1
|
Xia WL, Zheng Z, Chen FM. The Kelch Repeat Protein VdKeR1 Is Essential for Development, Ergosterol Metabolism, and Virulence in Verticillium dahliae. J Fungi (Basel) 2024; 10:643. [PMID: 39330403 PMCID: PMC11433423 DOI: 10.3390/jof10090643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/25/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
Verticillium dahliae is a soil-borne fungal pathogen that can cause severe vascular wilt in many plant species. Kelch repeat proteins are essential for fungal growth, resistance, and virulence. However, the function of the Kelch repeat protein family in V. dahliae is unclear. In this study, a Kelch repeat domain-containing protein DK185_4252 (VdLs.17 VDAG_08647) included in the conserved VdPKS9 gene cluster was identified and named VdKeR1. Phylogenetic analysis demonstrated a high degree of evolutionary conservation of VdKeR1 and its homologs among fungi. The experimental results showed that the absence of VdKeR1 impaired vegetative growth, microsclerotia development, and pathogenicity of V. dahliae. Osmotic and cell wall stress analyses suggested that VdKeR1-deleted mutants were more tolerant to NaCl, sorbitol, CR, and CFW, while more sensitive to H2O2 and SDS. In addition, analyses of the relative expression level of sqe and the content of squalene and ergosterol showed that VdKeR1 mediates the synthesis of squalene and ergosterol by positively regulating the activity of squalene epoxidase. In conclusion, these results indicated that VdKeR1 was involved in the growth, stress resistance, pathogenicity, and ergosterol metabolism of V. dahliae. Investigating VdKeR1 provided theoretical and experimental foundations for subsequent control of Verticillium wilt.
Collapse
Affiliation(s)
- Wen-Li Xia
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Zhe Zheng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Feng-Mao Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Soares Rodrigues CI, den Ridder M, Pabst M, Gombert AK, Wahl SA. Comparative proteome analysis of different Saccharomyces cerevisiae strains during growth on sucrose and glucose. Sci Rep 2023; 13:2126. [PMID: 36746999 PMCID: PMC9902475 DOI: 10.1038/s41598-023-29172-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Both the identity and the amount of a carbon source present in laboratory or industrial cultivation media have major impacts on the growth and physiology of a microbial species. In the case of the yeast Saccharomyces cerevisiae, sucrose is arguably the most important sugar used in industrial biotechnology, whereas glucose is the most common carbon and energy source used in research, with many well-known and described regulatory effects, e.g. glucose repression. Here we compared the label-free proteomes of exponentially growing S. cerevisiae cells in a defined medium containing either sucrose or glucose as the sole carbon source. For this purpose, bioreactor cultivations were employed, and three different strains were investigated, namely: CEN.PK113-7D (a common laboratory strain), UFMG-CM-Y259 (a wild isolate), and JP1 (an industrial bioethanol strain). These strains present different physiologies during growth on sucrose; some of them reach higher specific growth rates on this carbon source, when compared to growth on glucose, whereas others display the opposite behavior. It was not possible to identify proteins that commonly presented either higher or lower levels during growth on sucrose, when compared to growth on glucose, considering the three strains investigated here, except for one protein, named Mnp1-a mitochondrial ribosomal protein of the large subunit, which had higher levels on sucrose than on glucose, for all three strains. Interestingly, following a Gene Ontology overrepresentation and KEGG pathway enrichment analyses, an inverse pattern of enriched biological functions and pathways was observed for the strains CEN.PK113-7D and UFMG-CM-Y259, which is in line with the fact that whereas the CEN.PK113-7D strain grows faster on glucose than on sucrose, the opposite is observed for the UFMG-CM-Y259 strain.
Collapse
Affiliation(s)
- Carla Inês Soares Rodrigues
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands.,School of Food Engineering, University of Campinas, Rua Monteiro Lobato 80, Campinas, SP, 13083-862, Brazil.,Cargill R&D Centre Europe, Havenstraat 84, 1800, Vilvoorde, Belgium.,DAB.bio, Alexander Fleminglaan 1, 2613 AX, Delft, The Netherlands
| | - Maxime den Ridder
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Andreas K Gombert
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato 80, Campinas, SP, 13083-862, Brazil
| | - Sebastian Aljoscha Wahl
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands. .,Lehrstuhl für Bioverfahrenstechnik, Friedrich-Alexander Universität Erlangen-Nürnberg, Paul-Gordan-Str. 3-5, 91052, Erlangen, Germany.
| |
Collapse
|
3
|
Peterson PP, Liu Z. Identification and Characterization of Rapidly Accumulating sch9Δ Suppressor Mutations in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2021; 11:6254187. [PMID: 33901283 DOI: 10.1093/g3journal/jkab134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/14/2021] [Indexed: 01/30/2023]
Abstract
Nutrient sensing is important for cell growth, aging, and longevity. In Saccharomyces cerevisiae, Sch9, an AGC-family protein kinase, is a major nutrient sensing kinase homologous to mammalian Akt and S6 kinase. Sch9 integrates environmental cues with cell growth by functioning downstream of TORC1 and in parallel with the Ras/PKA pathway. Mutations in SCH9 lead to reduced cell growth in dextrose medium; however, reports on the ability of sch9Δ mutants to utilize non-fermentable carbon sources are inconsistent. Here we show that sch9Δ mutant strains cannot grow on non-fermentable carbon sources and rapidly accumulate suppressor mutations, which reverse growth defects of sch9Δ mutants. sch9Δ induces gene expression of three transcription factors required for utilization of non-fermentable carbon sources, Cat8, Adr1, and Hap4, while sch9Δ suppressor mutations, termed sns1 and sns2, strongly decrease the gene expression of those transcription factors. Despite the genetic suppression interactions, both sch9Δ and sns1 (or sns2) homozygous mutants have severe defects in meiosis. By screening mutants defective in sporulation, we identified additional sch9Δ suppressor mutants with mutations in GPB1, GPB2, and MCK1. Using library complementation and genetic analysis, we identified SNS1 and SNS2 to be IRA2 and IRA1, respectively. Furthermore, we discovered that lifespan extension in sch9Δ mutants is dependent on IRA2 and that PKA inactivation greatly increases basal expression of CAT8, ADR1, and HAP4. Our results demonstrate that sch9Δ leads to complete loss of growth on non-fermentable carbon sources and mutations in MCK1 or genes encoding negative regulators of the Ras/PKA pathway reverse sch9Δ mutant phenotypes.
Collapse
Affiliation(s)
- Patricia P Peterson
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Zhengchang Liu
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
4
|
Caza M, Kronstad JW. The cAMP/Protein Kinase a Pathway Regulates Virulence and Adaptation to Host Conditions in Cryptococcus neoformans. Front Cell Infect Microbiol 2019; 9:212. [PMID: 31275865 PMCID: PMC6592070 DOI: 10.3389/fcimb.2019.00212] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/31/2019] [Indexed: 12/28/2022] Open
Abstract
Nutrient sensing is critical for adaptation of fungi to environmental and host conditions. The conserved cAMP/PKA signaling pathway contributes to adaptation by sensing the availability of key nutrients such as glucose and directing changes in gene expression and metabolism. Interestingly, the cAMP/PKA pathway in fungal pathogens also influences the expression of virulence determinants in response to nutritional and host signals. For instance, protein kinase A (PKA) in the human pathogen Cryptococcus neoformans plays a central role in orchestrating phenotypic changes, such as capsule elaboration and melanin production, that directly impact disease development. In this review, we focus first on insights into the role of the cAMP/PKA pathway in nutrient sensing for the model yeast Saccharomyces cerevisiae to provide a foundation for understanding the pathway in C. neoformans. We then discuss key features of cAMP/PKA signaling in C. neoformans including new insights emerging from the analysis of transcriptional and proteomic changes in strains with altered PKA activity and expression. Finally, we highlight recent studies that connect the cAMP/PKA pathway to cell surface remodeling and the formation of titan cells.
Collapse
Affiliation(s)
- Mélissa Caza
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - James W Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Steyfkens F, Zhang Z, Van Zeebroeck G, Thevelein JM. Multiple Transceptors for Macro- and Micro-Nutrients Control Diverse Cellular Properties Through the PKA Pathway in Yeast: A Paradigm for the Rapidly Expanding World of Eukaryotic Nutrient Transceptors Up to Those in Human Cells. Front Pharmacol 2018; 9:191. [PMID: 29662449 PMCID: PMC5890159 DOI: 10.3389/fphar.2018.00191] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/20/2018] [Indexed: 12/17/2022] Open
Abstract
The nutrient composition of the medium has dramatic effects on many cellular properties in the yeast Saccharomyces cerevisiae. In addition to the well-known specific responses to starvation for an essential nutrient, like nitrogen or phosphate, the presence of fermentable sugar or a respirative carbon source leads to predominance of fermentation or respiration, respectively. Fermenting and respiring cells also show strong differences in other properties, like storage carbohydrate levels, general stress tolerance and cellular growth rate. However, the main glucose repression pathway, which controls the switch between respiration and fermentation, is not involved in control of these properties. They are controlled by the protein kinase A (PKA) pathway. Addition of glucose to respiring yeast cells triggers cAMP synthesis, activation of PKA and rapid modification of its targets, like storage carbohydrate levels, general stress tolerance and growth rate. However, starvation of fermenting cells in a glucose medium for any essential macro- or micro-nutrient counteracts this effect, leading to downregulation of PKA and its targets concomitant with growth arrest and entrance into G0. Re-addition of the lacking nutrient triggers rapid activation of the PKA pathway, without involvement of cAMP as second messenger. Investigation of the sensing mechanism has revealed that the specific high-affinity nutrient transporter(s) induced during starvation function as transporter-receptors or transceptors for rapid activation of PKA upon re-addition of the missing substrate. In this way, transceptors have been identified for amino acids, ammonium, phosphate, sulfate, iron, and zinc. We propose a hypothesis for regulation of PKA activity by nutrient transceptors to serve as a conceptual framework for future experimentation. Many properties of transceptors appear to be similar to those of classical receptors and nutrient transceptors may constitute intermediate forms in the development of receptors from nutrient transporters during evolution. The nutrient-sensing transceptor system in yeast for activation of the PKA pathway has served as a paradigm for similar studies on candidate nutrient transceptors in other eukaryotes and we succinctly discuss the many examples of transceptors that have already been documented in other yeast species, filamentous fungi, plants, and animals, including the examples in human cells.
Collapse
Affiliation(s)
- Fenella Steyfkens
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium.,Center for Microbiology, VIB, Flanders, Belgium
| | - Zhiqiang Zhang
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium.,Center for Microbiology, VIB, Flanders, Belgium
| | - Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium.,Center for Microbiology, VIB, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium.,Center for Microbiology, VIB, Flanders, Belgium
| |
Collapse
|
6
|
Shwab EK, Juvvadi PR, Waitt G, Soderblom EJ, Moseley MA, Nicely NI, Steinbach WJ. Phosphorylation of Aspergillus fumigatus PkaR impacts growth and cell wall integrity through novel mechanisms. FEBS Lett 2017; 591:3730-3744. [PMID: 29067690 PMCID: PMC5705279 DOI: 10.1002/1873-3468.12886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/06/2017] [Accepted: 10/11/2017] [Indexed: 11/06/2022]
Abstract
Protein kinase A (PKA) signaling is essential for growth and virulence of the fungal pathogen Aspergillus fumigatus. Little is known concerning the regulation of this pathway in filamentous fungi. Employing liquid chromatography-tandem mass spectroscopy, we identified novel phosphorylation sites on the regulatory subunit PkaR, distinct from those previously identified in mammals and yeasts, and demonstrated the importance of two phosphorylation clusters for hyphal growth and cell wall-stress response. We also identified key differences in the regulation of PKA subcellular localization in A. fumigatus compared with other species. This is the first analysis of the phosphoregulation of a PKA regulatory subunit in a filamentous fungus and uncovers critical mechanistic differences between PKA regulation in filamentous fungi compared with mammals and yeast species, suggesting divergent targeting opportunities.
Collapse
Affiliation(s)
- E. Keats Shwab
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham NC, USA
| | - Praveen R. Juvvadi
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham NC, USA
| | - Greg Waitt
- Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University, Durham NC, USA
| | - Erik J. Soderblom
- Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University, Durham NC, USA
| | - M. Arthur Moseley
- Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University, Durham NC, USA
| | - Nathan I. Nicely
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - William J. Steinbach
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham NC, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham NC, USA
| |
Collapse
|
7
|
KRH1 and KRH2 are functionally non-redundant in signaling for pseudohyphal differentiation in Saccharomyces cerevisiae. Curr Genet 2017; 63:851-859. [PMID: 28247024 DOI: 10.1007/s00294-017-0684-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/31/2017] [Accepted: 02/11/2017] [Indexed: 10/20/2022]
Abstract
Diploid cells of Saccharomyces cerevisiae undergo pseudohyphal differentiation in response to nutrient depletion. Although this dimorphic transition occurs due to signals originating from carbon and nitrogen limitation, how these signals are coordinated and integrated is not understood. Results of this study indicate that the pseudohyphal defect of the mep2∆ mutant is overcome upon disruption of KRH2/GPB1 but not KRH1/GPB2. Further, the agar invasion defect observed in a mep2 mutant strain is suppressed only by deleting KRH2 and not KRH1. Thus, the results presented indicate that MEP2 functions by inhibiting KRH2 to trigger filamentation response when glucose becomes limiting. Biochemical data and phenotypic response to glucose replenishment reveal that KRH1 and KRH2 are differentially regulated by glucose and ammonium to induce pseudohyphae formation via the cAMP-PKA pathway. In contrast to the current view, this study clearly demonstrates that, KRH1 and KRH2 are not functionally redundant.
Collapse
|
8
|
Van Dijck P, Brown NA, Goldman GH, Rutherford J, Xue C, Van Zeebroeck G. Nutrient Sensing at the Plasma Membrane of Fungal Cells. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0031-2016. [PMID: 28256189 PMCID: PMC11687466 DOI: 10.1128/microbiolspec.funk-0031-2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Indexed: 12/25/2022] Open
Abstract
To respond to the changing environment, cells must be able to sense external conditions. This is important for many processes including growth, mating, the expression of virulence factors, and several other regulatory effects. Nutrient sensing at the plasma membrane is mediated by different classes of membrane proteins that activate downstream signaling pathways: nontransporting receptors, transceptors, classical and nonclassical G-protein-coupled receptors, and the newly defined extracellular mucin receptors. Nontransporting receptors have the same structure as transport proteins, but have lost the capacity to transport while gaining a receptor function. Transceptors are transporters that also function as a receptor, because they can rapidly activate downstream signaling pathways. In this review, we focus on these four types of fungal membrane proteins. We mainly discuss the sensing mechanisms relating to sugars, ammonium, and amino acids. Mechanisms for other nutrients, such as phosphate and sulfate, are discussed briefly. Because the model yeast Saccharomyces cerevisiae has been the most studied, especially regarding these nutrient-sensing systems, each subsection will commence with what is known in this species.
Collapse
Affiliation(s)
- Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology KU Leuven, Flanders, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven, Belgium
| | - Neil Andrew Brown
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, AL5 2JQ, United Kingdom
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Julian Rutherford
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Chaoyang Xue
- Public Health Research Institute, Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, Newark, NJ 07103
| | - Griet Van Zeebroeck
- VIB-KU Leuven Center for Microbiology KU Leuven, Flanders, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven, Belgium
| |
Collapse
|
9
|
Sundaram V, Petkova MI, Pujol-Carrion N, Boada J, de la Torre-Ruiz MA. Tor1, Sch9 and PKA downregulation in quiescence rely on Mtl1 to preserve mitochondrial integrity and cell survival. Mol Microbiol 2015; 97:93-109. [DOI: 10.1111/mmi.13013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Venkatraghavan Sundaram
- Department of Basic Medical Sciences; IRB-Lleida; University of Lleida; Av. Alcalde Rovira Roure n° 80 25198 Lleida Spain
| | - Mima I. Petkova
- Department of Basic Medical Sciences; IRB-Lleida; University of Lleida; Av. Alcalde Rovira Roure n° 80 25198 Lleida Spain
| | - Nuria Pujol-Carrion
- Department of Basic Medical Sciences; IRB-Lleida; University of Lleida; Av. Alcalde Rovira Roure n° 80 25198 Lleida Spain
| | - Jordi Boada
- Department of Experimental Medicine; IRB-Lleida; University of Lleida; Av. Alcalde Rovira Roure n° 80 25198 Lleida Spain
| | - Maria Angeles de la Torre-Ruiz
- Department of Basic Medical Sciences; IRB-Lleida; University of Lleida; Av. Alcalde Rovira Roure n° 80 25198 Lleida Spain
| |
Collapse
|
10
|
Regulation of PKA activity by an autophosphorylation mechanism in Saccharomyces cerevisiae. Biochem J 2014; 462:567-79. [DOI: 10.1042/bj20140577] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Post-translational modifications can modulate kinase protein activity. We show that autophosphorylation of catalytic subunit of PKA Tpk1 upon glucose stimulus increases its catalytic efficiency. Our findings describe a new control layer on PKA activity in response to nutrient availability.
Collapse
|
11
|
Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, Thevelein JM. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 2014; 38:254-99. [PMID: 24483210 PMCID: PMC4238866 DOI: 10.1111/1574-6976.12065] [Citation(s) in RCA: 453] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/23/2013] [Accepted: 01/22/2014] [Indexed: 02/04/2023] Open
Abstract
The yeast Saccharomyces cerevisiae has been a favorite organism for pioneering studies on nutrient-sensing and signaling mechanisms. Many specific nutrient responses have been elucidated in great detail. This has led to important new concepts and insight into nutrient-controlled cellular regulation. Major highlights include the central role of the Snf1 protein kinase in the glucose repression pathway, galactose induction, the discovery of a G-protein-coupled receptor system, and role of Ras in glucose-induced cAMP signaling, the role of the protein synthesis initiation machinery in general control of nitrogen metabolism, the cyclin-controlled protein kinase Pho85 in phosphate regulation, nitrogen catabolite repression and the nitrogen-sensing target of rapamycin pathway, and the discovery of transporter-like proteins acting as nutrient sensors. In addition, a number of cellular targets, like carbohydrate stores, stress tolerance, and ribosomal gene expression, are controlled by the presence of multiple nutrients. The protein kinase A signaling pathway plays a major role in this general nutrient response. It has led to the discovery of nutrient transceptors (transporter receptors) as nutrient sensors. Major shortcomings in our knowledge are the relationship between rapid and steady-state nutrient signaling, the role of metabolic intermediates in intracellular nutrient sensing, and the identity of the nutrient sensors controlling cellular growth.
Collapse
Affiliation(s)
- Michaela Conrad
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Joep Schothorst
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Harish Nag Kankipati
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Marta Rubio-Texeira
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| |
Collapse
|
12
|
Philip N, Vaikkinen HJ, Tetley L, Waters AP. A unique Kelch domain phosphatase in Plasmodium regulates ookinete morphology, motility and invasion. PLoS One 2012; 7:e44617. [PMID: 22957089 PMCID: PMC3434153 DOI: 10.1371/journal.pone.0044617] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/06/2012] [Indexed: 12/22/2022] Open
Abstract
Signalling through post-translational modification (PTM) of proteins is a process central to cell homeostasis, development and responses to external stimuli. The best characterised PTM is protein phosphorylation which is reversibly catalysed at specific residues through the action of protein kinases (addition) and phosphatases (removal). Here, we report characterisation of an orphan protein phosphatase that possesses a domain architecture previously only described in Plantae. Through gene disruption and the production of active site mutants, the enzymatically active Protein Phosphatase containing Kelch-Like domains (PPKL, PBANKA_132950) is shown to play an essential role in the development of an infectious ookinete. PPKL is produced in schizonts and female gametocytes, is maternally inherited where its absence leads to the development of a malformed, immotile, non-infectious ookinete with an extended apical protrusion. The distribution of PPKL includes focussed localization at the ookinete apical tip implying a link between its activity and the correct deployment of the apical complex and microtubule cytoskeleton. Unlike wild type parasites, ppkl– ookinetes do not have a pronounced apical distribution of their micronemes yet secretion of microneme cargo is unaffected in the mutant implying that release of microneme cargo is either highly efficient at the malformed apical prominence or secretion may also occur from other points of the parasite, possibly the pellicular pores.
Collapse
Affiliation(s)
- Nisha Philip
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, University of Glasgow, Glasgow, United Kingdom
- * E-mail: (NP); (APW)
| | - Heli J. Vaikkinen
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, University of Glasgow, Glasgow, United Kingdom
| | - Laurence Tetley
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, University of Glasgow, Glasgow, United Kingdom
| | - Andrew P. Waters
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, University of Glasgow, Glasgow, United Kingdom
- * E-mail: (NP); (APW)
| |
Collapse
|