1
|
Deng H, Liu H, Yang G, Wang D, Luo Y, Li C, Qi Z, Liu Z, Wang P, Jia Y, Gao Y, Ding Y. ACT001 inhibited CD133 transcription by targeting and inducing Olig2 ubiquitination degradation. Oncogenesis 2023; 12:19. [PMID: 36990974 PMCID: PMC10060425 DOI: 10.1038/s41389-023-00462-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
Lung cancer is the most lethal malignancies with high aggressive and poor prognosis. Until now, the five-year survival rate has not been improved which brings serious challenge to human health. Lung cancer stem cells (LCSCs) serve as the root of cancer occurrence, progression, recurrence, and drug resistance. Therefore, effective anti-cancer agents and molecular mechanisms which could specifically eliminate LCSCs are urgently needed for drug design. In this article, we discovered Olig2 was overexpressed in clinical lung cancer tissues and acted as a transcription factor to regulate cancer stemness by regulating CD133 gene transcription. The results suggested Olig2 could be a promising target in anti-LCSCs therapy and new drugs targeted Olig2 may exhibit excellent clinical results. Furthermore, we verified ACT001, a guaianolide sesquiterpene lactone in phase II clinical trial with excellent glioma remission, inhibited cancer stemness by directly binding to Olig2 protein, inducing Olig2 ubiquitination degradation and inhibiting CD133 gene transcription. All these results suggested that Olig2 could be an excellent druggable target in anti-LCSCs therapy and lay a foundation for the further application of ACT001 in the treatment of lung cancer in clinical.
Collapse
Affiliation(s)
- Huiting Deng
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital affiliated to Nankai University, Nankai University, 83 Jintang Road, Tianjin, 300170, People's Republic of China
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Hailin Liu
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Guoyue Yang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital affiliated to Nankai University, Nankai University, 83 Jintang Road, Tianjin, 300170, People's Republic of China
| | - Dandan Wang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital affiliated to Nankai University, Nankai University, 83 Jintang Road, Tianjin, 300170, People's Republic of China
| | - Ying Luo
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital affiliated to Nankai University, Nankai University, 83 Jintang Road, Tianjin, 300170, People's Republic of China
| | - Chenglong Li
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital affiliated to Nankai University, Nankai University, 83 Jintang Road, Tianjin, 300170, People's Republic of China
| | - Zhenchang Qi
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital affiliated to Nankai University, Nankai University, 83 Jintang Road, Tianjin, 300170, People's Republic of China
| | - Zhili Liu
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital affiliated to Nankai University, Nankai University, 83 Jintang Road, Tianjin, 300170, People's Republic of China
| | - Peng Wang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital affiliated to Nankai University, Nankai University, 83 Jintang Road, Tianjin, 300170, People's Republic of China
| | - Yanfang Jia
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital affiliated to Nankai University, Nankai University, 83 Jintang Road, Tianjin, 300170, People's Republic of China
| | - Yingtang Gao
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital affiliated to Nankai University, Nankai University, 83 Jintang Road, Tianjin, 300170, People's Republic of China.
| | - Yahui Ding
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.
| |
Collapse
|
2
|
Cuccu A, Francescangeli F, De Angelis ML, Bruselles A, Giuliani A, Zeuner A. Analysis of Dormancy-Associated Transcriptional Networks Reveals a Shared Quiescence Signature in Lung and Colorectal Cancer. Int J Mol Sci 2022; 23:9869. [PMID: 36077264 PMCID: PMC9456317 DOI: 10.3390/ijms23179869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Quiescent cancer cells (QCCs) are a common feature of solid tumors, representing a major obstacle to the long-term success of cancer therapies. We isolated QCCs ex vivo from non-small cell lung cancer (NSCLC) and colorectal cancer (CRC) xenografts with a label-retaining strategy and compared QCCs gene expression profiles to identify a shared "quiescence signature". Principal Component Analysis (PCA) revealed a specific component neatly discriminating quiescent and replicative phenotypes in NSCLC and CRC. The discriminating component showed significant overlapping, with 688 genes in common including ZEB2, a master regulator of stem cell plasticity and epithelial-to-mesenchymal transition (EMT). Gene set enrichment analysis showed that QCCs of both NSCLC and CRC had an increased expression of factors related to stemness/self renewal, EMT, TGF-β, morphogenesis, cell adhesion and chemotaxis, whereas proliferating cells overexpressed Myc targets and factors involved in RNA metabolism. Eventually, we analyzed in depth by means of a complex network approach, both the 'morphogenesis module' and the subset of differentially expressed genes shared by NCSLC and CRC. This allowed us to recognize different gene regulation network wiring for quiescent and proliferating cells and to underpin few genes central for network integration that may represent new therapeutic vulnerabilities. Altogether, our results highlight common regulatory pathways in QCCs of lung and colorectal tumors that may be the target of future therapeutic interventions.
Collapse
Affiliation(s)
- Adriano Cuccu
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Federica Francescangeli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Maria Laura De Angelis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Ann Zeuner
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
3
|
Kotlyar M, Pastrello C, Ahmed Z, Chee J, Varyova Z, Jurisica I. IID 2021: towards context-specific protein interaction analyses by increased coverage, enhanced annotation and enrichment analysis. Nucleic Acids Res 2021; 50:D640-D647. [PMID: 34755877 PMCID: PMC8728267 DOI: 10.1093/nar/gkab1034] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 11/03/2021] [Indexed: 01/02/2023] Open
Abstract
Improved bioassays have significantly increased the rate of identifying new protein-protein interactions (PPIs), and the number of detected human PPIs has greatly exceeded early estimates of human interactome size. These new PPIs provide a more complete view of disease mechanisms but precise understanding of how PPIs affect phenotype remains a challenge. It requires knowledge of PPI context (e.g. tissues, subcellular localizations), and functional roles, especially within pathways and protein complexes. The previous IID release focused on PPI context, providing networks with comprehensive tissue, disease, cellular localization, and druggability annotations. The current update adds developmental stages to the available contexts, and provides a way of assigning context to PPIs that could not be previously annotated due to insufficient data or incompatibility with available context categories (e.g. interactions between membrane and cytoplasmic proteins). This update also annotates PPIs with conservation across species, directionality in pathways, membership in large complexes, interaction stability (i.e. stable or transient), and mutation effects. Enrichment analysis is now available for all annotations, and includes multiple options; for example, context annotations can be analyzed with respect to PPIs or network proteins. In addition to tabular view or download, IID provides online network visualization. This update is available at http://ophid.utoronto.ca/iid.
Collapse
Affiliation(s)
- Max Kotlyar
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Zuhaib Ahmed
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Justin Chee
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Zofia Varyova
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada.,Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, ON M5S 1A4, Canada.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
4
|
Cui Y, Fang W, Li C, Tang K, Zhang J, Lei Y, He W, Peng S, Kuang M, Zhang H, Chen L, Xu D, Tang C, Zhang W, Zhu Y, Jiang W, Jiang N, Sun Y, Chen Y, Wang H, Lai Y, Li S, He Q, Zhou J, Zhang Y, Lin M, Chen H, Zhou C, Wang C, Wang J, Zou X, Wang L, Ke Z. Development and Validation of a Novel Signature to Predict Overall Survival in "Driver Gene-negative" Lung Adenocarcinoma (LUAD): Results of a Multicenter Study. Clin Cancer Res 2018; 25:1546-1556. [PMID: 30389658 DOI: 10.1158/1078-0432.ccr-18-2545] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/16/2018] [Accepted: 10/30/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Examining the role of developmental signaling pathways in "driver gene-negative" lung adenocarcinoma (patients with lung adenocarcinoma negative for EGFR, KRAS, BRAF, HER2, MET, ALK, RET, and ROS1 were identified as "driver gene-negative") may shed light on the clinical research and treatment for this lung adenocarcinoma subgroup. We aimed to investigate whether developmental signaling pathways activation can stratify the risk of "driver gene-negative" lung adenocarcinoma. EXPERIMENTAL DESIGN In the discovery phase, we profiled the mRNA expression of each candidate gene using genome-wide microarrays in 52 paired lung adenocarcinoma and adjacent normal tissues. In the training phase, tissue microarrays and LASSO Cox regression analysis were applied to further screen candidate molecules in 189 patients, and we developed a predictive signature. In the validation phase, one internal cohort and two external cohorts were used to validate our novel prognostic signature. RESULTS Kyoto Encyclopedia of Genes and Genomes pathway analysis based on whole-genome microarrays indicated that the Wnt/β-catenin pathway was activated in "driver gene-negative" lung adenocarcinoma. Furthermore, the Wnt/β-catenin pathway-based gene expression profiles revealed 39 transcripts differentially expressed. Finally, a Wnt/β-catenin pathway-based CSDW signature comprising 4 genes (CTNNB1 or β-catenin, SOX9, DVL3, and Wnt2b) was developed to classify patients into high-risk and low-risk groups in the training cohort. Patients with high-risk scores in the training cohort had shorter overall survival [HR, 10.42; 6.46-16.79; P < 0.001) than patients with low-risk scores. CONCLUSIONS The CSDW signature is a reliable prognostic tool and may represent genes that are potential drug targets for "driver gene-negative" lung adenocarcinoma.
Collapse
Affiliation(s)
- Yongmei Cui
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenfeng Fang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Chaofeng Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Kejing Tang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian Zhang
- Department of Thoracic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yiyan Lei
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weiling He
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sui Peng
- Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ming Kuang
- Division of Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hui Zhang
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lili Chen
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Di Xu
- Department of Thoracic Surgery, The Central Hospital of Wuhan, Jiang'an District, Wuhan, Hubei, China
| | - Cuilan Tang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenhui Zhang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuxin Zhu
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenting Jiang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Neng Jiang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Sun
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yangshan Chen
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Han Wang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingrong Lai
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuhua Li
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiong He
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianwen Zhou
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yang Zhang
- Biomedical Engineering, The University of Texas at El Paso, El Paso, Texas
| | - Millicent Lin
- Genetics Department, Harvard Medical School, Boston, Massachusetts
| | - Honglei Chen
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan, Hubei, China
| | - Chenzhi Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | | | - Jianhong Wang
- Shen Zhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liantang Wang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China. .,Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Becker-Santos DD, Thu KL, English JC, Pikor LA, Martinez VD, Zhang M, Vucic EA, Luk MT, Carraro A, Korbelik J, Piga D, Lhomme NM, Tsay MJ, Yee J, MacAulay CE, Lam S, Lockwood WW, Robinson WP, Jurisica I, Lam WL. Developmental transcription factor NFIB is a putative target of oncofetal miRNAs and is associated with tumour aggressiveness in lung adenocarcinoma. J Pathol 2016; 240:161-72. [PMID: 27357447 DOI: 10.1002/path.4765] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 05/16/2016] [Accepted: 06/06/2016] [Indexed: 12/28/2022]
Abstract
Genes involved in fetal lung development are thought to play crucial roles in the malignant transformation of adult lung cells. Consequently, the study of lung tumour biology in the context of lung development has the potential to reveal key developmentally relevant genes that play critical roles in lung cancer initiation/progression. Here, we describe for the first time a comprehensive characterization of miRNA expression in human fetal lung tissue, with subsequent identification of 37 miRNAs in non-small cell lung cancer (NSCLC) that recapitulate their fetal expression patterns. Nuclear factor I/B (NFIB), a transcription factor essential for lung development, was identified as a potential frequent target for these 'oncofetal' miRNAs. Concordantly, analysis of NFIB expression in multiple NSCLC independent cohorts revealed its recurrent underexpression (in ∼40-70% of tumours). Interrogation of NFIB copy number, methylation, and mutation status revealed that DNA level disruption of this gene is rare, and further supports the notion that oncofetal miRNAs are likely the primary mechanism responsible for NFIB underexpression in NSCLC. Reflecting its functional role in regulating lung differentiation, low expression of NFIB was significantly associated with biologically more aggressive subtypes and, ultimately, poorer survival in lung adenocarcinoma patients. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Daiana D Becker-Santos
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada.
| | - Kelsie L Thu
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - John C English
- Department of Pathology, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Larissa A Pikor
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Victor D Martinez
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - May Zhang
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Emily A Vucic
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Margaret Ty Luk
- Department of Pathology, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Anita Carraro
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Jagoda Korbelik
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Daniela Piga
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Nicolas M Lhomme
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Mike J Tsay
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - John Yee
- Department of Surgery, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Calum E MacAulay
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Stephen Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - William W Lockwood
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Wendy P Robinson
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Igor Jurisica
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Wan L Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Duman E, Yildirim M, Kaya V, Ozturk D, Inal A, Akarsu Z, Gunduz S, Yildiz M. Effects of Definitive Chemoradiotherapy on Respiratory Function Tests and Quality of Life Scores During Treatment of Lung Cancer. Asian Pac J Cancer Prev 2016; 16:6779-82. [PMID: 26434911 DOI: 10.7314/apjcp.2015.16.15.6779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chemoradiotherapy is an important treatment modality for lung cancers. The aim of this study was to investigate alterations in, as well as the interrelationship between, lung function and quality of life of patients receiving chemoradiotherapy due to locally advanced non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) limited to the thorax. MATERIALS AND METHODS The study included patients receiving definitive chemoradiotherapy for lung carcinoma. The respiratory function of the patients was assessed by measuring forced expiratory volume in 1 s per unit (FEV1) and forced expiratory volume in 1s per unit of vital capacity (FEV1/VC) before, in the middle of and after treatment. During the study, EORTC QLQ C30 and LC13 questionnaires developed by the Committee of the European Organization for Research and Treatment of Cancer (EORTC) were employed to evaluate the quality of life on the same day as respiratory function tests (RFT). FINDINGS The study included 23 patients in total: 19 (82.6%) diagnosed with NSCLC and 4 (17.4%) with SCLC. The average percentage FEV1 was 55.6±21.8% in the pre-treatment period, 56.2±19.2% in the middle of treatment and 60.4±22% at the end of treatment. The improvement in functional scores, symptom scores and general health scores during treatment was not statistically significant (P=0.568, P=0.734, P=0.680, P=0.757 respectively). CONCLUSIONS Although this study showed an improvement in respiratory function and quality of life of patients during treatment with thoracic chemoradiotherapy, no statistically significant results were obtained. While evaluating the effectiveness of treatments for lung carcinoma, the effects of treatment on respiratory function and quality of life should be considered.
Collapse
Affiliation(s)
- Evrim Duman
- Department of Radiation Oncology, Antalya Education and Research Hospital, Antalya, Turkey E-mail :
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Bao TP, Wu R, Cheng HP, Cui XW, Tian ZF. Differential expression of long non-coding RNAs in hyperoxia-induced bronchopulmonary dysplasia. Cell Biochem Funct 2016; 34:299-309. [PMID: 27137150 DOI: 10.1002/cbf.3190] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Tian-Ping Bao
- Department of Neonatology, Huai'an First People's Hospital; Nanjing Medical University; Huai'an Jiangsu China
| | - Rong Wu
- Neonatal Medical Centre; Huai'an Maternity and Child Healthcare Hospital; Huai'an Jiangsu China
| | - Huai-Ping Cheng
- Department of Neonatology, Huai'an First People's Hospital; Nanjing Medical University; Huai'an Jiangsu China
| | - Xian-Wei Cui
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital; Nanjing Medical University; Nanjing Jiangsu, China
| | - Zhao-Fang Tian
- Department of Neonatology, Huai'an First People's Hospital; Nanjing Medical University; Huai'an Jiangsu China
| |
Collapse
|
8
|
Bidkhori G, Narimani Z, Hosseini Ashtiani S, Moeini A, Nowzari-Dalini A, Masoudi-Nejad A. Reconstruction of an integrated genome-scale co-expression network reveals key modules involved in lung adenocarcinoma. PLoS One 2013; 8:e67552. [PMID: 23874428 PMCID: PMC3708931 DOI: 10.1371/journal.pone.0067552] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 05/18/2013] [Indexed: 02/04/2023] Open
Abstract
Our goal of this study was to reconstruct a “genome-scale co-expression network” and find important modules in lung adenocarcinoma so that we could identify the genes involved in lung adenocarcinoma. We integrated gene mutation, GWAS, CGH, array-CGH and SNP array data in order to identify important genes and loci in genome-scale. Afterwards, on the basis of the identified genes a co-expression network was reconstructed from the co-expression data. The reconstructed network was named “genome-scale co-expression network”. As the next step, 23 key modules were disclosed through clustering. In this study a number of genes have been identified for the first time to be implicated in lung adenocarcinoma by analyzing the modules. The genes EGFR, PIK3CA, TAF15, XIAP, VAPB, Appl1, Rab5a, ARF4, CLPTM1L, SP4, ZNF124, LPP, FOXP1, SOX18, MSX2, NFE2L2, SMARCC1, TRA2B, CBX3, PRPF6, ATP6V1C1, MYBBP1A, MACF1, GRM2, TBXA2R, PRKAR2A, PTK2, PGF and MYO10 are among the genes that belong to modules 1 and 22. All these genes, being implicated in at least one of the phenomena, namely cell survival, proliferation and metastasis, have an over-expression pattern similar to that of EGFR. In few modules, the genes such as CCNA2 (Cyclin A2), CCNB2 (Cyclin B2), CDK1, CDK5, CDC27, CDCA5, CDCA8, ASPM, BUB1, KIF15, KIF2C, NEK2, NUSAP1, PRC1, SMC4, SYCE2, TFDP1, CDC42 and ARHGEF9 are present that play a crucial role in cell cycle progression. In addition to the mentioned genes, there are some other genes (i.e. DLGAP5, BIRC5, PSMD2, Src, TTK, SENP2, PSMD2, DOK2, FUS and etc.) in the modules.
Collapse
Affiliation(s)
- Gholamreza Bidkhori
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Zahra Narimani
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Saman Hosseini Ashtiani
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Moeini
- Department of Algorithms and Computation, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- * E-mail:
| |
Collapse
|
9
|
Hagood JS, Ambalavanan N. Systems biology of lung development and regeneration: current knowledge and recommendations for future research. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 5:125-33. [PMID: 23293056 DOI: 10.1002/wsbm.1205] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The lung begins as a simple outpouching of the foregut and develops by stages into a highly complex organ, the proper function of which is essential to life for terrestrial mammals. Interruption of normal lung development can result in death or chronic disease. Conversely, repair after lung injury, as well as many acquired diseases, involves recapitulation, often aberrant, of developmental pathways. The principal paradigms in lung development are branching morphogenesis and alveolar septation, but others, such as vasculogenesis, are critical. These are partially understood at the level of cellular differentiation and molecular signaling, but a true systems biology analysis of lung development and lung repair/regeneration, including bioinformatics analysis and integration of data from unbiased and complementary '-omics' level studies, is still lacking. The past decade has seen increasing numbers of genomic, proteomic, metabolomics, and epigenomic studies of lung development and lung remodeling. In many cases, these studies have confirmed the importance of pathways uncovered painstakingly through single-molecule approaches, but they have also uncovered novel and unexpected pathways and new paradigms such as noncoding RNA. Future studies will need to combine data from multiple repositories and apply novel mathematical and computational models in order to establish a systems-level understanding of this remarkable organ.
Collapse
Affiliation(s)
- James S Hagood
- Division of Respiratory Medicine, Department of Pediatrics, University of California-San Diego and Rady Children's Hospital of San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
10
|
Lundin A, Driscoll B. Lung cancer stem cells: progress and prospects. Cancer Lett 2012; 338:89-93. [PMID: 22906416 DOI: 10.1016/j.canlet.2012.08.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 08/06/2012] [Accepted: 08/10/2012] [Indexed: 12/30/2022]
Abstract
Epithelial stem cells are critical for tissue generation during development and for repair following injury. In both gestational and postnatal stages, the highly branched and compartmentalized organization of the lung is maintained by multiple, resident stem/progenitor cell populations that are responsible for the homeostatic maintenance and injury repair of pulmonary epithelium. Though lung epithelial injury in the absence of oncogenic mutation is more commonly expressed as chronic lung disease, lung cancer is the most common form of death worldwide and poses a highly significant risk to human health. Cancer is defined by the cell of origin, responsible for initiating the disease. The Cancer Stem Cell Hypothesis proposes that cancer stem cells, identified by stem-like properties of self-renewal and generation of differentiated progeny, are responsible for propagating growth and spread of the disease. In lung cancer, it is hypothesized that cancer stem cells derive from several possible cell sources. The stem cell-like resistance to injury and proliferative potentials of bronchioalveolar stem cells (BASCs) and alveolar epithelial type II cells (AEC2), as well as cells that express the cancer stem cell marker glycoprotein prominin-1 (CD133) or markers for side populations make them potential reservoirs of lung cancer stem cells. The abnormal activation of pathways that normally regulate embryonic lung development, as well as adult tissue maintenance and injury repair, including the Wnt, Hedgehog (Hh) and Notch pathways, has also been identified in lung tumor cells. It is postulated that therapies for lung cancer that specifically target stem cell signaling pathways utilized by lung cancer stem cells could be beneficial in combating this disease.
Collapse
Affiliation(s)
- Amber Lundin
- Developmental Biology & Regenerative Medicine Program, Department of Surgery, Children's Hospital Los Angeles, , United States
| | | |
Collapse
|
11
|
Dong J, Carey WA, Abel S, Collura C, Jiang G, Tomaszek S, Sutor S, Roden AC, Asmann YW, Prakash YS, Wigle DA. MicroRNA-mRNA interactions in a murine model of hyperoxia-induced bronchopulmonary dysplasia. BMC Genomics 2012; 13:204. [PMID: 22646479 PMCID: PMC3410783 DOI: 10.1186/1471-2164-13-204] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 05/30/2012] [Indexed: 12/21/2022] Open
Abstract
Background Bronchopulmonary dysplasia is a chronic lung disease of premature neonates characterized by arrested pulmonary alveolar development. There is increasing evidence that microRNAs (miRNAs) regulate translation of messenger RNAs (mRNAs) during lung organogenesis. The potential role of miRNAs in the pathogenesis of BPD is unclear. Results Following exposure of neonatal mice to 80% O2 or room air (RA) for either 14 or 29 days, lungs of hyperoxic mice displayed histological changes consistent with BPD. Comprehensive miRNA and mRNA profiling was performed using lung tissue from both O2 and RA treated mice, identifying a number of dynamically regulated miRNAs and associated mRNA target genes. Gene ontology enrichment and pathway analysis revealed that hyperoxia modulated genes involved in a variety of lung developmental processes, including cell cycle, cell adhesion, mobility and taxis, inflammation, and angiogenesis. MiR-29 was prominently increased in the lungs of hyperoxic mice, and several predicted mRNA targets of miR-29 were validated with real-time PCR, western blotting and immunohistochemistry. Direct miR-29 targets were further validated in vitro using bronchoalveolar stem cells. Conclusion In newborn mice, prolonged hyperoxia induces an arrest of alveolar development similar to that seen in human neonates with BPD. This abnormal lung development is accompanied by significant increases in the levels of multiple miRNAs and corresponding decreases in the levels of predicted mRNA targets, many of which have known or suspected roles in pathways altered in BPD. These data support the hypothesis that dynamic regulation of miRNAs plays a prominent role in the pathophysiology of BPD.
Collapse
Affiliation(s)
- Jie Dong
- Division of General Thoracic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Background Bronchoalveolar stem cells (BASCs) located in the bronchoalveolar duct junction are thought to regenerate both bronchiolar and alveolar epithelium during homeostatic turnover and in response to injury. The mechanisms directing self-renewal in BASCs are poorly understood. Methods BASCs (Sca-1+, CD34+, CD31− and, CD45−) were isolated from adult mouse lung using FACS, and their capacity for self-renewal and differentiation were demonstrated by immunostaining. A transcription factor network of 53 genes required for pluripotency in embryonic stem cells was assessed in BASCs, Kras-initiated lung tumor tissue, and lung organogenesis by real-time PCR. c-Myc was knocked down in BASCs by infection with c-Myc shRNA lentivirus. Comprehensive miRNA and mRNA profiling for BASCs was performed, and significant miRNAs and mRNAs potentially regulated by c-Myc were identified. We explored a c-Myc regulatory network in BASCs using a number of statistical and computational approaches through two different strategies; 1) c-Myc/Max binding sites within individual gene promoters, and 2) miRNA-regulated target genes. Results c-Myc expression was upregulated in BASCs and downregulated over the time course of lung organogenesis in vivo. The depletion of c-Myc in BASCs resulted in decreased proliferation and cell death. Multiple mRNAs and miRNAs were dynamically regulated in c-Myc depleted BASCs. Among a total of 250 dynamically regulated genes in c-Myc depleted BASCs, 57 genes were identified as potential targets of miRNAs through miRBase and TargetScan-based computational mapping. A further 88 genes were identified as potential downstream targets through their c-Myc binding motif. Conclusion c-Myc plays a critical role in maintaining the self-renewal capacity of lung bronchoalveolar stem cells through a combination of miRNA and transcription factor regulatory networks.
Collapse
|
13
|
Bessarabova M, Pustovalova O, Shi W, Serebriyskaya T, Ishkin A, Polyak K, Velculescu VE, Nikolskaya T, Nikolsky Y. Functional synergies yet distinct modulators affected by genetic alterations in common human cancers. Cancer Res 2011; 71:3471-81. [PMID: 21398405 DOI: 10.1158/0008-5472.can-10-3038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An important general concern in cancer research is how diverse genetic alterations and regulatory pathways can produce common signaling outcomes. In this study, we report the construction of cancer models that combine unique regulation and common signaling. We compared and functionally analyzed sets of genetic alterations, including somatic sequence mutations and copy number changes, in breast, colon, and pancreatic cancer and glioblastoma that had been determined previously by global exon sequencing and SNP (single nucleotide polymorphism) array analyses in multiple patients. The genes affected by the different types of alterations were mostly unique in each cancer type, affected different pathways, and were connected with different transcription factors, ligands, and receptors. In our model, we show that distinct amplifications, deletions, and sequence alterations in each cancer resulted in common signaling pathways and transcription regulation. In functional clustering, the impact of the type of alteration was more pronounced than the impact of the kind of cancer. Several pathways such as TGF-β/SMAD signaling and PI3K (phosphoinositide 3-kinase) signaling were defined as synergistic (affected by different alterations in all four cancer types). Despite large differences at the genetic level, all data sets interacted with a common group of 65 "universal cancer genes" (UCG) comprising a concise network focused on proliferation/apoptosis balance and angiogenesis. Using unique nodal regulators ("overconnected" genes), UCGs, and synergistic pathways, the cancer models that we built could combine common signaling with unique regulation. Our findings provide a novel integrated perspective on the complex signaling and regulatory networks that underlie common human cancers.
Collapse
Affiliation(s)
- Marina Bessarabova
- Thomson Reuters, Healthcare & Life Science, St. Joseph, Michigan 49085, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
BACKGROUND MicroRNAs (miRNAs) are known to be important regulators of both organ development and tumorigenesis. MiRNA networks and their regulation of messenger RNA (mRNA) translation and protein expression in specific biological processes are poorly understood. METHODS We explored the dynamic regulation of miRNAs in mouse lung organogenesis. Comprehensive miRNA and mRNA profiling was performed encompassing all recognized stages of lung development beginning at embryonic day 12 and continuing to adulthood. We analyzed the expression patterns of dynamically regulated miRNAs and mRNAs using a number of statistical and computational approaches, and in an integrated manner with protein levels from an existing mass-spectrometry derived protein database for lung development. RESULTS In total, 117 statistically significant miRNAs were dynamically regulated during mouse lung organogenesis and clustered into distinct temporal expression patterns. 11,220 mRNA probes were also shown to be dynamically regulated and clustered into distinct temporal expression patterns, with 3 major patterns accounting for 75% of all probes. 3,067 direct miRNA-mRNA correlation pairs were identified involving 37 miRNAs. Two defined correlation patterns were observed upon integration with protein data: 1) increased levels of specific miRNAs directly correlating with downregulation of predicted mRNA targets; and 2) increased levels of specific miRNAs directly correlating with downregulation of translated target proteins without detectable changes in mRNA levels. Of 1345 proteins analyzed, 55% appeared to be regulated in this manner with a direct correlation between miRNA and protein level, but without detectable change in mRNA levels. CONCLUSION Systematic analysis of microRNA, mRNA, and protein levels over the time course of lung organogenesis demonstrates dynamic regulation and reveals 2 distinct patterns of miRNA-mRNA interaction. The translation of target proteins affected by miRNAs independent of changes in mRNA level appears to be a prominent mechanism of developmental regulation in lung organogenesis.
Collapse
|