1
|
Patrizi S, Vallese S, Barresi S, Cassandri M, Giovannoni I, Pedace L, Abballe L, Vinciarelli F, Antonacci C, Stracuzzi A, Mancini B, Russo I, Di Giannatale A, Rota R, Alaggio R, Locatelli F, Milano GM, Miele E. Age-linked DNA methylation and gene expression patterns in parameningeal head and neck alveolar rhabdomyosarcoma reveal CDK9 as a promising therapeutic target. Pharmacol Res 2025; 216:107767. [PMID: 40350107 DOI: 10.1016/j.phrs.2025.107767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/07/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Alveolar rhabdomyosarcoma (ARMS) primarily affects children in the first decade of life, but it can also occur during adolescence, typically with a more favorable prognosis. This study aimed to explore differences in DNA methylation (DNAm) and gene expression profiles that may account for the worse prognosis in younger patients; and to investigate possible new therapeutic targets. METHODS We conducted whole-genome DNAm and transcriptome analyses on 10 parameningeal head and neck ARMS patients, including 4 patients under 1 year old and 6 over 10 years old. Among the differentially expressed genes, we focused on actionable therapeutic targets and confirmed their protein expression levels by immunohistochemistry. We validated the biological relevance of molecules of interest through functional experiments on rhabdomyosarcoma cell lines. RESULTS DNAm profiles did not significantly differ across age groups, while gene expression was the primary driver of observed differences. Several enriched pathways characterized younger patients with respect to older ones, including FAS, Integrin, PI3 kinase, and p53 by glucose deprivation. Among actionable molecules, cyclin dependent kinase 9 (CDK9) emerged as a promising therapy target, highly expressed in younger patients. Of note, CDK9 inhibitors specifically inhibit cell growth in bi- and three-dimensional ARMS cellular models, both as a monotherapy and in combination with BRD4 inhibitors. CONCLUSION Despite the small sample size, these findings suggest potential age-related molecular mechanisms and highlight candidate genes for further investigation as novel therapeutic targets. Notably, we identified CDK9 as a promising target, warranting further exploration in the context of ARMS treatment.
Collapse
Affiliation(s)
- Sara Patrizi
- Onco-Haematology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy.
| | - Silvia Vallese
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy
| | - Sabina Barresi
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy
| | - Matteo Cassandri
- Onco-Haematology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy
| | | | - Lucia Pedace
- Onco-Haematology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy
| | - Luana Abballe
- Onco-Haematology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy
| | - Flavia Vinciarelli
- Onco-Haematology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy
| | - Celeste Antonacci
- Onco-Haematology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy
| | | | - Barbara Mancini
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy
| | - Ida Russo
- Onco-Haematology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy
| | - Angela Di Giannatale
- Onco-Haematology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy
| | - Rossella Rota
- Onco-Haematology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy
| | - Rita Alaggio
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy; Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome 00185, Italy
| | - Franco Locatelli
- Onco-Haematology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy; Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Giuseppe Maria Milano
- Onco-Haematology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy
| | - Evelina Miele
- Onco-Haematology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy.
| |
Collapse
|
2
|
Nakazawa K, Shaw T, Song YK, Kouassi-Brou M, Molotkova A, Tiwari PB, Chou HC, Wen X, Wei JS, Deniz E, Toretsky JA, Keller C, Barr FG, Khan J, Üren A. Piperacetazine Directly Binds to the PAX3::FOXO1 Fusion Protein and Inhibits Its Transcriptional Activity. CANCER RESEARCH COMMUNICATIONS 2023; 3:2030-2043. [PMID: 37732905 PMCID: PMC10557868 DOI: 10.1158/2767-9764.crc-23-0119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/17/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
The tumor-specific chromosomal translocation product, PAX3::FOXO1, is an aberrant fusion protein that plays a key role for oncogenesis in the alveolar subtype of rhabdomyosarcoma (RMS). PAX3::FOXO1 represents a validated molecular target for alveolar RMS and successful inhibition of its oncogenic activity is likely to have significant clinical applications. Even though several PAX3::FOXO1 function-based screening studies have been successfully completed, a directly binding small-molecule inhibitor of PAX3::FOXO1 has not been reported. Therefore, we screened small-molecule libraries to identify compounds that were capable of directly binding to PAX3::FOXO1 protein using surface plasmon resonance technology. Compounds that directly bound to PAX3::FOXO1 were further evaluated in secondary transcriptional activation assays. We discovered that piperacetazine can directly bind to PAX3::FOXO1 protein and inhibit fusion protein-derived transcription in multiple alveolar RMS cell lines. Piperacetazine inhibited anchorage-independent growth of fusion-positive alveolar RMS cells but not embryonal RMS cells. On the basis of our findings, piperacetazine is a molecular scaffold upon which derivatives could be developed as specific inhibitors of PAX3::FOXO1. These novel inhibitors could potentially be evaluated in future clinical trials for recurrent or metastatic alveolar RMS as novel targeted therapy options. SIGNIFICANCE RMS is a malignant soft-tissue tumor mainly affecting the pediatric population. A subgroup of RMS with worse prognosis harbors a unique chromosomal translocation creating an oncogenic fusion protein, PAX3::FOXO1. We identified piperacetazine as a direct inhibitor of PAX3::FOXO1, which may provide a scaffold for designing RMS-specific targeted therapy.
Collapse
Affiliation(s)
- Kay Nakazawa
- Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, District of Columbia
| | - Taryn Shaw
- Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, District of Columbia
| | - Young K. Song
- Genetics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Marilyn Kouassi-Brou
- Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, District of Columbia
| | - Anna Molotkova
- Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, District of Columbia
| | - Purushottam B. Tiwari
- Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, District of Columbia
| | - Hsien-Chao Chou
- Genetics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Xinyu Wen
- Genetics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Jun S. Wei
- Genetics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Emre Deniz
- Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, District of Columbia
| | - Jeffrey A. Toretsky
- Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, District of Columbia
| | - Charles Keller
- Children's Cancer Therapy Development Institute, Hillsboro, Oregon
| | - Frederic G. Barr
- Laboratory of Pathology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Javed Khan
- Genetics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Aykut Üren
- Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, District of Columbia
| |
Collapse
|
3
|
Muralidharan N, Murugan A, Raj PA, Jothi M. Restoration of functional PAX3 transcriptional factor enhanced neuronal differentiation in PAX3b isoform-depleted neuroblastoma cells. Cell Tissue Res 2023; 391:55-65. [PMID: 36378335 DOI: 10.1007/s00441-022-03710-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Reexpressed PAX3 transcription factor is believed to be responsible for the differentiation defects observed in neuroblastoma. Although the importance of PAX3 in neuronal differentiation is documented how it is involved in the defective differentiation remains unexplored particularly with its isoforms. Here, first we have analyzed PAX3 expression, its functional status, and its correlation with the neuronal marker expression in SH-SY5Y and its parental SK-N-SH cells. We have found that SH-SY5Y cells which expressed more PAX3 showed increased expression of neuronal marker genes (TUBB, MAP2, NEFL, NEUROG2, SYP) and reported PAX3 target genes (MET, TGFA, and NCAM1) than the SK-N-SH cells that had low PAX3 level. Retinoic acid treatment is unable to induce neuronal differentiation in cells (SK-N-SH) with low PAX3 level/activity. Moreover, ectopic expression of PAX3 in SK-N-SH cells neither induces neuronal marker genes nor its target genes. PAX3 isoform expression analysis revealed the expression of PAX3b isoform that contains only paired domain in SK-N-SH cells, whereas in SH-SY5Y cells, we could also observe PAX3c isoform that contains all functional domains. Further, PAX3b depletion in SK-N-SH cells is not induced PAX3 target genes, and the cells remain poorly differentiated. Interestingly, ectopic PAX3 expression in PAX3b-depleted SK-N-SH cells enhanced neuronal outgrowth along with neuronal marker gene induction. Collectively, these results showed that the PAX3b isoform may be responsible for the differentiation defect observed in SK-N-SH cells and restoration of functional PAX3 in the absence of PAX3b can induce neurogenesis in these cells.
Collapse
Affiliation(s)
- Narenkumar Muralidharan
- Laboratory of Molecular Therapeutics, Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, Karnataka, India
| | - Abinayaselvi Murugan
- Laboratory of Molecular Therapeutics, Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, Karnataka, India
| | - Prabhuraj Andiperumal Raj
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, Karnataka, India
| | - Mathivanan Jothi
- Laboratory of Molecular Therapeutics, Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, Karnataka, India.
| |
Collapse
|
4
|
FOXF1 is required for the oncogenic properties of PAX3-FOXO1 in rhabdomyosarcoma. Oncogene 2021; 40:2182-2199. [PMID: 33627785 PMCID: PMC8005492 DOI: 10.1038/s41388-021-01694-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 01/13/2021] [Accepted: 02/01/2021] [Indexed: 01/31/2023]
Abstract
The PAX3-FOXO1 fusion protein is the key oncogenic driver in fusion positive rhabdomyosarcoma (FP-RMS), an aggressive soft tissue malignancy with a particularly poor prognosis. Identifying key downstream targets of PAX3-FOXO1 will provide new therapeutic opportunities for treatment of FP-RMS. Herein, we demonstrate that Forkhead Box F1 (FOXF1) transcription factor is uniquely expressed in FP-RMS and is required for FP-RMS tumorigenesis. The PAX3-FOXO1 directly binds to FOXF1 enhancers and induces FOXF1 gene expression. CRISPR/Cas9 mediated inactivation of either FOXF1 coding sequence or FOXF1 enhancers suppresses FP-RMS tumorigenesis even in the presence of PAX3-FOXO1 oncogene. Knockdown or genetic knockout of FOXF1 induces myogenic differentiation in PAX3-FOXO1-positive FP-RMS. Over-expression of FOXF1 decreases myogenic differentiation in primary human myoblasts. In FP-RMS tumor cells, FOXF1 protein binds chromatin near enhancers associated with FP-RMS gene signature. FOXF1 cooperates with PAX3-FOXO1 and E-box transcription factors MYOD1 and MYOG to regulate FP-RMS-specific gene expression. Altogether, FOXF1 functions downstream of PAX3-FOXO1 to promote FP-RMS tumorigenesis.
Collapse
|
5
|
Shinji S, Nakamura S, Nihashi Y, Umezawa K, Takaya T. Berberine and palmatine inhibit the growth of human rhabdomyosarcoma cells. Biosci Biotechnol Biochem 2020; 84:63-75. [DOI: 10.1080/09168451.2019.1659714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
ABSTRACT
A natural isoquinoline alkaloid, berberine, has been known to exhibit anti-tumor activity in various cancer cells via inducing cell cycle arrest. However, it has not been investigated whether berberine and its analogs inhibit the growth of rhabdomyosarcoma (RMS), which is the most frequent soft tissue tumor in children. The present study examined the anti-tumor effects of berberine and palmatine on expansions of three human embryonal RMS cell lines; ERMS1, KYM1, and RD. Intracellular incorporation of berberine was relatively higher than that of palmatine in every RMS cell line. Berberine significantly inhibited the cell cycle of all RMS cells at G1 phase. On the other hand, palmatine only suppressed the growth of RD cells. Both of berberine and palmatine strongly inhibited the growth of tumorsphere of RD cells in three-dimensional culture. These results indicate that berberine derivatives have the potential of anti-tumor drugs for RMS therapy.
Abbreviations: ARMS: alveolar rhabdomyosarcoma; ERMS: embryonal rhabdomyosarcoma; RMS: rhabdomyosarcoma
Collapse
Affiliation(s)
- Sayaka Shinji
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Shunichi Nakamura
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Yuma Nihashi
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
| | - Koji Umezawa
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Tomohide Takaya
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| |
Collapse
|
6
|
Knott MML, Hölting TLB, Ohmura S, Kirchner T, Cidre-Aranaz F, Grünewald TGP. Targeting the undruggable: exploiting neomorphic features of fusion oncoproteins in childhood sarcomas for innovative therapies. Cancer Metastasis Rev 2019; 38:625-642. [PMID: 31970591 PMCID: PMC6994515 DOI: 10.1007/s10555-019-09839-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
While sarcomas account for approximately 1% of malignant tumors of adults, they are particularly more common in children and adolescents affected by cancer. In contrast to malignancies that occur in later stages of life, childhood tumors, including sarcoma, are characterized by a striking paucity of somatic mutations. However, entity-defining fusion oncogenes acting as the main oncogenic driver mutations are frequently found in pediatric bone and soft-tissue sarcomas such as Ewing sarcoma (EWSR1-FLI1), alveolar rhabdomyosarcoma (PAX3/7-FOXO1), and synovial sarcoma (SS18-SSX1/2/4). Since strong oncogene-dependency has been demonstrated in these entities, direct pharmacological targeting of these fusion oncogenes has been excessively attempted, thus far, with limited success. Despite apparent challenges, our increasing understanding of the neomorphic features of these fusion oncogenes in conjunction with rapid technological advances will likely enable the development of new strategies to therapeutically exploit these neomorphic features and to ultimately turn the "undruggable" into first-line target structures. In this review, we provide a broad overview of the current literature on targeting neomorphic features of fusion oncogenes found in Ewing sarcoma, alveolar rhabdomyosarcoma, and synovial sarcoma, and give a perspective for future developments. Graphical abstract Scheme depicting the different targeting strategies of fusion oncogenes in pediatric fusion-driven sarcomas. Fusion oncogenes can be targeted on their DNA level (1), RNA level (2), protein level (3), and by targeting downstream functions and interaction partners (4).
Collapse
Affiliation(s)
- Maximilian M L Knott
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Thalkirchner Str. 36, 80337, Munich, Germany
- Faculty of Medicine, Institute of Pathology, LMU Munich, Munich, Germany
| | - Tilman L B Hölting
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Thalkirchner Str. 36, 80337, Munich, Germany
| | - Shunya Ohmura
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Thalkirchner Str. 36, 80337, Munich, Germany
| | - Thomas Kirchner
- Faculty of Medicine, Institute of Pathology, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Florencia Cidre-Aranaz
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Thalkirchner Str. 36, 80337, Munich, Germany
| | - Thomas G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Thalkirchner Str. 36, 80337, Munich, Germany.
- Faculty of Medicine, Institute of Pathology, LMU Munich, Munich, Germany.
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
7
|
Marampon F, Codenotti S, Megiorni F, Del Fattore A, Camero S, Gravina GL, Festuccia C, Musio D, De Felice F, Nardone V, Santoro AN, Dominici C, Fanzani A, Pirtoli L, Fioravanti A, Tombolini V, Cheleschi S, Tini P. NRF2 orchestrates the redox regulation induced by radiation therapy, sustaining embryonal and alveolar rhabdomyosarcoma cells radioresistance. J Cancer Res Clin Oncol 2019; 145:881-893. [PMID: 30701326 DOI: 10.1007/s00432-019-02851-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/23/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Tumor cells generally exhibit higher levels of reactive oxygen species (ROS), however, when stressed, tumor cells can undergo a process of 'Redox Resetting' to acquire a new redox balance with stronger antioxidant systems that enable cancer cells to become resistant to radiation therapy (RT). Here, we describe how RT affects the oxidant/antioxidant balance in human embryonal (RD) and alveolar (RH30) rhabdomyosarcoma (RMS) cell lines, investigating on the molecular mechanisms involved. METHODS Radiations were delivered using an x-6 MV photon linear accelerator and their effects were assessed by vitality and clonogenic assays. The expression of specific antioxidant-enzymes, such as Superoxide Dismutases (SODs), Catalase (CAT) and Glutathione Peroxidases 4 (GPx4), miRNAs (miR-22, -126, -210, -375, -146a, -34a) and the transcription factor NRF2 was analyzed by quantitative polymerase chain reaction (q-PCR) and western blotting. RNA interference experiments were performed to evaluate the role of NRF2. RESULTS Doses of RT higher than 2 Gy significantly affected RMS clonogenic ability by increasing ROS production. RMS rapidly and efficiently brought back ROS levels by up-regulating the gene expression of antioxidant enzymes, miRNAs as well as of NRF2. Silencing of NRF2 restrained the RMS ability to counteract RT-induced ROS accumulation, antioxidant enzyme and miRNA expression and was able to increase the abundance of γ-H2AX, a biomarker of DNA damage, in RT-treated cells. CONCLUSIONS Taken together, our data suggest the strategic role of oxidant/antioxidant balance in restraining the therapeutic efficiency of RT in RMS treatment and identify NRF2 as a new potential molecular target whose inhibition might represent a novel radiosensitizing therapeutic strategy for RMS clinical management.
Collapse
MESH Headings
- Antioxidants/metabolism
- Cell Line, Tumor
- Dose-Response Relationship, Radiation
- Humans
- MicroRNAs/biosynthesis
- MicroRNAs/genetics
- NF-E2-Related Factor 2/biosynthesis
- NF-E2-Related Factor 2/genetics
- NF-E2-Related Factor 2/metabolism
- Oxidation-Reduction/radiation effects
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- Radiation Tolerance
- Reactive Oxygen Species/metabolism
- Rhabdomyosarcoma, Alveolar/genetics
- Rhabdomyosarcoma, Alveolar/metabolism
- Rhabdomyosarcoma, Alveolar/radiotherapy
- Rhabdomyosarcoma, Embryonal/genetics
- Rhabdomyosarcoma, Embryonal/metabolism
- Rhabdomyosarcoma, Embryonal/radiotherapy
- Transfection
- Up-Regulation/radiation effects
Collapse
Affiliation(s)
- Francesco Marampon
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy.
| | - Silvia Codenotti
- Division of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Andrea Del Fattore
- Multi-Factorial Disease and Complex Phenotype Research Area, Bambino Gesù Children's Hospital, IRCCS, Viale di San Paolo 15, 00146, Rome, Italy
| | - Simona Camero
- Department of Pediatrics, "Sapienza" University of Rome, Rome, Italy
| | - Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, Coppito 2, 67100, L'Aquila, Italy
| | - Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, Coppito 2, 67100, L'Aquila, Italy
| | - Daniela Musio
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Francesca De Felice
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | | | | | - Carlo Dominici
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Alessandro Fanzani
- Division of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luigi Pirtoli
- Azienda Ospedaliera Universitaria Senese, Siena, Italy
- Unit of Radiation Oncology, Azienda Ospedaliera Universitaria Senese, Siena, Italy
- Istituto Toscano Tumori, Florence, Italy
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, USA
- Department of Medicine, Surgery and Neuroscience, Rheumatology Unit, University of Siena, Policlinico Le Scotte, Siena, Italy
| | | | - Vincenzo Tombolini
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Sara Cheleschi
- Department of Medicine, Surgery and Neuroscience, Rheumatology Unit, University of Siena, Policlinico Le Scotte, Siena, Italy
| | - Paolo Tini
- Unit of Radiation Oncology, Azienda Ospedaliera Universitaria Senese, Siena, Italy
- Istituto Toscano Tumori, Florence, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, USA
- Sbarro Health Research Organization, Temple University, Philadelphia, PA, USA
| |
Collapse
|
8
|
Adamus A, Peer K, Ali I, Lisec J, Falodun A, Frank M, Seitz G, Engel N. Berberis orthobotrys - A promising herbal anti-tumorigenic candidate for the treatment of pediatric alveolar rhabdomyosarcoma. JOURNAL OF ETHNOPHARMACOLOGY 2019; 229:262-271. [PMID: 30315865 DOI: 10.1016/j.jep.2018.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/04/2018] [Accepted: 10/07/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Berberis orthobotrys (BORM) is a medical plant with a long history in traditional usage for the treatment of wounds, cancer, gastrointestinal malady and several other diseases. Our previous studies identified the endemic Pakistani plant Berberis orthobotrys Bien. ex Aitch. as promising source for the treatment of breast cancer and osteosarcoma. AIM OF THE STUDY The present study was aimed to evaluate the anti-cancer properties of 26 plant derived extracts and compounds including the methanolic root extract of Berberis orthobotrys (BORM) on pediatric alveolar rhabdomyosarcoma (RMA), which is known to develop drug resistance, metastatic invasion and potential tumor progression. MATERIALS AND METHODS The main anti-tumor activity of BORM was verified by focusing on morphological, cell structural and metabolic alterations via metabolic profiling, cell viability measurements, flow cytometry, western blotting and diverse microscopy-based methods using the human RMA cell line Rh30. RESULTS Exposure of 25 µg/ml BORM exerts an influence on the cell stability, the degradation of oncosomes as well as the shutdown of the metabolic activity of RMA cells, primarily by downregulation of the energy metabolism. Therefore glycyl-aspartic acid and N-acetyl serine decreased moderately, and uracil increased intracellularly. On healthy, non-transformed muscle cells BORM revealed very low metabolic alterations and nearly no cytotoxic impact. Furthermore, BORM is also capable to reduce Rh30 cell migration (~50%) and proliferation (induced G2/M cycle arrest) as well as to initiate apoptosis confirmed by reduced Bcl-2, Bax and PCNA expression and induced PARP-1 cleavage. CONCLUSIONS The study provides the first evidence, that BORM treatment is effective against RMA cells with low side effects on healthy cells.
Collapse
Affiliation(s)
- Anna Adamus
- Department of Pediatric Surgery, University Hospital Marburg, Baldingerstraße, 35033 Marburg, Germany
| | - Katharina Peer
- Department of Pediatric Surgery, University Hospital Marburg, Baldingerstraße, 35033 Marburg, Germany
| | - Iftikhar Ali
- Department of Chemistry, Karakoram International University, 15100 Gilgit, Pakistan
| | - Jan Lisec
- Division 1.7 Analytical Chemistry, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, Berlin 12489 Germany
| | - Abiodun Falodun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Benin, Benin City 300001, Nigeria
| | - Marcus Frank
- Medical Biology and Electron Microscopy Centre, Rostock University Medical Center, Strempelstraße 14, Rostock 18057, Germany
| | - Guido Seitz
- Department of Pediatric Surgery, University Hospital Marburg, Baldingerstraße, 35033 Marburg, Germany
| | - Nadja Engel
- Department of Pediatric Surgery, University Hospital Marburg, Baldingerstraße, 35033 Marburg, Germany; Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany.
| |
Collapse
|
9
|
PAX3: A Molecule with Oncogenic or Tumor Suppressor Function Is Involved in Cancer. BIOMED RESEARCH INTERNATIONAL 2018. [DOI: 10.1155/2018/1095459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Metastasis is the most deadly aspect of cancer and results from acquired gene regulation abnormalities in tumor cells. Transcriptional regulation is an essential component of controlling of gene function and its failure could contribute to tumor progression and metastasis. During cancer progression, deregulation of oncogenic or tumor suppressive transcription factors, as well as master cell fate regulators, collectively influences multiple steps of the metastasis cascade, including local invasion and dissemination of the tumor to distant organs. Transcription factor PAX3/Pax3, which contributes to diverse cell lineages during embryonic development, plays a major role in tumorigenesis. Mutations in this gene can cause neurodevelopmental disease and the existing literature supports that there is a potential link between aberrant expression of PAX3 genes in adult tissues and a wide variety of cancers. PAX3 function is tissue-specific and could contribute to tumorigenesis either directly as oncogene or as a tumor suppressor by losing its function. In this review, we discuss comprehensively the differential role played by PAX3 in various tissues and how its aberrant expression is implicated in disease development. This review particularly highlights the oncogenic and tumor suppressor role played by PAX3 in different cancers and underlines the importance of precisely identifying tissue-specific role of PAX3 in order to determine its exact role in development of cancer.
Collapse
|
10
|
Wachtel M, Schäfer BW. PAX3-FOXO1: Zooming in on an “undruggable” target. Semin Cancer Biol 2018; 50:115-123. [DOI: 10.1016/j.semcancer.2017.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/31/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022]
|
11
|
Wolff DW, Lee MH, Jothi M, Mal M, Li F, Mal AK. Camptothecin exhibits topoisomerase1-independent KMT1A suppression and myogenic differentiation in alveolar rhabdomyosarcoma cells. Oncotarget 2018; 9:25796-25807. [PMID: 29899822 PMCID: PMC5995248 DOI: 10.18632/oncotarget.25376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/24/2018] [Indexed: 01/01/2023] Open
Abstract
Alveolar rhabdomyosarcoma (aRMS) is an aggressive subtype of the most common soft tissue cancer in children. A hallmark of aRMS tumors is incomplete myogenic differentiation despite expression of master myogenic regulators such as MyoD. We previously reported that histone methyltransferase KMT1A suppresses MyoD function to maintain an undifferentiated state in aRMS cells, and that loss of KMT1A is sufficient to induce differentiation and suppress malignant phenotypes in these cells. Here, we develop a chemical compound screening approach using MyoD-responsive luciferase reporter myoblast cells to identify compounds that alleviate suppression of MyoD-mediated differentiation by KMT1A. A screen of pharmacological compounds yielded the topoisomerase I (TOP1) poison camptothecin (CPT) as the strongest hit in our assay system. Furthermore, treatment of aRMS cells with clinically relevant CPT derivative irinotecan restores MyoD function, and myogenic differentiation in vitro and in a xenograft model. This differentiated phenotype was associated with downregulation of the KMT1A protein. Remarkably, loss of KMT1A in CPT-treated cells occurs independently of its well-known anti-TOP1 mechanism. We further demonstrate that CPT can directly inhibit KMT1A activity in vitro. Collectively, these findings uncover a novel function of CPT that downregulates KMT1A independently of CPT-mediated TOP1 inhibition and permits differentiation of aRMS cells.
Collapse
Affiliation(s)
- David W. Wolff
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Min-Hyung Lee
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
- Current address: Division of Biotechnology Review and Research IV, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Mathivanan Jothi
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
- Current address: Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, KA 560029, India
| | - Munmun Mal
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Fengzhi Li
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Asoke K. Mal
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
12
|
Akaike K, Suehara Y, Kohsaka S, Hayashi T, Tanabe Y, Kazuno S, Mukaihara K, Toda-Ishii M, Kurihara T, Kim Y, Okubo T, Hayashi Y, Takamochi K, Takahashi F, Kaneko K, Ladanyi M, Saito T. PPP2R1A regulated by PAX3/FOXO1 fusion contributes to the acquisition of aggressive behavior in PAX3/FOXO1-positive alveolar rhabdomyosarcoma. Oncotarget 2018; 9:25206-25215. [PMID: 29861864 PMCID: PMC5982774 DOI: 10.18632/oncotarget.25392] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/28/2018] [Indexed: 12/18/2022] Open
Abstract
To better characterize the oncogenic role of the PAX3-FOXO1 fusion protein in the acquisition of aggressive behavior in ARMS, we employed a proteomic approach using a PAX3-FOXO1 knockdown system in ARMS cell lines. This approach revealed a protein list consisting of 107 consistently upregulated and 114 consistently downregulated proteins that were expected to be regulated by PAX3-FOXO1 fusion protein. Furthermore, we identified 16 upregulated and 17 downregulated critical proteins based on a data-mining analysis. We also evaluated the function of PPP2R1A in ARMS cells. The PPP2R1A expression was upregulated at both the mRNA and protein levels by PAX3-FOXO1 silencing. The silencing of PPP2R1A significantly increased the cell growth of all four ARMS cells, suggesting that PPP2R1A still has a tumor suppressive function in ARMS cells; however, the native expression of PPP2R1A was low in the presence of PAX3-FOXO1. In addition, the activation of PP2A-part of which was encoded by PPP2R1A-by FTY720 treatment in ARMS cell lines inhibited cell growth. On the human phospho-kinase array analysis of 46 specific Ser/Thr or Tyr phosphorylation sites on 39 selected proteins, eNOS, AKT1/2/3, RSK1/2/3 and STAT3 phosphorylation were decreased by FTY-720 treatment. These findings suggest that PPP2R1A is a negatively regulated by PAX3-FOXO1 in ARMS. The activation of PP2A-probably in combination with kinase inhibitors-may represent a therapeutic target in ARMS. We believe that the protein expression profile associated with PAX3-FOXO1 would be valuable for discovering new therapeutic targets in ARMS.
Collapse
Affiliation(s)
- Keisuke Akaike
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan.,Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshiyuki Suehara
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Shinji Kohsaka
- Department of Medical Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yu Tanabe
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Saiko Kazuno
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kenta Mukaihara
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Midori Toda-Ishii
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Taisei Kurihara
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Youngji Kim
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Taketo Okubo
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Yasuhide Hayashi
- Department of Hematology/Oncology, Gunma Children's Medical Center, Shibukawa, Gunma, Japan
| | - Kazuya Takamochi
- Department of General Thoracic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuo Kaneko
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Tsuyoshi Saito
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Abstract
Rhabdomyosarcoma (RMS) is a myogenic tumor classified as the most frequent soft tissue sarcoma affecting children and adolescents. The histopathological classification includes 5 different histotypes, with 2 most predominant referred as to embryonal and alveolar, the latter being characterized by adverse outcome. The current molecular classification identifies 2 major subsets, those harboring the fused Pax3-Foxo1 transcription factor generating from a recurrent specific translocation (fusion-positive RMS), and those lacking this signature but harboring mutations in the RAS/PI3K/AKT signaling axis (fusion-negative RMS). Since little attention has been devoted to RMS metabolism until now, in this review we summarize the "state of art" of metabolism and discuss how some of the molecular signatures found in this cancer, as observed in other more common tumors, can predict important metabolic challenges underlying continuous cell growth, oxidative stress resistance and metastasis, which could be the subject of future targeted therapies.
Collapse
Affiliation(s)
- Eugenio Monti
- a Department of Molecular and Translational Medicine , University of Brescia , Brescia , Italy
| | - Alessandro Fanzani
- a Department of Molecular and Translational Medicine , University of Brescia , Brescia , Italy.,b Interuniversity Institute of Myology , Rome , Italy
| |
Collapse
|
14
|
Chatterjee B, Wolff DW, Jothi M, Mal M, Mal AK. p38α MAPK disables KMT1A-mediated repression of myogenic differentiation program. Skelet Muscle 2016; 6:28. [PMID: 27551368 PMCID: PMC4993004 DOI: 10.1186/s13395-016-0100-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/26/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Master transcription factor MyoD can initiate the entire myogenic gene expression program which differentiates proliferating myoblasts into multinucleated myotubes. We previously demonstrated that histone methyltransferase KMT1A associates with and inhibits MyoD in proliferating myoblasts, and must be removed to allow differentiation to proceed. It is known that pro-myogenic signaling pathways such as PI3K/AKT and p38α MAPK play critical roles in enforcing associations between MyoD and transcriptional activators, while removing repressors. However, the mechanism which displaces KMT1A from MyoD, and the signals responsible, remain unknown. METHODS To investigate the role of p38α on MyoD-mediated differentiation, we utilized C2C12 myoblast cells as an in vitro model. p38α activity was either augmented via overexpression of a constitutively active upstream kinase or blocked via lentiviral delivery of a specific p38α shRNA or treatment with p38α/β inhibitor SB203580. Overexpression of KMT1A in these cells via lentiviral delivery was also used as a system wherein terminal differentiation is impeded by high levels of KMT1A. RESULTS The association of KMT1A and MyoD persisted, and differentiation was blocked in C2C12 myoblasts specifically after pharmacologic or genetic blockade of p38α. Conversely, forced activation of p38α was sufficient to activate MyoD and overcome the differentiation blockade in KMT1A-overexpressing C2C12 cells. Consistent with this finding, KMT1A phosphorylation during C2C12 differentiation correlated strongly with the activation of p38α. This phosphorylation was prevented by the inhibition of p38α. Biochemical studies further revealed that KMT1A can be a direct substrate for p38α. Importantly, chromatin immunoprecipitation (ChIP) studies show that the removal of KMT1A-mediated transcription repressive histone tri-methylation (H3K9me3) from the promoter of the Myogenin gene, a critical regulator of muscle differentiation, is dependent on p38α activity in C2C12 cells. Elevated p38α activity was also sufficient to remove this repressive H3K9me3 mark. Moreover, ChIP studies from C2C12 cells show that p38α activity is necessary and sufficient to establish active H3K9 acetylation on the Myogenin promoter. CONCLUSIONS Activation of p38α displaces KMT1A from MyoD to initiate myogenic gene expression upon induction of myoblasts differentiation.
Collapse
Affiliation(s)
- Biswanath Chatterjee
- Department of Cell Stress Biology, CGP-L3-319, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14263 USA ; Present Address: Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 11529 Taiwan
| | - David W Wolff
- Department of Cell Stress Biology, CGP-L3-319, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14263 USA
| | - Mathivanan Jothi
- Department of Cell Stress Biology, CGP-L3-319, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14263 USA ; Present Address: Department of Biotechnology, Bharathiar University, Coimbatore, 641046 Tamilnadu India
| | - Munmun Mal
- Department of Cell Stress Biology, CGP-L3-319, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14263 USA
| | - Asoke K Mal
- Department of Cell Stress Biology, CGP-L3-319, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14263 USA
| |
Collapse
|
15
|
Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer. Cell Death Dis 2016; 7:e2226. [PMID: 27195673 PMCID: PMC4917665 DOI: 10.1038/cddis.2016.132] [Citation(s) in RCA: 368] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 04/07/2016] [Accepted: 04/12/2016] [Indexed: 12/23/2022]
Abstract
Tumor cells exhibit unique metabolic adaptations that are increasingly viewed as potential targets for novel and specific cancer therapies. Among these targets, the carnitine palmitoyltransferase system is responsible for delivering the long-chain fatty acid (FA) from cytoplasm into mitochondria for oxidation, where carnitine palmitoyltransferase I (CPTI) catalyzes the rate-limiting step of fatty acid oxidation (FAO). With increasing understanding of the crucial role had by fatty acid oxidation in cancer, CPTI has received renewed attention as a pivotal mediator in cancer metabolic mechanism. CPTI activates FAO and fuels cancer growth via ATP and NADPH production, constituting an essential part of cancer metabolism adaptation. Moreover, CPTI also functionally intertwines with other key pathways and factors to regulate gene expression and apoptosis of cancer cell. Here, we summarize recent findings and update the current understanding of FAO and CPTI in cancer and provide theoretical basis for this enzyme as an emerging potential molecular target in cancer therapeutic intervention.
Collapse
|
16
|
Unpeaceful roles of mutant PAX proteins in cancer. Semin Cell Dev Biol 2015; 44:126-34. [DOI: 10.1016/j.semcdb.2015.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 09/10/2015] [Accepted: 09/16/2015] [Indexed: 01/07/2023]
|
17
|
Faggi F, Mitola S, Sorci G, Riuzzi F, Donato R, Codenotti S, Poliani PL, Cominelli M, Vescovi R, Rossi S, Calza S, Colombi M, Penna F, Costelli P, Perini I, Sampaolesi M, Monti E, Fanzani A. Phosphocaveolin-1 enforces tumor growth and chemoresistance in rhabdomyosarcoma. PLoS One 2014; 9:e84618. [PMID: 24427291 PMCID: PMC3888403 DOI: 10.1371/journal.pone.0084618] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 11/15/2013] [Indexed: 12/24/2022] Open
Abstract
Caveolin-1 (Cav-1) can ambiguously behave as either tumor suppressor or oncogene depending on its phosphorylation state and the type of cancer. In this study we show that Cav-1 was phosphorylated on tyrosine 14 (pCav-1) by Src-kinase family members in various human cell lines and primary mouse cultures of rhabdomyosarcoma (RMS), the most frequent soft-tissue sarcoma affecting childhood. Cav-1 overexpression in the human embryonal RD or alveolar RH30 cells yielded increased pCav-1 levels and reinforced the phosphorylation state of either ERK or AKT kinase, respectively, in turn enhancing in vitro cell proliferation, migration, invasiveness and chemoresistance. In contrast, reducing the pCav-1 levels by administration of a Src-kinase inhibitor or through targeted Cav-1 silencing counteracted the malignant in vitro phenotype of RMS cells. Consistent with these results, xenotransplantation of Cav-1 overexpressing RD cells into nude mice resulted in substantial tumor growth in comparison to control cells. Taken together, these data point to pCav-1 as an important and therapeutically valuable target for overcoming the progression and multidrug resistance of RMS.
Collapse
Affiliation(s)
- Fiorella Faggi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Guglielmo Sorci
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Francesca Riuzzi
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Rosario Donato
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Pietro Luigi Poliani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Manuela Cominelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Raffaella Vescovi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Stefania Rossi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Stefano Calza
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marina Colombi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Fabio Penna
- Department of Experimental Medicine and Oncology, University of Torino, Torino, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Paola Costelli
- Department of Experimental Medicine and Oncology, University of Torino, Torino, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Ilaria Perini
- Stem Cell Research Institute, University Hospital Gasthuisberg, Leuven, Belgium
| | - Maurilio Sampaolesi
- Stem Cell Research Institute, University Hospital Gasthuisberg, Leuven, Belgium
- Human Anatomy Section, University of Pavia, Pavia, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Eugenio Monti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Interuniversity Institute of Myology (IIM), Italy
- * E-mail:
| |
Collapse
|
18
|
Yoshida H, Miyachi M, Sakamoto K, Ouchi K, Yagyu S, Kikuchi K, Kuwahara Y, Tsuchiya K, Imamura T, Iehara T, Kakazu N, Hojo H, Hosoi H. PAX3-NCOA2 fusion gene has a dual role in promoting the proliferation and inhibiting the myogenic differentiation of rhabdomyosarcoma cells. Oncogene 2013; 33:5601-8. [DOI: 10.1038/onc.2013.491] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 09/20/2013] [Indexed: 11/10/2022]
|
19
|
Jothi M, Mal M, Keller C, Mal AK. Small molecule inhibition of PAX3-FOXO1 through AKT activation suppresses malignant phenotypes of alveolar rhabdomyosarcoma. Mol Cancer Ther 2013; 12:2663-74. [PMID: 24107448 DOI: 10.1158/1535-7163.mct-13-0277] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Alveolar rhabdomyosarcoma comprises a rare highly malignant tumor presumed to be associated with skeletal muscle lineage in children. The hallmark of the majority of alveolar rhabdomyosarcoma is a chromosomal translocation that generates the PAX3-FOXO1 fusion protein, which is an oncogenic transcription factor responsible for the development of the malignant phenotype of this tumor. Alveolar rhabdomyosarcoma cells are dependent on the oncogenic activity of PAX3-FOXO1, and its expression status in alveolar rhabdomyosarcoma tumors correlates with worst patient outcome, suggesting that blocking this activity of PAX3-FOXO1 may be an attractive therapeutic strategy against this fusion-positive disease. In this study, we screened small molecule chemical libraries for inhibitors of PAX3-FOXO1 transcriptional activity using a cell-based readout system. We identified the Sarco/endoplasmic reticulum Ca(2+)-ATPases (SERCA) inhibitor thapsigargin as an effective inhibitor of PAX3-FOXO1. Subsequent experiments in alveolar rhabdomyosarcoma cells showed that activation of AKT by thapsigargin inhibited PAX3-FOXO1 activity via phosphorylation. Moreover, this AKT activation appears to be associated with the effects of thapsigargin on intracellular calcium levels. Furthermore, thapsigargin inhibited the binding of PAX3-FOXO1 to target genes and subsequently promoted its proteasomal degradation. In addition, thapsigargin treatment decreases the growth and invasive capacity of alveolar rhabdomyosarcoma cells while inducing apoptosis in vitro. Finally, thapsigargin can suppress the growth of an alveolar rhabdomyosarcoma xenograft tumor in vivo. These data reveal that thapsigargin-induced activation of AKT is an effective mechanism to inhibit PAX3-FOXO1 and a potential agent for targeted therapy against alveolar rhabdomyosarcoma.
Collapse
Affiliation(s)
- Mathivanan Jothi
- Corresponding Author: Asoke K. Mal, Department of Cell Stress Biology, BLSC-L3-319 Roswell Park Cancer Institute Elm and Carlton Streets, Buffalo, NY 14263.
| | | | | | | |
Collapse
|
20
|
Too much AKT turns PAX3-FKHR dead: a prospect of novel therapeutic strategy for alveolar rhabdomyosarcoma. Oncotarget 2013; 3:1064-5. [PMID: 23165483 PMCID: PMC3717958 DOI: 10.18632/oncotarget.713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
21
|
Olanich ME, Barr FG. A call to ARMS: targeting the PAX3-FOXO1 gene in alveolar rhabdomyosarcoma. Expert Opin Ther Targets 2013; 17:607-23. [PMID: 23432728 DOI: 10.1517/14728222.2013.772136] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Expression of fusion oncoproteins generated by recurrent chromosomal translocations represents a major tumorigenic mechanism characteristic of multiple cancers, including one-third of all sarcomas. Oncogenic fusion genes provide novel targets for therapeutic intervention. The PAX3-FOXO1 oncoprotein in alveolar rhabdomyosarcoma (ARMS) is presented as a paradigm to examine therapeutic strategies for targeting sarcoma-associated fusion genes. AREAS COVERED This review discusses the role of PAX3-FOXO1 in ARMS tumors. Besides evaluating various approaches to molecularly target PAX3-FOXO1 itself, this review highlights therapeutically attractive downstream genes activated by PAX3-FOXO1. EXPERT OPINION Oncogenic fusion proteins represent desirable therapeutic targets because their expression is specific to tumor cells, but these fusions generally characterize rare malignancies. Full development and testing of potential drugs targeted to these fusions are complicated by the small numbers of patients in these disease categories. Although efforts to develop targeted therapies against fusion proteins should continue, molecular targets that are applicable to a broader tumor landscape should be pursued. A shift of the traditional paradigm to view therapeutic intervention as target-specific rather than tumor-specific will help to circumvent the challenges posed by rare tumors and maximize the possibility of developing successful new treatments for patients with these rare translocation-associated sarcomas.
Collapse
Affiliation(s)
- Mary E Olanich
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Laboratory of Pathology , Bethesda, MD 20892, USA
| | | |
Collapse
|
22
|
Simon-Keller K, Barth S, Vincent A, Marx A. Targeting the fetal acetylcholine receptor in rhabdomyosarcoma. Expert Opin Ther Targets 2012; 17:127-38. [PMID: 23231343 DOI: 10.1517/14728222.2013.734500] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood and adolescence. Recent efforts to enhance overall survival of patients with clinically advanced RMS have failed and there is a demand for conceptually novel treatments. Immune therapeutic options targeting the fetal nicotinic acetylcholine receptor (fnAChR), which is broadly expressed on RMS, are novel approaches to overcome the therapeutic resistance of RMS. Expression of the fnAChR is restricted to developing fetal muscles, some apparently dispensable ocular muscle fibers and thymic myoid cells. Therefore, after-birth fnAChR is a tumor-associated and almost tumor-specific antigen on RMS cells. AREAS COVERED This review gives an overview on nAChR function and expression pattern in RMS tumor cells, and deals with the immunological significance of fnAChR-expressing cells, including the risk of anti-nAChR autoimmunity as a potential side effect of fnAChR-directed immunotherapies. The article also addresses the advantages and disadvantages of vaccination strategies, immunotoxins and chimeric T cells targeting the fnAChR. EXPERT OPINION Finally, we suggest technical and biological strategies to improve the available immunotherapeutic tools including increasing the in vivo expression of the target fnAChR on RMS cells.
Collapse
Affiliation(s)
- Katja Simon-Keller
- University Medical Centre Mannheim, University of Heidelberg, Institute of Pathology, Theodor-Kutzer-Ufer 1-3, D-68135 Mannheim, Germany.
| | | | | | | |
Collapse
|