-4 alloy for distances from the implant surfaces of 0.1 mm at 77.7% vs. 19.3% (p < 10−8) and 0.8 mm at 41.6% vs. 19.5% (p < 10−4), respectively. The review focuses on carbon fiber properties that increased PBA for enhanced implant osseointegration. Carbon fibers acting as polymer coated electrically conducting micro-biocircuits appear to provide a biocompatible semi-antioxidant property to remove damaging electron free radicals from the surrounding implant surface. Further, carbon fibers by removing excess electrons produced from the cellular mitochondrial electron transport chain during periods of hypoxia perhaps stimulate bone cell recruitment by free-radical chemotactic influences. In addition, well-studied bioorganic cell actin carbon fiber growth would appear to interface in close contact with the carbon-fiber-reinforced composite implant. Resulting subsequent actin carbon fiber/implant carbon fiber contacts then could help in discharging the electron biological overloads through electrochemical gradients to lower negative charges and lower concentration.
Collapse
|
12
|
Yasin HWR, van Rensburg SH, Feiler CE, Johnson RI. The adaptor protein Cindr regulates JNK activity to maintain epithelial sheet integrity. Dev Biol 2016; 410:135-149. [PMID: 26772997 DOI: 10.1016/j.ydbio.2016.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/23/2015] [Accepted: 01/04/2016] [Indexed: 12/19/2022]
Abstract
Epithelia are essential barrier tissues that must be appropriately maintained for their correct function. To achieve this a plethora of protein interactions regulate epithelial cell number, structure and adhesion, and differentiation. Here we show that Cindr (the Drosophila Cin85 and Cd2ap ortholog) is required to maintain epithelial integrity. Reducing Cindr triggered cell delamination and movement. Most delaminating cells died. These behaviors were consistent with JNK activation previously associated with loss of epithelial integrity in response to ectopic oncogene activity. We confirmed a novel interaction between Cindr and Drosophila JNK (dJNK), which when perturbed caused inappropriate JNK signaling. Genetically reducing JNK signaling activity suppressed the effects of reducing Cindr. Furthermore, ectopic JNK signaling phenocopied loss of Cindr and was partially rescued by concomitant cindr over-expression. Thus, correct Cindr-dJNK stoichiometry is essential to maintain epithelial integrity and disturbing this balance may contribute to the pathogenesis of disease states, including cancer.
Collapse
Affiliation(s)
- Hannah W R Yasin
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA
| | | | - Christina E Feiler
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA
| | - Ruth I Johnson
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA.
| |
Collapse
|
13
|
Cell mixing induced by myc is required for competitive tissue invasion and destruction. Nature 2015; 524:476-80. [DOI: 10.1038/nature14684] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/22/2015] [Indexed: 12/21/2022]
|
14
|
Parisi F, Stefanatos RK, Strathdee K, Yu Y, Vidal M. Transformed epithelia trigger non-tissue-autonomous tumor suppressor response by adipocytes via activation of Toll and Eiger/TNF signaling. Cell Rep 2014; 6:855-67. [PMID: 24582964 DOI: 10.1016/j.celrep.2014.01.039] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 11/01/2013] [Accepted: 01/28/2014] [Indexed: 12/19/2022] Open
Abstract
High tumor burden is associated with increased levels of circulating inflammatory cytokines that influence the pathophysiology of the tumor and its environment. The cellular and molecular events mediating the organismal response to a growing tumor are poorly understood. Here, we report a bidirectional crosstalk between epithelial tumors and the fat body-a peripheral immune tissue-in Drosophila. Tumors trigger a systemic immune response through activation of Eiger/TNF signaling, which leads to Toll pathway upregulation in adipocytes. Reciprocally, Toll elicits a non-tissue-autonomous program in adipocytes, which drives tumor cell death. Hemocytes play a critical role in this system by producing the ligands Spätzle and Eiger, which are required for Toll activation in the fat body and tumor cell death. Altogether, our results provide a paradigm for a long-range tumor suppression function of adipocytes in Drosophila, which may represent an evolutionarily conserved mechanism in the organismal response to solid tumors.
Collapse
Affiliation(s)
- Federica Parisi
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Rhoda K Stefanatos
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Karen Strathdee
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Yachuan Yu
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Marcos Vidal
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK.
| |
Collapse
|
15
|
Lin YN, Izbicki JR, König A, Habermann JK, Blechner C, Lange T, Schumacher U, Windhorst S. Expression of DIAPH1 is up-regulated in colorectal cancer and its down-regulation strongly reduces the metastatic capacity of colon carcinoma cells. Int J Cancer 2013; 134:1571-82. [PMID: 24105619 DOI: 10.1002/ijc.28486] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 08/27/2013] [Indexed: 12/25/2022]
Abstract
In most cases, metastatic colorectal cancer is not curable, thus new approaches are necessary to identify novel targets for colorectal cancer therapy. Actin-binding-proteins (ABPs) directly regulate motility of metastasising tumor cells, and for cortactin an association with colon cancer metastasis has been already shown. However, as its depletion only incompletely inhibits metastasis, additional, more suitable cellular targets have to be identified. Here we analyzed expression of the ABPs, DIAPH1, VASP, N-WASP, and fascin in comparison with cortactin and found that, besides cortactin, DIAPH1 was expressed with the highest frequency (63%) in colorectal cancer. As well as cortactin, DIAPH1 was not detectable in normal colon tissue and expression of both proteins was positively correlated with metastasis of colorectal cancer. To analyse the mechanistic role of DIAPH1 for metastasis of colon carcinoma cells in comparison with cortactin, expression of the proteins was stably down-regulated in the human colon carcinoma cell lines HT-29, HROC-24 and HCT-116. Analysis of metastasis of colon carcinoma cells in SCID mice revealed that depletion of DIAPH1 reduced metastasis 60-fold and depletion of cortactin 16-fold as compared with control cells. Most likely the stronger effect of DIAPH1 depletion on colon cancer metastasis is due to the fact that in vitro knock down of DIAPH1 impaired all steps of metastasis; adhesion, invasion and migration while down-regulation of cortactin only reduced adhesion and invasion. This very strong reducing effect of DIAPH1 depletion on colon carcinoma cell metastasis makes the protein a promising therapeutic target for individualized colorectal cancer therapy.
Collapse
Affiliation(s)
- Yuan-Na Lin
- Department of General Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Petersen RC. Free-radical polymer science structural cancer model: a review. SCIENTIFICA 2013; 2013:143589. [PMID: 24278767 PMCID: PMC3820302 DOI: 10.1155/2013/143589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 12/20/2012] [Indexed: 06/02/2023]
Abstract
Polymer free-radical lipid alkene chain-growth biological models particularly for hypoxic cellular mitochondrial metabolic waste can be used to better understand abnormal cancer cell morphology and invasive metastasis. Without oxygen as the final electron acceptor for mitochondrial energy synthesis, protons cannot combine to form water and instead mitochondria produce free radicals and acid during hypoxia. Nonuniform bond-length shrinkage of membranes related to erratic free-radical covalent crosslinking can explain cancer-cell pleomorphism with epithelial-mesenchymal transition for irregular membrane borders that "ruffle" and warp over stiff underlying actin fibers. Further, mitochondrial hypoxic conditions produce acid that can cause molecular degradation. Subsequent low pH-activated enzymes then provide paths for invasive cell movement through tissue and eventually blood-born metastasis. Although free-radical crosslinking creates irregularly shaped membranes with structural actin-polymerized fiber extensions as filopodia and lamellipodia, due to rapid cell division the overall cell modulus (approximately stiffness) is lower than normal cells. When combined with low pH-activated enzymes and lower modulus cells, smaller cancer stem cells subsequently have a large advantage to follow molecular destructive pathways and leave the central tumor. In addition, forward structural spike-like lamellipodia protrusions can leverage to force lower-modulus cancer cells through narrow openings. By squeezing and deforming even smaller to allow for easier movement through difficult passageways, cancer cells can travel into adjacent tissues or possibly metastasize through the blood to new tissue.
Collapse
Affiliation(s)
- Richard C. Petersen
- Department of Biomaterials and Biomedical Engineering, The University of Alabama at Birmingham, SDB 539, 1919 7th Avenue South, Birmingham, AL 35294, USA
| |
Collapse
|
17
|
Suzuki N, Mittler R. Reactive oxygen species-dependent wound responses in animals and plants. Free Radic Biol Med 2012; 53:2269-76. [PMID: 23085520 DOI: 10.1016/j.freeradbiomed.2012.10.538] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 01/20/2023]
Abstract
Animals and plants evolved sophisticated mechanisms that regulate their responses to mechanical injury. Wound response in animals mainly promotes wound healing processes, nerve cell regeneration, and immune system responses at the vicinity of the wound site. In contrast, wound response in plants is primarily directed at sealing the wound site via deposition of various compounds and generating systemic signals that activate multiple defense mechanisms in remote tissues. Despite these differences between animals and plants, recent studies have shown that reactive oxygen species (ROS) play very common signaling and coordination roles in the wound responses of both systems. This review provides an update on recent findings related to ROS-regulated coordination of intercellular communications and signal transduction during wound response in plants and animals. In particular, differences and similarities in H2O2-dependent long-distance signaling between zebrafish and Arabidopsis thaliana are discussed.
Collapse
Affiliation(s)
- Nobuhiro Suzuki
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, TX 76203-5017, USA
| | - Ron Mittler
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, TX 76203-5017, USA.
| |
Collapse
|
18
|
Stefanatos RKA, Vidal M. Tumor invasion and metastasis in Drosophila: a bold past, a bright future. J Genet Genomics 2011; 38:431-8. [PMID: 22035864 DOI: 10.1016/j.jgg.2011.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/05/2011] [Accepted: 09/06/2011] [Indexed: 10/17/2022]
Abstract
Invasion and metastasis are the most deadly hallmarks of cancer. Once a cancer has acquired the ability to colonize new sites in the body it becomes dramatically more difficult to treat. This has made it a focus of much of cancer research. The humble fruit fly, Drosophila melanogaster, has despite its relative simplicity, made significant contributions to the understanding of tumor progression. In this review we outline and highlight those with an emphasis on modeling the genetic and epigenetic changes required for invasion and metastasis. We will revisit the early years of cancer modeling in Drosophila where the first parallels were drawn between Drosophila and vertebrate neoplasms and highlight recent advances using genetic screens and interactions with the epithelial microenvironment and innate immune system. We focus on the power and limitations of current fly models of metastasis.
Collapse
|