1
|
Jong KXJ, Mohamed EHM, Syafruddin SE, Faruqu FN, Vellasamy KM, Ibrahim K, Ibrahim ZA. IL-8 and PI3K pathway influence the susceptibility of TRAIL-sensitive colorectal cancer cells to TRAIL-induced cell death. Mol Biol Rep 2024; 51:978. [PMID: 39269555 DOI: 10.1007/s11033-024-09895-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is an apoptosis inducer that exhibits an ideal therapeutic safety profile with less adverse effects than conventional chemotherapy. However, the occurrence of TRAIL resistance has been reported in various cancers including colorectal cancer (CRC). Substantial efforts have been channelled towards managing TRAIL resistance including identifying molecular targets. Interleukins (ILs) have been recently shown to play critical roles in modulating TRAIL sensitivity in cancer cells. METHODS AND RESULTS This study investigated the roles of two ILs, IL-8 and IL⍺, in TRAIL resistance in CRC. TRAIL-resistant HT-29 and TRAIL-sensitive HCT 116 cells, were treated with human recombinant IL-8 and IL-1⍺. The results indicated that treatment with IL-8 (2.5 ng/mL) significantly protected TRAIL-sensitive HCT 116 cells from TRAIL-induced cell death (p < 0.05). However, IL-1⍺ did not play a role in modulating CRC cells' responses to TRAIL. Data from RT-qPCR and Western blotting revealed the molecular regulations of IL-8 on TRAIL decoy receptor genes (OPG) and autophagy-related genes (BECN1 and LC3B) expression. The activation of the phosphoinositide 3-kinase (PI3K) pathway was shown to counteract TRAIL-induced cell death. By inhibiting its activation with wortmannin, the protective role of IL-8 against TRAIL treatment was reversed, suggesting the involvement of the PI3K pathway. CONCLUSION Collectively, findings from this study identified the role of IL-8 and PI3K in modulating CRC cells' sensitivity to TRAIL. Further validation of these two potential molecular targets is warranted to overcome TRAIL resistance in CRC.
Collapse
Affiliation(s)
- Kelly Xue Jing Jong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | | | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Farid Nazer Faruqu
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kumutha Malar Vellasamy
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kamariah Ibrahim
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Zaridatul Aini Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
| |
Collapse
|
2
|
Gampa SC, Garimella SV, Pandrangi S. Nano-TRAIL: a promising path to cancer therapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:78-102. [PMID: 37065863 PMCID: PMC10099604 DOI: 10.20517/cdr.2022.82] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/20/2022] [Accepted: 01/04/2023] [Indexed: 04/18/2023]
Abstract
Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand, also called apo-2 ligand (TRAIL/Apo-2L), is a cytokine that triggers apoptosis by binding to TRAIL-R1 (DR4) and TRAIL-R2 (DR5) death receptors. Apoptosis occurs through either the extrinsic or intrinsic pathway. The administration of recombinant human TRAIL (rhTRAIL) or TRAIL-receptor (TRAIL-R) agonists promotes apoptosis preferentially in cancerous cells over normal cells in vitro; this phenomenon has also been observed in clinical studies. The limited efficacy of rhTRAIL in clinical trials could be attributed to drug resistance, short half-life, targeted delivery issues, and off-target toxicities. Nanoparticles are excellent drug and gene delivery systems characterized by improved permeability and retention, increased stability and biocompatibility, and precision targeting. In this review, we discuss resistance mechanisms to TRAIL and methods to overcome TRAIL resistance by using nanoparticle-based formulations developed for the delivery of TRAIL peptides, TRAIL-R agonists, and TRAIL genes to cancer cells. We also discuss combinatorial approaches of chemotherapeutic drugs with TRAIL. These studies demonstrate TRAIL's potential as an anticancer agent.
Collapse
Affiliation(s)
- Siri Chandana Gampa
- Department of Biotechnology, Institute of Science, GITAM (Deemed to be University), Andhra Pradesh 530045, India
| | - Sireesha V. Garimella
- Department of Biotechnology, Institute of Science, GITAM (Deemed to be University), Andhra Pradesh 530045, India
| | - SanthiLatha Pandrangi
- Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Andhra Pradesh 530045, India
| |
Collapse
|
3
|
Jong KXJ, Mohamed EHM, Ibrahim ZA. Escaping cell death via TRAIL decoy receptors: a systematic review of their roles and expressions in colorectal cancer. Apoptosis 2022; 27:787-799. [PMID: 36207556 DOI: 10.1007/s10495-022-01774-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2022] [Indexed: 11/02/2022]
Abstract
The development of targeted therapy such as tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-based therapy has gained increasing attention as a promising new approach in cancer therapy. TRAIL specifically targets cancer cells while sparing the normal cells, thus, limiting the known side effects of the majority anti-cancer therapies. As more extensive research and clinical trials are conducted, resistance to TRAIL molecule has become one of the significant issues associated with the failure of TRAIL in treating colorectal cancer (CRC). To date, the exact mechanism by which TRAIL resistance may have occurred remains unknown. Interestingly, recent studies have revealed the critical role of the TRAIL decoy receptor family; consisting of decoy receptor 1 (DcR1; also known as TRAIL-R3), decoy receptor 2 (DcR2; also known as TRAIL-R4), and osteoprotegerin (OPG) in driving TRAIL resistance. This review highlights the expression of the decoy receptors in CRC and its possible association with the reduction in sensitivity towards TRAIL treatment based on the currently available in vitro, in vivo, and human studies. Additionally, discrepancies between the outcomes from different research groups are discussed, and essential areas are highlighted for future investigation of the roles of decoy receptors in modulating TRAIL-induced apoptosis. Overcoming TRAIL resistance through modulating the expression(s) and elucidating the role(s) of TRAIL decoy receptors hold great promise for TRAIL-based therapies to be extensively explored in treating human cancers including CRC.
Collapse
Affiliation(s)
- Kelly Xue Jing Jong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | | | - Zaridatul Aini Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Townsend PA, Kozhevnikova MV, Cexus ONF, Zamyatnin AA, Soond SM. BH3-mimetics: recent developments in cancer therapy. J Exp Clin Cancer Res 2021; 40:355. [PMID: 34753495 PMCID: PMC8576916 DOI: 10.1186/s13046-021-02157-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/26/2021] [Indexed: 01/11/2023] Open
Abstract
The hopeful outcomes from 30 years of research in BH3-mimetics have indeed served a number of solid paradigms for targeting intermediates from the apoptosis pathway in a variety of diseased states. Not only have such rational approaches in drug design yielded several key therapeutics, such outputs have also offered insights into the integrated mechanistic aspects of basic and clinical research at the genetics level for the future. In no other area of medical research have the effects of such work been felt, than in cancer research, through targeting the BAX-Bcl-2 protein-protein interactions. With these promising outputs in mind, several mimetics, and their potential therapeutic applications, have also been developed for several other pathological conditions, such as cardiovascular disease and tissue fibrosis, thus highlighting the universal importance of the intrinsic arm of the apoptosis pathway and its input to general tissue homeostasis. Considering such recent developments, and in a field that has generated so much scientific interest, we take stock of how the broadening area of BH3-mimetics has developed and diversified, with a focus on their uses in single and combined cancer treatment regimens and recently explored therapeutic delivery methods that may aid the development of future therapeutics of this nature.
Collapse
Affiliation(s)
- Paul A Townsend
- University of Surrey, Guildford, UK.
- Sechenov First Moscow State Medical University, Moscow, Russian Federation.
- University of Manchester, Manchester, UK.
| | - Maria V Kozhevnikova
- University of Surrey, Guildford, UK
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | - Andrey A Zamyatnin
- University of Surrey, Guildford, UK
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
- Lomonosov Moscow State University, Moscow, Russian Federation
- Sirius University of Science and Technology, Sochi, Russian Federation
| | - Surinder M Soond
- University of Surrey, Guildford, UK.
- Sechenov First Moscow State Medical University, Moscow, Russian Federation.
| |
Collapse
|
5
|
Godwin I, Anto NP, Bava SV, Babu MS, Jinesh GG. Targeting K-Ras and apoptosis-driven cellular transformation in cancer. Cell Death Discov 2021; 7:80. [PMID: 33854056 PMCID: PMC8047025 DOI: 10.1038/s41420-021-00457-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/23/2021] [Accepted: 03/21/2021] [Indexed: 02/07/2023] Open
Abstract
Cellular transformation is a major event that helps cells to evade apoptosis, genomic instability checkpoints, and immune surveillance to initiate tumorigenesis and to promote progression by cancer stem cell expansion. However, the key molecular players that govern cellular transformation and ways to target cellular transformation for therapy are poorly understood to date. Here we draw key evidences from the literature on K-Ras-driven cellular transformation in the context of apoptosis to shed light on the key players that are required for cellular transformation and explain how aiming p53 could be useful to target cellular transformation. The defects in key apoptosis regulators such as p53, Bax, and Bak lead to apoptosis evasion, cellular transformation, and genomic instability to further lead to stemness, tumorigenesis, and metastasis via c-Myc-dependent transcription. Therefore enabling key apoptotic checkpoints in combination with K-Ras inhibitors will be a promising therapeutic target in cancer therapy.
Collapse
Affiliation(s)
- Isha Godwin
- Saveetha Medical College, Thandalam, Chennai, Tamil Nadu, 602105, India.
| | - Nikhil Ponnoor Anto
- Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Smitha V Bava
- Department of Biotechnology, University of Calicut, Malappuram, Kerala, 673635, India
| | - Mani Shankar Babu
- Department of Botany, University College, Thiruvananthapuram, Kerala, 695 034, India
| | - Goodwin G Jinesh
- Departments of Molecular Oncology, and Sarcoma, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
6
|
Shekhar TM, Burvenich IJG, Harris MA, Rigopoulos A, Zanker D, Spurling A, Parker BS, Walkley CR, Scott AM, Hawkins CJ. Smac mimetics LCL161 and GDC-0152 inhibit osteosarcoma growth and metastasis in mice. BMC Cancer 2019; 19:924. [PMID: 31521127 PMCID: PMC6744692 DOI: 10.1186/s12885-019-6103-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/28/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Current therapies fail to cure over a third of osteosarcoma patients and around three quarters of those with metastatic disease. "Smac mimetics" (also known as "IAP antagonists") are a new class of anti-cancer agents. Previous work revealed that cells from murine osteosarcomas were efficiently sensitized by physiologically achievable concentrations of some Smac mimetics (including GDC-0152 and LCL161) to killing by the inflammatory cytokine TNFα in vitro, but survived exposure to Smac mimetics as sole agents. METHODS Nude mice were subcutaneously or intramuscularly implanted with luciferase-expressing murine 1029H or human KRIB osteosarcoma cells. The impacts of treatment with GDC-0152, LCL161 and/or doxorubicin were assessed by caliper measurements, bioluminescence, 18FDG-PET and MRI imaging, and by weighing resected tumors at the experimental endpoint. Metastatic burden was examined by quantitative PCR, through amplification of a region of the luciferase gene from lung DNA. ATP levels in treated and untreated osteosarcoma cells were compared to assess in vitro sensitivity. Immunophenotyping of cells within treated and untreated tumors was performed by flow cytometry, and TNFα levels in blood and tumors were measured using cytokine bead arrays. RESULTS Treatment with GDC-0152 or LCL161 suppressed the growth of subcutaneously or intramuscularly implanted osteosarcomas. In both models, co-treatment with doxorubicin and Smac mimetics impeded average osteosarcoma growth to a greater extent than either drug alone, although these differences were not statistically significant. Co-treatments were also more toxic. Co-treatment with LCL161 and doxorubicin was particularly effective in the KRIB intramuscular model, impeding primary tumor growth and delaying or preventing metastasis. Although the Smac mimetics were effective in vivo, in vitro they only efficiently killed osteosarcoma cells when TNFα was supplied. Implanted tumors contained high levels of TNFα, produced by infiltrating immune cells. Spontaneous osteosarcomas that arose in genetically-engineered immunocompetent mice also contained abundant TNFα. CONCLUSIONS These data imply that Smac mimetics can cooperate with TNFα secreted by tumor-associated immune cells to kill osteosarcoma cells in vivo. Smac mimetics may therefore benefit osteosarcoma patients whose tumors contain Smac mimetic-responsive cancer cells and TNFα-producing infiltrating cells.
Collapse
Affiliation(s)
- Tanmay M. Shekhar
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086 Australia
| | - Ingrid J. G. Burvenich
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Michael A. Harris
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086 Australia
| | - Angela Rigopoulos
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Damien Zanker
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086 Australia
| | - Alex Spurling
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086 Australia
| | - Belinda S. Parker
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086 Australia
| | - Carl R. Walkley
- St. Vincent’s Institute, Fitzroy, Victoria 3065 Australia
- Department of Medicine, St. Vincent’s Hospital, University of Melbourne, Fitzroy, Victoria 3065 Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria 3000 Australia
| | - Andrew M. Scott
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
- Departments of Medical Oncology and Molecular Imaging & Therapy, Austin Health, Heidelberg, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Christine J. Hawkins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086 Australia
| |
Collapse
|
7
|
Chen W, Fan W, Ru G, Huang F, Lu X, Zhang X, Mou X, Wang S. Gemcitabine combined with an engineered oncolytic vaccinia virus exhibits a synergistic suppressive effect on the tumor growth of pancreatic cancer. Oncol Rep 2018; 41:67-76. [PMID: 30365143 PMCID: PMC6278373 DOI: 10.3892/or.2018.6817] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer (PC) is a lethal solid malignancy with resistance to traditional chemotherapy. Recently, considerable studies have demonstrated the ubiquitous antitumor properties of gene therapy mediated by the oncolytic vaccinia virus. The second mitochondrial-derived activator of caspase (Smac) has been identified as an innovative tumor suppressor that augments the chemosensitivity of cancer cells. However, the therapeutic value of oncolytic vaccinia virus (oVV)-mediated Smac gene transfer in pancreatic cancer is yet to be elucidated. In the present study, oncolytic vaccinia virus expressing Smac (second mitochondrial-derived activator of caspase) (oVV-Smac) was used to examine its beneficial value when used alone or with gemcitabine in pancreatic cancer in vitro and in vivo. The expression of Smac was evaluated by western blot analysis and quantitative polymerase chain reaction, oVV-Smac cytotoxicity by MTT assay, and apoptosis by flow cytometry and western blot analysis. Furthermore, the inhibitory effect of oVV-Smac combined with gemcitabine was also evaluated. The results indicated that oVV-Smac achieved high levels of Smac, greater cytotoxicity, and potentiated apoptosis. Moreover, co-treatment with oVV-Smac and gemcitabine resulted in a synergistic effect in vitro and in vivo. Therefore, our findings advance oVV-Smac as a potential therapeutic candidate in pancreatic cancer and indicated the synergistic effects of co-treatment with oVV-Smac and gemcitabine.
Collapse
Affiliation(s)
- Wanyuan Chen
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Weimin Fan
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Guoqing Ru
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Fang Huang
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiaming Lu
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xin Zhang
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Shibing Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
8
|
Abstract
Inhibitor of apoptosis (IAP) family comprises a group of endogenous proteins that function as main regulators of caspase activity and cell death. They are considered the main culprits in evasion of apoptosis, which is a fundamental hallmark of carcinogenesis. Overexpression of IAP proteins has been documented in various solid and hematological malignancies, rendering them resistant to standard chemotherapeutics and radiation therapy and conferring poor prognosis. This observation has urged their exploitation as therapeutic targets in cancer with promising pre-clinical outcomes. This review describes the structural and functional features of IAP proteins to elucidate the mechanism of their anti-apoptotic activity. We also provide an update on patterns of IAP expression in different tumors, their impact on treatment response and prognosis, as well as the emerging investigational drugs targeting them. This aims at shedding the light on the advances in IAP targeting achieved to date, and encourage further development of clinically applicable therapeutic approaches.
Collapse
Affiliation(s)
- Mervat S Mohamed
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Kingdom of Saudi Arabia.
- Department of Chemistry, Biochemistry Speciality, Faculty of Science, Cairo University, Giza, Egypt.
- , Tabuk, Kingdom of Saudi Arabia.
| | - Mai K Bishr
- Department of Radiotherapy, Children's Cancer Hospital Egypt (CCHE), Cairo, Egypt
| | - Fahad M Almutairi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Ayat G Ali
- Department of Biochemistry, El Sahel Teaching Hospital, Cairo, Egypt
| |
Collapse
|
9
|
Fulda S. Therapeutic opportunities based on caspase modulation. Semin Cell Dev Biol 2017; 82:150-157. [PMID: 29247787 DOI: 10.1016/j.semcdb.2017.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/05/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023]
Abstract
Caspases are a family of proteolytic enzymes that play a critical role in the regulation of programmed cell death via apoptosis. Activation of caspases is frequently impaired in human cancers, contributing to cancer formation, progression and therapy resistance. A better understanding of the molecular mechanisms regulating caspase activation in cancer cells is therefore highly important. Thus, targeted modulation of caspase activation and apoptosis represents a promising approach for the development of new therapeutic options to elucidate cancer cell death.
Collapse
Affiliation(s)
- Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstrasse 3a, 60528, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
10
|
Wezel F, Vallo S, Roghmann F. Do we have biomarkers to predict response to neoadjuvant and adjuvant chemotherapy and immunotherapy in bladder cancer? Transl Androl Urol 2017; 6:1067-1080. [PMID: 29354494 PMCID: PMC5760384 DOI: 10.21037/tau.2017.09.18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Radical cystectomy (RC) is the standard of care treatment of localized muscle-invasive bladder cancer (BC). However, about 50% of patients develop metastases within 2 years after cystectomy. Neoadjuvant cisplatin-based chemotherapy before cystectomy improves the overall survival (OS) in patients with muscle-invasive BC. Pathological response to neoadjuvant treatment is a strong predictor of better disease-specific survival. Nevertheless, some patients do not benefit from chemotherapy. The identification of reliable biomarkers enabling clinicians to identify patients who might benefit from chemotherapy is a very important clinical task. An identification tool could lead to individualized therapy, optimizing response rates. In addition, unnecessary treatment with chemotherapy which potentially leads to a loss of quality of life and which might also might cause a delay of cystectomy in a neoadjuvant setting could be avoided. The present review aims to summarize and discuss the current literature on biomarkers for the prediction of response to systemic therapy in muscle-invasive BC. Tremendous efforts in genetic and molecular characterization have led to the identification of predictive candidate biomarkers in urothelial carcinoma (UC), although prospective validation is pending. Ongoing clinical trials examining the benefit of individual therapies in UC of the bladder (UCB) by molecular patient selection hold promise to shed light on this question.
Collapse
Affiliation(s)
- Felix Wezel
- Department of Urology, University of Ulm, Ulm, Germany
| | - Stefan Vallo
- Department of Urology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Florian Roghmann
- Department of Urology, Ruhr-University Bochum, Marien Hospital Herne, Herne, Germany
| | | |
Collapse
|
11
|
Taoka R, Jinesh GG, Xue W, Safe S, Kamat AM. CF 3DODA-Me induces apoptosis, degrades Sp1, and blocks the transformation phase of the blebbishield emergency program. Apoptosis 2017; 22:719-729. [PMID: 28283889 DOI: 10.1007/s10495-017-1359-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer stem cells are capable of undergoing cellular transformation after commencement of apoptosis through the blebbishield emergency program in a VEGF-VEGFR2-dependent manner. Development of therapeutics targeting the blebbishield emergency program would thus be important in cancer therapy. Specificity protein 1 (Sp1) orchestrates the transcription of both VEGF and VEGFR2; hence, Sp1 could act as a therapeutic target. Here, we demonstrate that CF3DODA-Me induced apoptosis, degraded Sp1, inhibited the expression of multiple drivers of the blebbishield emergency program such as VEGFR2, p70S6K, and N-Myc through activation of caspase-3, inhibited reactive oxygen species; and inhibited K-Ras activation to abolish transformation from blebbishields as well as transformation in soft agar. These findings confirm CF3DODA-Me as a potential therapeutic candidate that can induce apoptosis and block transformation from blebbishields.
Collapse
Affiliation(s)
- Rikiya Taoka
- Department of Urology, Unit 1373, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Goodwin G Jinesh
- Department of Urology, Unit 1373, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| | - Wenrui Xue
- Department of Urology, Unit 1373, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Ashish M Kamat
- Department of Urology, Unit 1373, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Finlay D, Teriete P, Vamos M, Cosford NDP, Vuori K. Inducing death in tumor cells: roles of the inhibitor of apoptosis proteins. F1000Res 2017; 6:587. [PMID: 28529715 PMCID: PMC5414821 DOI: 10.12688/f1000research.10625.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2017] [Indexed: 12/17/2022] Open
Abstract
The heterogeneous group of diseases collectively termed cancer results not just from aberrant cellular proliferation but also from a lack of accompanying homeostatic cell death. Indeed, cancer cells regularly acquire resistance to programmed cell death, or apoptosis, which not only supports cancer progression but also leads to resistance to therapeutic agents. Thus, various approaches have been undertaken in order to induce apoptosis in tumor cells for therapeutic purposes. Here, we will focus our discussion on agents that directly affect the apoptotic machinery itself rather than on drugs that induce apoptosis in tumor cells indirectly, such as by DNA damage or kinase dependency inhibition. As the roles of the Bcl-2 family have been extensively studied and reviewed recently, we will focus in this review specifically on the inhibitor of apoptosis protein (IAP) family. IAPs are a disparate group of proteins that all contain a baculovirus IAP repeat domain, which is important for the inhibition of apoptosis in some, but not all, family members. We describe each of the family members with respect to their structural and functional similarities and differences and their respective roles in cancer. Finally, we also review the current state of IAPs as targets for anti-cancer therapeutics and discuss the current clinical state of IAP antagonists.
Collapse
Affiliation(s)
- Darren Finlay
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peter Teriete
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Mitchell Vamos
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Nicholas D P Cosford
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Kristiina Vuori
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
13
|
BCG-unresponsive non-muscle-invasive bladder cancer: recommendations from the IBCG. Nat Rev Urol 2017; 14:244-255. [DOI: 10.1038/nrurol.2017.16] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Fulda S. Smac Mimetics to Therapeutically Target IAP Proteins in Cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 330:157-169. [PMID: 28215531 DOI: 10.1016/bs.ircmb.2016.09.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Inhibitor of Apoptosis (IAP) proteins are overexpressed in a variety of human cancers. Therefore, they are considered as promising targets for the design of therapeutic strategies. Smac mimetics mimic the endogenous mitochondrial protein Smac that antagonizes IAP proteins upon its release into the cytosol. Multiple preclinical studies have documented the ability of Smac mimetics to either directly induce cell death of cancer cells or to prime them to agents that trigger cell death. At present, several Smac mimetics are being evaluated in early clinical trials. The current review provides an overview on the potential of Smac mimetics as cancer therapeutics to target IAP proteins for cancer therapy.
Collapse
Affiliation(s)
- S Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
15
|
Hashim YM, Vangveravong S, Sankpal NV, Binder PS, Liu J, Goedegebuure SP, Mach RH, Spitzer D, Hawkins WG. The Targeted SMAC Mimetic SW IV-134 is a strong enhancer of standard chemotherapy in pancreatic cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:14. [PMID: 28095907 PMCID: PMC5240213 DOI: 10.1186/s13046-016-0470-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 12/05/2016] [Indexed: 02/07/2023]
Abstract
Background Pancreatic cancer is a lethal malignancy that frequently acquires resistance to conventional chemotherapies often associated with overexpression of inhibitors of apoptosis proteins (IAPs). We have recently described a novel means to deliver second mitochondria-derived activator of caspases (SMAC) mimetics selectively to cancer cells employing the sigma-2 ligand/receptor interaction. The intrinsic death pathway agonist SMAC offers an excellent opportunity to counteract the anti-apoptotic activity of IAPs. SMAC mimetics have been used to sensitize several cancer types to chemotherapeutic agents but cancer-selective delivery and appropriate cellular localization have not yet been considered. In our current study, we tested the ability of the sigma-2/SMAC drug conjugate SW IV-134 to sensitize pancreatic cancer cells to gemcitabine. Methods Using the targeted SMAC mimetic SW IV-134, inhibition of the X-linked inhibitor of apoptosis proteins (XIAP) was induced pharmacologically and its impact on cell viability was studied alone and in combination with gemcitabine. Pathway analyses were performed by assessing caspase activation, PARP cleavage and membrane blebbing (Annexin-V), key components of apoptotic cell death. Single-agent treatment regimens were compared with combination therapy in a preclinical mouse model of pancreatic cancer. Results The sensitizing effect of XIAP interference toward gemcitabine was confirmed via pharmacological intervention using our recently designed, targeted SMAC mimetic SW IV-134 across a wide range of commonly used pancreatic cancer cell lines at concentrations where the individual drugs showed only minimal activity. On a mechanistic level, we identified involvement of key components of the apoptosis machinery during cell death execution. Furthermore, combination therapy proved superior in decreasing the tumor burden and extending the lives of the animals in a preclinical mouse model of pancreatic cancer. Conclusion We believe that the strong sensitizing capacity of SW IV-134 in combination with clinically relevant doses of gemcitabine represents a promising treatment option that warrants clinical evaluation. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0470-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yassar M Hashim
- Department of Surgery, Barnes-Jewish Hospital and Washington University School of Medicine St. Louis, 660 S. Euclid Ave, Box 8109, Saint Louis, MO, 63110, USA.,Present Address: Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd, 8215-NT, Los Angeles, CA, 90048, USA
| | - Suwanna Vangveravong
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Narendra V Sankpal
- Department of Surgery, Barnes-Jewish Hospital and Washington University School of Medicine St. Louis, 660 S. Euclid Ave, Box 8109, Saint Louis, MO, 63110, USA
| | - Pratibha S Binder
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, Washington University School of Medicine, St Louis, MO, USA
| | - Jingxia Liu
- Department of Surgery, Barnes-Jewish Hospital and Washington University School of Medicine St. Louis, 660 S. Euclid Ave, Box 8109, Saint Louis, MO, 63110, USA.,Division of Public Health Sciences, Section of Oncologic Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - S Peter Goedegebuure
- Department of Surgery, Barnes-Jewish Hospital and Washington University School of Medicine St. Louis, 660 S. Euclid Ave, Box 8109, Saint Louis, MO, 63110, USA.,Alvin J. Siteman Cancer Center, St. Louis, MO, USA
| | - Robert H Mach
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Dirk Spitzer
- Department of Surgery, Barnes-Jewish Hospital and Washington University School of Medicine St. Louis, 660 S. Euclid Ave, Box 8109, Saint Louis, MO, 63110, USA.,Alvin J. Siteman Cancer Center, St. Louis, MO, USA
| | - William G Hawkins
- Department of Surgery, Barnes-Jewish Hospital and Washington University School of Medicine St. Louis, 660 S. Euclid Ave, Box 8109, Saint Louis, MO, 63110, USA. .,Alvin J. Siteman Cancer Center, St. Louis, MO, USA.
| |
Collapse
|
16
|
Sumi H, Inazuka M, Morimoto M, Hibino R, Hashimoto K, Ishikawa T, Kuida K, Smith PG, Yoshida S, Yabuki M. An inhibitor of apoptosis protein antagonist T-3256336 potentiates the antitumor efficacy of the Nedd8-activating enzyme inhibitor pevonedistat (TAK-924/MLN4924). Biochem Biophys Res Commun 2016; 480:380-386. [PMID: 27771247 DOI: 10.1016/j.bbrc.2016.10.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 10/18/2016] [Indexed: 01/12/2023]
Abstract
Inhibitors of apoptosis proteins (IAPs) are antiapoptotic regulators that block cell death, and are frequently overexpressed in several human cancers, where they facilitate evasion of apoptosis and promote cell survival. IAP antagonists are also known as second mitochondria-derived activator of caspase (SMAC)-mimetics, and have recently been considered as novel therapeutic agents for inducing apoptosis, alone and in combination with other anticancer drugs. In this study, we showed that T-3256336, the orally available IAP antagonist has synergistically enhances the antiproliferative effects of the NEDD8-activating enzyme (NAE) inhibitor pevonedistat (TAK-924/MLN4924), and these effects were attenuated by a TNFα-neutralizing antibody. In the present mechanistic analyses, pevonedistat induced TNFα mRNA and triggered IAP antagonist-dependent extrinsic apoptotic cell death in cancer cell lines. Furthermore, synergistic effects of the combination of T-3256336 and pevonedistat were demonstrated in a HL-60 mouse xenograft model. Our findings provide mechanistic evidence of the effects of IAP antagonists in combination with NAE inhibitors, and demonstrate the potential of a new combination therapy for cancer.
Collapse
Affiliation(s)
- Hiroyuki Sumi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd., 26-1, Muraoka-higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan.
| | - Masakazu Inazuka
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd., 26-1, Muraoka-higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Megumi Morimoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd., 26-1, Muraoka-higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Ryosuke Hibino
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd., 26-1, Muraoka-higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Kentaro Hashimoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd., 26-1, Muraoka-higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Tomoyasu Ishikawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd., 26-1, Muraoka-higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Keisuke Kuida
- Discovery, Millennium Pharmaceuticals, Inc., Cambridge, MA, 02139, USA
| | - Peter G Smith
- Discovery, Millennium Pharmaceuticals, Inc., Cambridge, MA, 02139, USA
| | - Sei Yoshida
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd., 26-1, Muraoka-higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Masato Yabuki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd., 26-1, Muraoka-higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan.
| |
Collapse
|
17
|
Silencing Livin induces apoptotic and autophagic cell death, increasing chemotherapeutic sensitivity to cisplatin of renal carcinoma cells. Tumour Biol 2016; 37:15133-15143. [PMID: 27677286 DOI: 10.1007/s13277-016-5395-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 09/09/2016] [Indexed: 02/06/2023] Open
Abstract
Renal cell carcinoma (RCC) accounts for 3 % of all adult malignancies and is the most lethal urological cancer. Livin is a member of the inhibitor of apoptosis protein (IAP) family, which is associated with tumor resistance to radiotherapy and chemotherapy. Clinical data also showed that patients with high tumor grades and stages have higher expression levels of Livin in RCC cells. Autophagy is a survival mechanism activated in response to nutrient deprivation. A possible role of Livin in the autophagy of RCC cells has not been investigated; therefore, this pioneer study was carried out. Livin was silenced in RCC cells (slow virus infection [SVI]-shLivin cells) by lentiviral transfection. Then, mRNA and protein expression levels in the transfected cells were assessed by quantitative fluorescence PCR and Western blotting, respectively. In addition, acridine orange staining and electron microscopy were used to assess autophagy in SVI-shLivin cells. The cisplatin IC50 values for RCC cells were measured by the CCK8 assay. Potent antitumor activities were observed in xenograft mouse models generated with Livin-silenced RCC cells in terms of delayed tumor onset and suppressed tumor growth. These results suggested that Livin silencing could increase the chemotherapeutic sensitivity of RCC cells to cisplatin and induce autophagic cell death. A possible mechanism of Bcl-2 and Akt pathway involvement was discussed specifically in this study. Overall, Livin silencing induces apoptotic and autophagic cell death and increases chemotherapeutic sensitivity of RCC cells to cisplatin.
Collapse
|
18
|
Shekhar TM, Miles MA, Gupte A, Taylor S, Tascone B, Walkley CR, Hawkins CJ. IAP antagonists sensitize murine osteosarcoma cells to killing by TNFα. Oncotarget 2016; 7:33866-86. [PMID: 27129149 PMCID: PMC5085125 DOI: 10.18632/oncotarget.8980] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/16/2016] [Indexed: 12/20/2022] Open
Abstract
Outcomes for patients diagnosed with the bone cancer osteosarcoma have not improved significantly in the last four decades. Only around 60% of patients and about a quarter of those with metastatic disease survive for more than five years. Although DNA-damaging chemotherapy drugs can be effective, they can provoke serious or fatal adverse effects including cardiotoxicity and therapy-related cancers. Better and safer treatments are therefore needed. We investigated the anti-osteosarcoma activity of IAP antagonists (also known as Smac mimetics) using cells from primary and metastatic osteosarcomas that arose spontaneously in mice engineered to lack p53 and Rb expression in osteoblast-derived cells. The IAP antagonists SM-164, GDC-0152 and LCL161, which efficiently target XIAP and cIAPs, sensitized cells from most osteosarcomas to killing by low levels of TNFα but not TRAIL. RIPK1 expression levels and activity correlated with sensitivity. RIPK3 levels varied considerably between tumors and RIPK3 was not required for IAP antagonism to sensitize osteosarcoma cells to TNFα. IAP antagonists, including SM-164, lacked mutagenic activity. These data suggest that drugs targeting XIAP and cIAP1/2 may be effective for osteosarcoma patients whose tumors express abundant RIPK1 and contain high levels of TNFα, and would be unlikely to provoke therapy-induced cancers in osteosarcoma survivors.
Collapse
Affiliation(s)
- Tanmay M. Shekhar
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Mark A. Miles
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Ankita Gupte
- St. Vincent's Institute of Medical Research, Fitzroy, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - Scott Taylor
- St. Vincent's Institute of Medical Research, Fitzroy, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - Brianna Tascone
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Carl R. Walkley
- St. Vincent's Institute of Medical Research, Fitzroy, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - Christine J. Hawkins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
19
|
Abstract
As the Inhibitor of Apoptosis (IAP) proteins are expressed at high levels in human cancers, they represent promising targets for therapeutic intervention. Small-molecule inhibitors of IAP proteins mimicking the endogenous IAP antagonist Smac, called Smac mimetics, neutralize IAP proteins and thereby promote the induction of cell death. Smac mimetics have been shown in preclinical models of human cancer to directly trigger cancer cell death or to sensitize for cancer cell death induced by a variety of cytotoxic stimuli. Smac mimetics are currently undergoing clinical evaluation in phase I/II trials, demonstrating that therapeutic targeting of IAP proteins has reached the clinical stage.
Collapse
Affiliation(s)
- Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstr. 3a, 60528 Frankfurt, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
20
|
Wang H, Xu C, Kong X, Li X, Kong X, Wang Y, Ding X, Yang Q. Trail resistance induces epithelial-mesenchymal transition and enhances invasiveness by suppressing PTEN via miR-221 in breast cancer. PLoS One 2014; 9:e99067. [PMID: 24905916 PMCID: PMC4048247 DOI: 10.1371/journal.pone.0099067] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 05/12/2014] [Indexed: 01/05/2023] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can selectively induce apoptosis of cancer cells and is verified effective to various cancers. However, a variety of breast cancer cell lines are resistant to TRAIL and the mechanisms of resistance are largely unknown. In our present experiment, we successfully utilized breast cancer cell line MDA-MB-231 to establish TRAIL-resistant cell line. We found resistance to TRAIL could induce epithelial-mesenchymal transition (EMT) and enhance invasiveness. We further demonstrated PTEN was down-regulated in TRAIL-resistant cells. Silencing miR-221, PTEN expression was up-regulated, the process of EMT could be reversed, and the ability of migration and invasion were correspondingly weakened. We also demonstrated knockdown of miR-221 could reverse resistance to TRAIL partially by targeting PTEN. Our findings suggest that resistance to TRAIL could induce EMT and enhance invasiveness by suppressing PTEN via miR-221. Re-expression of miR-221 or targeting PTEN might serve as potential therapeutic approaches for the treatment of Trail-resistant breast cancer.
Collapse
Affiliation(s)
- Haiji Wang
- Department of Oncology, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
- Department of Oncology, Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong Province, China
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Chunyuan Xu
- Department of Oncology, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| | - Xiaoli Kong
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Xiaoyan Li
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Xiangnan Kong
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Yu Wang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Xia Ding
- Department of Oncology, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
- * E-mail:
| |
Collapse
|
21
|
Abstract
Inhibitor of apoptosis (IAP) proteins are overexpressed in multiple human malignancies, an event that is associated with poor prognosis and treatment resistance. Therefore, IAP proteins represent relevant targets for therapeutic intervention. Second mitochondrial activator of caspases (Smac) is a mitochondrial protein that is released into the cytosol upon the induction of programmed cell death and promotes apoptosis by neutralizing IAP proteins. On the basis of this property, a variety of small-molecule inhibitors have been developed that mimic the binding domain of the native Smac protein to IAP proteins. Evaluation of these Smac mimetics in preclinical studies revealed that they particularly synergize together with agents that trigger the death receptor pathway of apoptosis. Such combinations might therefore be of special interest for being included in the ongoing evaluation of Smac mimetics in early clinical trials.
Collapse
Affiliation(s)
- Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
| |
Collapse
|
22
|
Garg G, Vangveravong S, Zeng C, Collins L, Hornick M, Hashim Y, Piwnica-Worms D, Powell MA, Mutch DG, Mach RH, Hawkins WG, Spitzer D. Conjugation to a SMAC mimetic potentiates sigma-2 ligand induced tumor cell death in ovarian cancer. Mol Cancer 2014; 13:50. [PMID: 24602489 PMCID: PMC4015918 DOI: 10.1186/1476-4598-13-50] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/23/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Drug resistance is a significant problem in the treatment of ovarian cancer and can be caused by multiple mechanisms. Inhibition of apoptosis by the inhibitor of apoptosis proteins (IAPs) represents one such mechanism, and can be overcome by a mitochondrial protein called second mitochondria-derived activator of caspases (SMAC). We have previously shown that the ligands of sigma-2 receptors effectively induce tumor cell death. Additionally, because sigma-2 receptors are preferentially expressed in tumor cells, their ligands provide an effective mechanism for selective anti-cancer therapy. METHODS In the current work, we have improved upon the previously described sigma-2 ligand SW43 by conjugating it to a pro-apoptotic small molecule SMAC mimetic SW IV-52, thus generating the novel cancer therapeutic SW IV-134. The new cancer drug was tested for receptor selectivity and tumor cell killing activity in vitro and in vivo. RESULTS We have shown that SW IV-134 retained adequate sigma-2 receptor binding affinity in the context of the conjugate and potently induced cell death in ovarian cancer cells. The cell death induced by SW IV-134 was significantly greater than that observed with either SW43 or SW IV-52 alone and in combination. Furthermore, the intraperitoneal administration of SW IV-134 significantly reduced tumor burden and improved overall survival in a mouse xenograft model of ovarian cancer without causing significant adverse effects to normal tissues. Mechanistically, SW IV-134 induced degradation of cIAP-1 and cIAP-2 leading to NF-қB activation and TNFα-dependent cell death. CONCLUSIONS Our findings suggest that coupling sigma-2 ligands to SMAC peptidomimetics enhances their effectiveness while maintaining the cancer selectivity. This encouraging proof-of-principle preclinical study supports further development of tumor-targeted small peptide mimetics via ligands to the sigma-2 receptor for future clinical applications.
Collapse
Affiliation(s)
- Gunjal Garg
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Suwanna Vangveravong
- Department of Radiology, Division of Radiological Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chenbo Zeng
- Department of Radiology, University of Pennsylvania, Chemistry Building, Room 283, 231 S. 34th St, Philadelphia, PA 19104, USA
| | - Lynne Collins
- Departments of Cell Biology & Physiology, Developmental Biology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, BRIGHT Institute, St. Louis, MO 63110, USA
| | - Mary Hornick
- Department of Surgery, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8109, St. Louis, MO 63110, USA
| | - Yassar Hashim
- Department of Surgery, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8109, St. Louis, MO 63110, USA
| | - David Piwnica-Worms
- Departments of Cell Biology & Physiology, Developmental Biology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, BRIGHT Institute, St. Louis, MO 63110, USA
- The University of Texas M.D. Anderson Cancer Center, Cancer Systems Imaging Department, Division of Diagnostic Imaging, T. Boone Pickens Academic Tower, 1400 Pressler Street, Unit 1479, Houston, TX 77030, USA
| | - Matthew A Powell
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David G Mutch
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robert H Mach
- Department of Radiology, University of Pennsylvania, Chemistry Building, Room 283, 231 S. 34th St, Philadelphia, PA 19104, USA
- Britton Chance Professor of Radiology, Director of Radiochemistry, University of Pennsylvania, Chemistry Building, Room 283, 231 S. 34th St, Philadelphia, PA 19104, USA
| | - William G Hawkins
- Department of Surgery, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8109, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dirk Spitzer
- Department of Surgery, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8109, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
23
|
Lee EK, Jinesh G G, Laing NM, Choi W, McConkey DJ, Kamat AM. A Smac mimetic augments the response of urothelial cancer cells to gemcitabine and cisplatin. Cancer Biol Ther 2013; 14:812-22. [PMID: 23792592 DOI: 10.4161/cbt.25326] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cisplatin-based chemotherapy is considered the gold standard for patients with advanced bladder cancer. However, despite initial response, many patients will relapse; therefore, novel salvage treatment strategies are desperately needed. Herein, we studied a mechanism based treatment combination using a Smac mimetic with standard chemotherapy. Using a panel of 10 urothelial cancer cell lines, we exposed them to a combination of gemcitabine, cisplatin, and a Smac mimetic. Sensitivity was determined using a DNA fragmentation assay. We determined that three cell lines (UMUC-3, UMUC-13, and RT4v6) were considered sensitive to the combination of gemcitabine and cisplatin and an additional three cell lines were sensitized to gemcitabine and cisplatin with the addition of the Smac mimetic (UMUC-6, UMUC-12, and UMUC-18). We next explored the constitutive expression of selected members of the IAP family (XIAP, cIAP-1, cIAP-2, and Survivin), the BCL family (BCL-2, BCLXL, and BAX) and Smac using gene expression profiling and western blotting. We determined that RNA and protein expression of SMAC, selected members of the IAP family and members of the BCL family did not correlate to drug sensitivity. Lastly, using an in vivo mouse model, we determined that treatment with the Smac mimetic in combination with gemcitabine and cisplatin resulted in increased apoptosis, decreased microvessel density and decreased cellular proliferation. This novel treatment strategy may be effective in patients with advanced urothelial carcinoma and warrants further investigation.
Collapse
Affiliation(s)
- Eugene K Lee
- Department of Urology; The University of Texas MD Anderson Cancer Center; Houston, TX USA
| | - Goodwin Jinesh G
- Department of Urology; The University of Texas MD Anderson Cancer Center; Houston, TX USA
| | | | - Woonyoung Choi
- Department of Urology; The University of Texas MD Anderson Cancer Center; Houston, TX USA
| | - David J McConkey
- Department of Urology; The University of Texas MD Anderson Cancer Center; Houston, TX USA
| | - Ashish M Kamat
- Department of Urology; The University of Texas MD Anderson Cancer Center; Houston, TX USA
| |
Collapse
|
24
|
Wu MS, Wang GF, Zhao ZQ, Liang Y, Wang HB, Wu MY, Min P, Chen LZ, Feng QS, Bei JX, Zeng YX, Yang D. Smac mimetics in combination with TRAIL selectively target cancer stem cells in nasopharyngeal carcinoma. Mol Cancer Ther 2013; 12:1728-37. [PMID: 23699656 DOI: 10.1158/1535-7163.mct-13-0017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nasopharyngeal carcinoma is a common malignancy in Southern China. After radiotherapy and chemotherapy, a considerable proportion of patients with nasopharyngeal carcinoma suffered tumor relapse and metastasis. Cancer stem cells (CSC) have been shown with resistance against therapies and thus considered as the initiator of recurrence and metastasis in tumors, where the antiapoptotic property of CSCs play an important role. Smac/DIABLO is an inverse regulator for the inhibitors of apoptosis protein family (IAP), which have been involved in apoptosis. Here, the effects of Smac mimetics on the CSCs of nasopharyngeal carcinoma were studied both in vitro and in vivo, using two clones of nasopharyngeal carcinoma cell line CNE2 as models. We found that one of the clones, S18, had CSC-like properties and IAPs were overexpressed. The combination of Smac mimetics and TNF-related apoptosis-inducing ligand (TRAIL) can reduce the percentage of SP cells and inhibit the colony- and sphere-forming abilities of S18 cells, indicating their ability to attenuate the CSCs. Moreover, in a nasopharyngeal carcinoma xenograft model, the administration of Smac mimetics in combination with TRAIL also led to the elimination of nasopharyngeal carcinoma stem cells. Furthermore, the Smac mimetics in combination with TRAIL induced the degradation of cIAP1 and XIAP and thus induced apoptosis in vitro and in vivo. Taken together, our data show that Smac mimetics exerted an antitumor effect on nasopharyngeal carcinoma cancer stem cells, and this combination treatment should be considered as a promising strategy for the treatment of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Man-Si Wu
- Corresponding Authors: Yi-Xin Zeng, State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhao Y, Li Y, Wang L, Yang H, Wang Q, Qi H, Li S, Zhou P, Liang P, Wang Q, Li X. microRNA response elements-regulated TRAIL expression shows specific survival-suppressing activity on bladder cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:10. [PMID: 23442927 PMCID: PMC3764979 DOI: 10.1186/1756-9966-32-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/20/2013] [Indexed: 12/21/2022]
Abstract
Background Bladder transitional cell carcinoma greatly threatens human health all over
the world. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)
shows a strong apoptosis-inducing effect on a variety of cancer cells
including bladder cancer. However, adenovirus-mediated TRAIL expression
still showed cytotoxicity to normal cells mainly due to lack of tumor
specificity. Methods To solve the problem, we applied miRNA response elements (MREs) of
miR-1, miR-133 and
miR-218 to confer TRAIL expression with specificity to
bladder cancer cells. Results Expression of miR-1, miR-133 and
miR-218 was greatly decreased in bladder cancer than
normal bladder tissue. Luciferase assay showed that application of the 3
MREs was able to restrain exogenous gene expression to within bladder cancer
cells. Subsequently, we constructed a recombinant adenovirus with TRAIL
expression regulated by MREs of miR-1,
miR-133 and miR-218, namely
Ad-TRAIL-MRE-1-133-218. qPCR, immunoblotting and ELISA assays demonstrated
that Ad-TRAIL-MRE-1-133-218 expressed in bladder cancer cells, rather than
normal bladder cells. The differential TRAIL expression also led to
selective apoptosis-inducing and growth-inhibiting effect of
Ad-TRAIL-MRE-1-133-218 on bladder cancers. Finally, bladder cancer xenograft
in mouse models further confirmed that Ad-TRAIL-MRE-1-133-218 effectively
suppressed the growth of bladder cancers. Conclusions Collectively, we demonstrated that MREs-based TRAIL delivery into bladder
cancer cells was feasible and efficient for cancer gene therapy.
Collapse
Affiliation(s)
- Youguang Zhao
- Department of Urology, General Hospital of Chengdu Military Area Command of Chinese PLA, Chengdu 610083, Sichuan Province, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Brincks EL, Risk MC, Griffith TS. PMN and anti-tumor immunity--the case of bladder cancer immunotherapy. Semin Cancer Biol 2013; 23:183-9. [PMID: 23410637 DOI: 10.1016/j.semcancer.2013.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/21/2013] [Accepted: 02/01/2013] [Indexed: 12/01/2022]
Abstract
Urothelial carcinoma of the bladder accounts for ∼5% of all cancer deaths in humans. The majority of bladder tumors are non-muscle invasive at diagnosis, and there is a high rate of tumor recurrence and progression even after local surgical therapy. Thus, many patients require lifelong follow-up examinations that include additional prophylactic treatments in the event of recurrence. Since its first use in 1976, Mycobacterium bovis bacillus Calmette-Guerin (BCG) has been the treatment of choice for non-muscle invasive bladder cancer. Despite nearly 40 years of clinical use, the mechanism(s) by which intravesical administration of BCG results in elimination of bladder tumors remains undefined. Granulocytes (polymorphonuclear neutrophils (PMN)) are the predominant immune cell (in number) that enters the bladder after BCG installation, and a number of studies have highlighted the importance of PMN in the antitumor activity of BCG. Studies from our laboratory demonstrated presence of intracellular stores of the apoptosis-inducing protein TNF-related apoptosis-inducing ligand (TRAIL) in PMN that are rapidly released after interaction with BCG cell wall components, along with a correlation between increased urinary levels of TRAIL and BCG responsiveness. Mature PMN in circulation are terminally differentiated cells with limited biosynthetic capacity, so the proteins located in the distinct PMN granule populations are compartmentalized concomitant with their synthesis during myelopoiesis. Thus, understanding PMN production, localization, and release of TRAIL is important in the design of future BCG-based bladder tumor immunotherapy protocols.
Collapse
Affiliation(s)
- Erik L Brincks
- Department of Urology, University of Minnesota, Minneapolis, MN 55455, United States
| | | | | |
Collapse
|
27
|
Marquis L, Tran M, Choi W, Lee IL, Huszar D, Siefker-Radtke A, Dinney C, McConkey DJ. p63 expression correlates with sensitivity to the Eg5 inhibitor ZD4877 in bladder cancer cells. Cancer Biol Ther 2012; 13:477-86. [PMID: 22361733 DOI: 10.4161/cbt.19590] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Antimitotics such as taxanes are being considered as alternatives to conventional cisplatin-based chemotherapy in patients with bladder cancer, but the molecular determinants of sensitivity or resistance to these agents in bladder cancer cells have not been defined. Here we examined the cytotoxic effects of a novel antimitotic, the Eg5 inhibitor AZD4877, in a molecularly diverse panel of human bladder cancer cell lines. The cells displayed heterogeneous responses to the drug that correlated closely with sensitivity to docetaxel but not with sensitivity to cisplatin. Global gene expression profiling identified p63 as the top gene that was differentially expressed between sensitive and resistant cell lines. Stable knockdown of p63 inhibited cell death induced by either AZD4877 or docetaxel and was associated with decreased proliferation and decreased expression of c-myc. Furthermore, c-myc knockdown also rendered cells resistant to AZD4877 or docetaxel. Together, our results implicate p63 and its downstream target c-myc as determinants of sensitivity to anti-mitotics in bladder cancer cells. Our data also suggest that anti-mitotics and cisplatin target different subsets of bladder cancer cells, a conclusion that may have important implications for the therapy of muscle-invasive bladder cancers.
Collapse
Affiliation(s)
- Lauren Marquis
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Jinesh G G, Chunduru S, Kamat AM. Smac mimetic enables the anticancer action of BCG-stimulated neutrophils through TNF-α but not through TRAIL and FasL. J Leukoc Biol 2012; 92:233-44. [PMID: 22517918 DOI: 10.1189/jlb.1211623] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BCG, the current gold standard immunotherapy for bladder cancer, exerts its activity via recruitment of neutrophils to the tumor microenvironment. Many patients do not respond to BCG therapy, indicating the need to understand the mechanism of action of BCG-stimulated neutrophils and to identify ways to overcome resistance to BCG therapy. Using isolated human neutrophils stimulated with BCG, we found that TNF-α is the key mediator secreted by BCG-stimulated neutrophils. RT4v6 human bladder cancer cells, which express TNFR1, CD95/Fas, CD95 ligand/FasL, DR4, and DR5, were resistant to BCG-stimulated neutrophil conditioned medium but effectively killed by the combination of conditioned medium and Smac mimetic. rhTNF-α and rhFasL, but not rhTRAIL, in combination with Smac mimetic, generated signature molecular events similar to those produced by BCG-stimulated neutrophils in combination with Smac mimetic. However, experiments using neutralizing antibodies to these death ligands showed that TNF-α secreted from BCG-stimulated neutrophils was the key mediator of anticancer action. These findings explain the mechanism of action of BCG and identified Smac mimetics as potential combination therapeutic agents for bladder cancer.
Collapse
Affiliation(s)
- Goodwin Jinesh G
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | |
Collapse
|
29
|
Fulda S, Vucic D. Targeting IAP proteins for therapeutic intervention in cancer. Nat Rev Drug Discov 2012; 11:109-24. [PMID: 22293567 DOI: 10.1038/nrd3627] [Citation(s) in RCA: 643] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Evasion of apoptosis is one of the crucial acquired capabilities used by cancer cells to fend off anticancer therapies. Inhibitor of apoptosis (IAP) proteins exert a range of biological activities that promote cancer cell survival and proliferation. X chromosome-linked IAP is a direct inhibitor of caspases - pro-apoptotic executioner proteases - whereas cellular IAP proteins block the assembly of pro-apoptotic protein signalling complexes and mediate the expression of anti-apoptotic molecules. Furthermore, mutations, amplifications and chromosomal translocations of IAP genes are associated with various malignancies. Among the therapeutic strategies that have been designed to target IAP proteins, the most widely used approach is based on mimicking the IAP-binding motif of second mitochondria-derived activator of caspase (SMAC), which functions as an endogenous IAP antagonist. Alternative strategies include transcriptional repression and the use of antisense oligonucleotides. This Review provides an update on IAP protein biology as well as current and future perspectives on targeting IAP proteins for therapeutic intervention in human malignancies.
Collapse
Affiliation(s)
- Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe University Frankfurt, Komturstr. 3a, 60528 Frankfurt, Germany.
| | | |
Collapse
|
30
|
Che X, Yang D, Zong H, Wang J, Li X, Chen F, Chen X, Song X. Nuclear cIAP1 overexpression is a tumor stage- and grade-independent predictor of poor prognosis in human bladder cancer patients. Urol Oncol 2011; 30:450-6. [PMID: 21795072 DOI: 10.1016/j.urolonc.2010.12.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 12/08/2010] [Accepted: 12/22/2010] [Indexed: 02/02/2023]
Abstract
PURPOSE To evaluate the tumor-related expression profile of cellular inhibitor of apoptosis protein 1 (cIAP1) and cellular inhibitor of apoptosis protein (cIAP2) in patients with bladder cell carcinoma (BCC) and to investigate its potential prognostic value. METHODS The expression of cIAP1 and cIAP2 was examined immunohistochemically in archival bladder specimens from 32 normal controls and 102 consecutive patients who underwent surgical operations at our department from January 2004 through December 2005. Cytoplasm cIAP1 and cIAP2 expression was scored as 0 (negative), +1 (weak), +2 (medium), and +3 (strong). Nuclear cIAP1 expression was scored as 0 (0%), +1 (1%-25%), +2 (26%-50%), and +3 (>50%). Proliferation was determined by Ki67 staining as percentage of positive cells. RESULTS cIAP1 and cIAP2 expression were significantly increased in bladder cancer compared with normal bladder urothelium (cIAP1-C: P < 0.01, cIAP2-C: P = 0.017, cIAP1-N: P < 0.01). Nuclear staining of cIAP1 (cIAP1-N) was significantly associated with tumor stage (muscle invasive vs. non-muscle invasive, P = 0.03) and tumor grade (low vs. high, P = 0.01). Both the mean overall survival and mean recurrence-free survival were significantly decreased in the high cIAP1-N group compared to the low cIAP1-N group (low cIAP1-N: mean overall survival 62.7 months, high cIAP1-N: mean overall survival 45.6 months, P < 0.01; low cIAP1-N: mean recurrence-free survival 44.2 months, high cIAP1-N: mean recurrence-free survival 30.1 months, P < 0.01). cIAP1-N expression correlated strongly with KI67 expression (r = 0.744, P < 0.01). CONCLUSION Nuclear cIAP-1 expression strongly correlated to bladder cancer stage, tumor grade, tumor recurrence and tumor related death. This marker expression was also appears to be a marker in bladder cancer prognosis.
Collapse
Affiliation(s)
- Xiangyu Che
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Tumor necrosis factor related apoptosis inducing ligand (TRAIL) is a death receptor ligand that has the ability to preferentially initiate apoptosis in malignant cells with minimal toxicity to normal cells. TRAIL-based therapeutics, including recombinant TRAIL, TRAIL-receptor agonistic antibodies and TRAIL gene therapy, have now entered clinical trials. Although these therapeutics are promising, concerns regarding TRAIL resistance are causing research efforts to shift towards the identification of effective combination therapies. Small-molecule inhibitors, natural compounds, and drugs approved for treatment of diseases other than cancer have been shown to affect TRAIL receptors, antiapoptotic proteins and survival pathways in prostate, bladder and renal cell lines and in preclinical models. Changes in endogenous TRAIL and TRAIL receptor expression during the development of genitourinary malignancies and the way in which the expression pattern is affected by treatment are of great interest, and understanding the biological consequences of such changes will be important to maximize the potential of TRAIL-based therapeutics.
Collapse
|