1
|
Wu Y, Gao S, Liu G, Wang M, Tan R, Huang B, Tan W. Development of viral infectious clones and their applications based on yeast and bacterial artificial chromosome platforms. MOLECULAR BIOMEDICINE 2025; 6:26. [PMID: 40295404 PMCID: PMC12037452 DOI: 10.1186/s43556-025-00266-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/26/2025] [Accepted: 04/06/2025] [Indexed: 04/30/2025] Open
Abstract
Infectious Clones represent a foundational technique in the field of reverse genetics, allowing for the construction and manipulation of full-length viral genomes. The main methods currently used for constructing viral infectious clones include Transformation-associated recombination (TAR), which is based on Yeast Artificial Chromosome (YAC) and Bacterial Artificial Chromosome (BAC). The YAC and BAC systems are powerful tools that enable the clones and manipulation of large DNA fragments, making them well-suited for the construction of full-length viral genomes. These methods have been successfully applied to construct infectious clones for a wide range of viruses, including coronaviruses, herpesviruses, flaviviruses and baculoviruses. The rescued recombinant viruses from these infectious clones have been widely used in various research areas, such as vaccine development, antiviral drug screening, pathogenesis and virulence studies, gene therapy and vector design. However, as different viruses possess unique biological characteristics, the challenge remains in how to rapidly obtain infectious clones for future research. In summary, this review introduced the development and applications of infectious clones, with a focus on the YAC, BAC and combined YAC-BAC technologies. We emphasize the importance of these platforms in various research areas and aim to provide deeper insights that can advance the platform and broaden its application horizons.
Collapse
Affiliation(s)
- Yiyi Wu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing, 102206, China
| | - Shangqing Gao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing, 102206, China
| | - Guanya Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing, 102206, China
- School of Public Health, Baotou Medical College, Baotou City, Inner Mongolia Autonomous Region, 014040, China
| | - Mengwei Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing, 102206, China
| | - Ruixiao Tan
- College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| | - Baoying Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing, 102206, China.
| | - Wenjie Tan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing, 102206, China.
- School of Public Health, Baotou Medical College, Baotou City, Inner Mongolia Autonomous Region, 014040, China.
| |
Collapse
|
2
|
Wang HM, Qiao YY, Cai BY, Tan J, Na L, Wang Y, Lu H, Tang YD. Genome editing of pseudorabies virus in the CRISPR/Cas9 era: a mini-review. Front Vet Sci 2023; 10:1237186. [PMID: 37476821 PMCID: PMC10354360 DOI: 10.3389/fvets.2023.1237186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023] Open
Abstract
Pseudorabies virus (PRV) is an important swine virus that has a significant impact on the global swine industry. PRV is a member of the herpesvirus family, specifically the alphaherpesvirus subfamily, and has been extensively utilized as a prototype herpesvirus. Notably, recent studies have reported that PRV sporadically spills over into humans. The PRV genome is approximately 150 kb in size and is difficult to manipulate at the genomic level. The development of clustered regularly interspaced short palindromic repeat-associated protein (CRISPR/Cas9) technology has revolutionized PRV genome editing. CRISPR/Cas9 has been widely used in the construction of reporter viruses, knock-out/knock-in of genes of interest, single virus tracking and antiviral strategies. Most importantly, for vaccine development, virulence gene knockout PRV vaccine candidates can be obtained within 2 weeks using CRISPR/Cas9. In this mini-review, we provide a concise overview of the application of CRISPR/Cas9 in PRV research and mainly share our experience with methods for efficiently editing the PRV genome. Through this review, we hope to give researchers better insight into the genome editing of pseudorabies virus.
Collapse
Affiliation(s)
- Hai-Ming Wang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Yang-Yang Qiao
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Bing-Yan Cai
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Ju Tan
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Lei Na
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
- Jiangsu Vocational College Agriculture and Forestry, Taizhou, Jiangsu, China
| | - Yu Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hui Lu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Yan-Dong Tang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Research Center for Veterinary Biomedicine, Harbin, China
| |
Collapse
|
3
|
Feng X, Zhang X, Jiang S, Tang Y, Cheng C, Krishna PA, Wang X, Dai J, Zhao D, Xia T, Zeng J. A DNA-based non-infectious replicon system to study SARS-CoV-2 RNA synthesis. Comput Struct Biotechnol J 2022; 20:5193-5202. [PMID: 36059866 PMCID: PMC9424123 DOI: 10.1016/j.csbj.2022.08.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/02/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022] Open
Abstract
The coronavirus disease-2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has seriously affected public health around the world. In-depth studies on the pathogenic mechanisms of SARS-CoV-2 is urgently necessary for pandemic prevention. However, most laboratory studies on SARS-CoV-2 have to be carried out in bio-safety level 3 (BSL-3) laboratories, greatly restricting the progress of relevant experiments. In this study, we used a bacterial artificial chromosome (BAC) method to assemble a SARS-CoV-2 replication and transcription system in Vero E6 cells without virion envelope formation, thus avoiding the risk of coronavirus exposure. Furthermore, an improved real-time quantitative reverse transcription PCR (RT-qPCR) approach was used to distinguish the replication of full-length replicon RNAs and transcription of subgenomic RNAs (sgRNAs). Using the SARS-CoV-2 replicon, we demonstrated that the nucleocapsid (N) protein of SARS-CoV-2 facilitates the transcription of sgRNAs in the discontinuous synthesis process. Moreover, two high-frequency mutants of N protein, R203K and S194L, can obviously enhance the transcription level of the replicon, hinting that these mutations likely allow SARS-CoV-2 to spread and reproduce more quickly. In addition, remdesivir and chloroquine, two well-known drugs demonstrated to be effective against coronavirus in previous studies, also inhibited the transcription of our replicon, indicating the potential applications of this system in antiviral drug discovery. Overall, we developed a bio-safe and valuable replicon system of SARS-CoV-2 that is useful to study the mechanisms of viral RNA synthesis and has potential in novel antiviral drug screening.
Collapse
|
4
|
Comprehensive identification of protein orthologs in the family Ascoviridae facilitates an understanding of phylogenomics, protein conservation, and phosphorylation. Arch Virol 2022; 167:1075-1087. [PMID: 35246734 DOI: 10.1007/s00705-022-05402-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/18/2022] [Indexed: 11/02/2022]
Abstract
Analysis of orthology is important for understanding protein conservation, function, and phylogenomics. In this study, we performed a comprehensive analysis of gene orthology in the family Ascoviridae based on identification of 366 protein homologue groups and phylogenetic analysis of 34 non-single-copy proteins. Our findings revealed 90 newly annotated proteins, five newly identified core proteins for the family Ascoviridae, and 14 core proteins for the genus Ascovirus. A phylogenomic tree of 11 Ascoviridae members was constructed based on a concatenation of 35 of the 45 ortholog groups. In combination with phosphoproteomic results and conservation estimations, 30 conserved phosphorylation sites on 17 phosphoproteins were identified from a total of 176 phosphosites on 57 phosphoproteins from Heliothis virescens ascovirus 3h (HvAV-3h), providing potential research targets for investigating the role of these protein in the regulation of viral infection. This study will facilitate genome annotation and comparison of further Ascoviridae members as well as functional genomic investigations.
Collapse
|
5
|
Quentin-Froignant C, Kappler-Gratias S, Top S, Bertagnoli S, Gallardo F. ANCHOR-tagged equine herpesvirus 1: A new tool for monitoring viral infection and discovering new antiviral compounds. J Virol Methods 2021; 294:114194. [PMID: 34022301 DOI: 10.1016/j.jviromet.2021.114194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 12/26/2022]
Abstract
Equine herpesvirus 1 (EHV-1) is a causative agent of respiratory disorders, abortion and myeloencephalopathy in horses and has an important impact on equine health and economy. Several bacterial artificial chromosomes have already been developed and enabled identification and functional characterization of EHV-1 genes. Unfortunately, little is known about its replication. Here, the ANCHOR system was inserted by targeted homologous recombination into the equine herpesvirus genome. This insertion led to the conversion of EHV-1 DNA to auto-fluorescent spots easily detectable by fluorescence microscopy, and enabled production of an auto-fluorescent EHV-1 ANCHORGFP with tropism and replication kinetic like the parental strain. High resolution imaging allowed first visualization of EHV-1 replication from apparition of first viral genome to large replicative centers, in single cells or inside syncytia. Combined with high content microscopy, EHV-1 ANCHORGFP leads to identification of auranofin and azacytidine-5 as new potential antivirals to treat EHV-1 infection.
Collapse
Affiliation(s)
- Charlotte Quentin-Froignant
- NeoVirTech SAS, Centre Pierre Potier, Toulouse, France; IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France.
| | | | - Sokunthea Top
- NeoVirTech SAS, Centre Pierre Potier, Toulouse, France.
| | | | | |
Collapse
|
6
|
Mutagenesis and Genome Engineering of Epstein-Barr Virus in Cultured Human Cells by CRISPR/Cas9. Methods Mol Biol 2017; 1498:23-31. [PMID: 27709566 DOI: 10.1007/978-1-4939-6472-7_2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 nuclease (Cas9) system is a powerful genome-editing tool for both chromosomal and extrachromosomal DNA. DNA viruses such as Epstein-Barr virus (EBV), which undergoes episomal replication in human cells, can be effectively edited by CRISPR/Cas9. We have demonstrated targeted editing of the EBV genome by CRISPR/Cas9 in several lines of EBV-infected cells. CRISPR/Cas9-based mutagenesis and genome engineering of EBV provides a new method for genetic analysis, which has some advantages over bacterial artificial chromosome-based recombineering. This approach might also prove useful in the cure of EBV infection. In this chapter, we use the knockout of the BART promoter as an example to detail the experimental procedures for construction of recombinant EBV in human cells.
Collapse
|
7
|
Imajoh M, Fujioka H, Furusawa K, Tamura K, Yamasaki K, Kurihara S, Yamane J, Kawai K, Oshima S. Establishment of a new cell line susceptible to Cyprinid herpesvirus 3 (CyHV-3) and possible latency of CyHV-3 by temperature shift in the cells. JOURNAL OF FISH DISEASES 2015; 38:507-514. [PMID: 24820532 DOI: 10.1111/jfd.12252] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/24/2014] [Accepted: 03/24/2014] [Indexed: 06/03/2023]
Abstract
A new cell line named CCF-K104 predominantly consisting of fibroblastic cells showed optimal growth at temperatures from 25 °C to 30 °C. Serial morphological changes in the cells induced by Cyprinid herpesvirus 3 (CyHV-3) included cytoplasmic vacuolar formation, cell rounding and detachment. Mature virions were purified from CyHV-3-infected CCF-K104 cells by sucrose gradient ultracentrifugation and had a typical herpesvirus structure on electron microscopy. Infectious CyHV-3 was produced stably in CCF-K104 cells over 30 viral passages. Our findings showed that CCF-K104 is a useful cell line for isolation and productive replication of CyHV-3. A temperature shift from 25 °C to 15 °C or 35 °C did not allow serial morphological changes as observed at 25 °C for 14 days. Under the same conditions, real-time PCR showed that CyHV-3 was present with low viral DNA loads, suggesting that CyHV-3 may establish latent infection in CCF-K104 cells. Amplification of the left and right terminal repeat sequences of the CyHV-3 genome arranged in a head-to-tail manner was detected by nested PCR following an upshift in temperature from 25 °C to 35 °C. The PCR results suggested that the circular genome may represent a latent form of CyHV-3.
Collapse
Affiliation(s)
- M Imajoh
- Laboratory of Fish Disease, Faculty of Agriculture, Kochi University, Nankoku, Kochi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Fujioka H, Yamasaki K, Furusawa K, Tamura K, Oguro K, Kurihara S, Seki S, Oshima SI, Imajoh M. Prevalence and characteristics of Cyprinid herpesvirus 3 (CyHV-3) infection in common carp (Cyprinus carpio L.) inhabiting three rivers in Kochi Prefecture, Japan. Vet Microbiol 2014; 175:362-8. [PMID: 25554244 DOI: 10.1016/j.vetmic.2014.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/28/2014] [Accepted: 12/02/2014] [Indexed: 12/11/2022]
Abstract
Cyprinid herpesvirus 3 (CyHV-3) causes lethal disease in common and koi carp. Mortality by CyHV-3 disease has not been reported since 2011 in Kochi Prefecture, Japan. Here, we detected and quantified CyHV-3 in common carp inhabiting three rivers in the prefecture to examine if the carp are carriers of CyHV-3 as a source of infection. CyHV-3 DNA was detected in 16.7% (12/72) of brain samples in Kagami River, 3.9% (3/76) of brain and 3.9% (3/76) of gill samples in Monobe River, and 5.1% (4/79) of brain and 1.3% (1/79) of gill samples in Wajiki River. CyHV-3 genotypes identified in the 23 samples were classified as the J genotype A1 that has been found in Japan. The CyHV-3 DNA load did not differ statistically between sampling months, indicating that CyHV-3 has been silent in common carp, unlike Lake Biwa where the annual reactivation occurs in spring. Taken together, our results represented definitive evidence that seasonal changes in water temperature do not affect CyHV-3 activity in carp. Considering that infectious virus was not isolated from CyHV-3 DNA-positive samples, it was suggested that CyHV-3 establishes a latent infection in carp populations inhabiting Kagami River, Monobe River and Wajiki River. Further, the presence of circular or concatameric CyHV-3 DNA was detected in five of 23 CyHV-3 DNA-positive samples. Common carp inhabiting Lake Biwa were reported previously to harbor linear but not circular CyHV-3 DNA. This difference suggested that the CyHV-3 genome may be circularized for long-term maintenance without active viral replication.
Collapse
Affiliation(s)
- Hiroya Fujioka
- Graduate School of Kuroshio Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kenichi Yamasaki
- Fish Disease Laboratory, Department of Aquaculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Keiki Furusawa
- Fish Disease Laboratory, Department of Aquaculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kazuki Tamura
- Fish Disease Laboratory, Department of Aquaculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kazuki Oguro
- Fish Disease Laboratory, Department of Aquaculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Sumire Kurihara
- Fish Disease Laboratory, Department of Aquaculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Shingo Seki
- Fish Ecology Laboratory, Department of Aquaculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Syun-ichirou Oshima
- Graduate School of Kuroshio Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Masayuki Imajoh
- Fish Disease Laboratory, Department of Aquaculture, Kochi University, Nankoku, Kochi 783-8502, Japan.
| |
Collapse
|
9
|
Hall RN, Meers J, Mitter N, Fowler EV, Mahony TJ. The Meleagrid herpesvirus 1 genome is partially resistant to transposition. Avian Dis 2013; 57:380-6. [PMID: 23901750 DOI: 10.1637/10339-082912-reg.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The propagation of herpesvirus genomes as infectious bacterial artificial chromosomes (iBAC) has enabled the application of highly efficient strategies to investigate gene function across the genome. One of these strategies, transposition, has been used successfully on a number of herpesvirus iBACs to generate libraries of gene disruption mutants. Gene deletion studies aimed at determining the dispensable gene repertoire of the Meleagrid herpesvirus 1 (MeHV-1) genome to enhance the utility of this virus as a vaccine vector have been conducted in this report. A MeHV-1 iBAC was used in combination with the Tn5 and MuA transposition systems in an attempt to generate MeHV-1 gene interruption libraries. However, these studies demonstrated that Tn5 transposition events into the MeHV-1 genome occurred at unexpectedly low frequencies. Furthermore, characterization of genomic locations of the rare Tn5 transposon insertion events indicated a nonrandom distribution within the viral genome, with seven of the 24 insertions occurring within the gene encoding infected cell protein 4. Although insertion events with the MuA system occurred at higher frequency compared with the Tn5 system, fewer insertion events were generated than has previously been reported with this system. The characterization and distribution of these MeHV-1 iBAC transposed mutants is discussed at both the nucleotide and genomic level, and the properties of the MeHV-1 genome that could influence transposition frequency are discussed.
Collapse
Affiliation(s)
- Robyn N Hall
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | | | | | | | | |
Collapse
|