1
|
Lyu XH, Yang YS, Pan ZQ, Ning SK, Suo F, Du LL. An improved tetracycline-inducible expression system for fission yeast. J Cell Sci 2024; 137:jcs263404. [PMID: 39318285 DOI: 10.1242/jcs.263404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024] Open
Abstract
The ability to manipulate gene expression is valuable for elucidating gene function. In the fission yeast Schizosaccharomyces pombe, the most widely used regulatable expression system is the nmt1 promoter and its two attenuated variants. However, these promoters have limitations, including a long lag, incompatibility with rich media and unsuitability for non-dividing cells. Here, we present a tetracycline-inducible system free of these shortcomings. Our system features the enotetS promoter, which achieves a similar induced level and a higher induction ratio compared to the nmt1 promoter, without exhibiting a lag. Additionally, our system includes four weakened enotetS variants, offering an expression range similar to that of the nmt1 series promoters but with more intermediate levels. To enhance usability, each promoter is combined with a Tet-repressor-expressing cassette in an integration plasmid. Importantly, our system can be used in non-dividing cells, enabling the development of a synchronous meiosis induction method with high spore viability. Moreover, our system allows for the shutdown of gene expression and the generation of conditional loss-of-function mutants. This system provides a versatile and powerful tool for manipulating gene expression in fission yeast.
Collapse
Affiliation(s)
- Xiao-Hui Lyu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yu-Sheng Yang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhao-Qian Pan
- National Institute of Biological Sciences, Beijing 102206, China
| | - Shao-Kai Ning
- National Institute of Biological Sciences, Beijing 102206, China
| | - Fang Suo
- National Institute of Biological Sciences, Beijing 102206, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research , Tsinghua University, Beijing 102206, China
| |
Collapse
|
2
|
Sivakova B, Wagner A, Kretova M, Jakubikova J, Gregan J, Kratochwill K, Barath P, Cipak L. Quantitative proteomics and phosphoproteomics profiling of meiotic divisions in the fission yeast Schizosaccharomyces pombe. Sci Rep 2024; 14:23105. [PMID: 39367033 PMCID: PMC11452395 DOI: 10.1038/s41598-024-74523-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
In eukaryotes, chromosomal DNA is equally distributed to daughter cells during mitosis, whereas the number of chromosomes is halved during meiosis. Despite considerable progress in understanding the molecular mechanisms that regulate mitosis, there is currently a lack of complete understanding of the molecular mechanisms regulating meiosis. Here, we took advantage of the fission yeast Schizosaccharomyces pombe, for which highly synchronous meiosis can be induced, and performed quantitative proteomics and phosphoproteomics analyses to track changes in protein expression and phosphorylation during meiotic divisions. We compared the proteomes and phosphoproteomes of exponentially growing mitotic cells with cells harvested around meiosis I, or meiosis II in strains bearing either the temperature-sensitive pat1-114 allele or conditional ATP analog-sensitive pat1-as2 allele of the Pat1 kinase. Comparing pat1-114 with pat1-as2 also allowed us to investigate the impact of elevated temperature (25 °C versus 34 °C) on meiosis, an issue that sexually reproducing organisms face due to climate change. Using TMTpro 18plex labeling and phosphopeptide enrichment strategies, we performed quantification of a total of 4673 proteins and 7172 phosphosites in S. pombe. We found that the protein level of 2680 proteins and the rate of phosphorylation of 4005 phosphosites significantly changed during progression of S. pombe cells through meiosis. The proteins exhibiting changes in expression and phosphorylation during meiotic divisions were represented mainly by those involved in the meiotic cell cycle, meiotic recombination, meiotic nuclear division, meiosis I, centromere clustering, microtubule cytoskeleton organization, ascospore formation, organonitrogen compound biosynthetic process, carboxylic acid metabolic process, gene expression, and ncRNA processing, among others. In summary, our findings provide global overview of changes in the levels and phosphorylation of proteins during progression of S. pombe cells through meiosis at normal and elevated temperatures, laying the groundwork for further elucidation of the functions and importance of specific proteins and their phosphorylation in regulating meiotic divisions in this yeast.
Collapse
Affiliation(s)
- Barbara Sivakova
- Department of Glycobiology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovakia
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Anja Wagner
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria
| | - Miroslava Kretova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
| | - Jana Jakubikova
- Department of Tumor Immunology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
| | - Juraj Gregan
- Department of Chromosome Biology, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, Vienna, 1030, Austria
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Strasse 24, Tulln an der Donau, 3430, Austria
| | - Klaus Kratochwill
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria.
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria.
| | - Peter Barath
- Department of Glycobiology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovakia.
- Medirex Group Academy, Novozamocka 67, Nitra, 949 05, Slovakia.
| | - Lubos Cipak
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia.
| |
Collapse
|
3
|
Palacios-Blanco I, Gómez L, Bort M, Mayerová N, Bágeľová Poláková S, Martín-Castellanos C. CDK phosphorylation of Sfr1 downregulates Rad51 function in late-meiotic homolog invasions. EMBO J 2024; 43:4356-4383. [PMID: 39174851 PMCID: PMC11445502 DOI: 10.1038/s44318-024-00205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024] Open
Abstract
Meiosis is the developmental program that generates gametes. To produce healthy gametes, meiotic recombination creates reciprocal exchanges between each pair of homologous chromosomes that facilitate faithful chromosome segregation. Using fission yeast and biochemical, genetic, and cytological approaches, we have studied the role of CDK (cyclin-dependent kinase) in the control of Swi5-Sfr1, a Rad51-recombinase auxiliary factor involved in homolog invasion during recombination. We show that Sfr1 is a CDK target, and its phosphorylation downregulates Swi5-Sfr1 function in the meiotic prophase. Expression of a phospho-mimetic sfr1-7D mutant inhibits Rad51 binding, its robust chromosome loading, and subsequently decreases interhomolog recombination. On the other hand, the non-phosphorylatable sfr1-7A mutant alters Rad51 dynamics at late prophase, and exacerbates chromatin segregation defects and Rad51 retention observed in dbl2 deletion mutants when combined with them. We propose Sfr1 phospho-inhibition as a novel cell-cycle-dependent mechanism, which ensures timely resolution of recombination intermediates and successful chromosome distribution into the gametes. Furthermore, the N-terminal disordered part of Sfr1, an evolutionarily conserved feature, serves as a regulatory platform coordinating this phospho-regulation, protein localization and stability, with several CDK sites and regulatory sequences being conserved.
Collapse
Affiliation(s)
- Inés Palacios-Blanco
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, 37007, Spain
| | - Lucía Gómez
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, 37007, Spain
| | - María Bort
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, 37007, Spain
| | - Nina Mayerová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, 841 04, Slovakia
| | - Silvia Bágeľová Poláková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, 841 04, Slovakia
- Centre of Biosciences SAS, Institute of Animal Biochemistry and Genetics, Bratislava, 840 05, Slovakia
| | | |
Collapse
|
4
|
Duan S, Liu Q, Shen Y, Zhu L, Yuan H, Yang J. AoRan1 Is Involved in Regulating Conidiation, Stress Resistance, Secondary Metabolism, and Pathogenicity in Arthrobotrys oligospora. Microorganisms 2024; 12:1853. [PMID: 39338527 PMCID: PMC11434409 DOI: 10.3390/microorganisms12091853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Arthrobotrys oligospora is a representative nematode-trapping (NT) fungus that is able to capture, kill, and digest nematodes by producing specialized three-dimensional networks (traps) under nutrient-deprived conditions. Ran1 is a serine/threonine protein kinase that can act as a negative regulator of sexual conjugation and meiosis. However, the specific role of Ran1 remains largely unknown in NT fungi. Here, we identified AoRan1 (AOL_s00004g277) via gene disruption, phenotypic analysis, and metabolomic analysis. Our findings reveal that Aoran1 knockout caused a remarkable increase in conidial production, traps, and nematode feeding efficiency. In addition, the absence of Aoran1 resulted in the accumulation of lipid droplets and increased autophagic levels as well as increased tolerance to cell wall synthesis-disturbing reagents and oxidants. Metabolomic analyses also suggested that AoRan1 is involved in multiple metabolic processes, such as fatty acid biosynthesis. In summary, our results suggest that AoRan1 is crucial in conidiation, pathogenicity, and secondary metabolism. This study's results further our understanding of the molecular mechanisms by which AoRan1 regulates conidiation and trap formation in A. oligospora.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China; (S.D.); (Q.L.); (Y.S.); (L.Z.); (H.Y.)
| |
Collapse
|
5
|
Prusén Mota I, Galova M, Schleiffer A, Nguyen TT, Kovacikova I, Farias Saad C, Litos G, Nishiyama T, Gregan J, Peters JM, Schlögelhofer P. Sororin is an evolutionary conserved antagonist of WAPL. Nat Commun 2024; 15:4729. [PMID: 38830897 PMCID: PMC11148194 DOI: 10.1038/s41467-024-49178-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/26/2024] [Indexed: 06/05/2024] Open
Abstract
Cohesin mediates sister chromatid cohesion to enable chromosome segregation and DNA damage repair. To perform these functions, cohesin needs to be protected from WAPL, which otherwise releases cohesin from DNA. It has been proposed that cohesin is protected from WAPL by SORORIN. However, in vivo evidence for this antagonism is missing and SORORIN is only known to exist in vertebrates and insects. It is therefore unknown how important and widespread SORORIN's functions are. Here we report the identification of SORORIN orthologs in Schizosaccharomyces pombe (Sor1) and Arabidopsis thaliana (AtSORORIN). sor1Δ mutants display cohesion defects, which are partially alleviated by wpl1Δ. Atsororin mutant plants display dwarfism, tissue specific cohesion defects and chromosome mis-segregation. Furthermore, Atsororin mutant plants are sterile and separate sister chromatids prematurely at anaphase I. The somatic, but not the meiotic deficiencies can be alleviated by loss of WAPL. These results provide in vivo evidence for SORORIN antagonizing WAPL, reveal that SORORIN is present in organisms beyond the animal kingdom and indicate that it has acquired tissue specific functions in plants.
Collapse
Affiliation(s)
- Ignacio Prusén Mota
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Chromosome Biology, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - Marta Galova
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Tan-Trung Nguyen
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Chromosome Biology, Vienna, Austria
| | - Ines Kovacikova
- University of Vienna, Center for Molecular Biology, Department of Chromosome Biology, Vienna, Austria
| | - Carolina Farias Saad
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Chromosome Biology, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - Gabriele Litos
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Tomoko Nishiyama
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Juraj Gregan
- University of Vienna, Center for Molecular Biology, Department of Chromosome Biology, Vienna, Austria.
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Tulln an der Donau, Austria.
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.
| | - Peter Schlögelhofer
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria.
- University of Vienna, Center for Molecular Biology, Department of Chromosome Biology, Vienna, Austria.
| |
Collapse
|
6
|
Tsuruta Y, Senmatsu S, Oe H, Hoffman CS, Hirota K. Metabolic stress-induced long ncRNA transcription governs the formation of meiotic DNA breaks in the fission yeast fbp1 gene. PLoS One 2024; 19:e0294191. [PMID: 38252660 PMCID: PMC10802949 DOI: 10.1371/journal.pone.0294191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/26/2023] [Indexed: 01/24/2024] Open
Abstract
Meiotic recombination is a pivotal process that ensures faithful chromosome segregation and contributes to the generation of genetic diversity in offspring, which is initiated by the formation of double-strand breaks (DSBs). The distribution of meiotic DSBs is not uniform and is clustered at hotspots, which can be affected by environmental conditions. Here, we show that non-coding RNA (ncRNA) transcription creates meiotic DSBs through local chromatin remodeling in the fission yeast fbp1 gene. The fbp1 gene is activated upon glucose starvation stress, in which a cascade of ncRNA-transcription in the fbp1 upstream region converts the chromatin configuration into an open structure, leading to the subsequent binding of transcription factors. We examined the distribution of meiotic DSBs around the fbp1 upstream region in the presence and absence of glucose and observed several new DSBs after chromatin conversion under glucose starvation conditions. Moreover, these DSBs disappeared when cis-elements required for ncRNA transcription were mutated. These results indicate that ncRNA transcription creates meiotic DSBs in response to stress conditions in the fbp1 upstream region. This study addressed part of a long-standing unresolved mechanism underlying meiotic recombination plasticity in response to environmental fluctuation.
Collapse
Affiliation(s)
- Yusuke Tsuruta
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| | - Satoshi Senmatsu
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| | - Hana Oe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| | - Charles S. Hoffman
- Biology Department, Boston College, Chestnut Hill, MA, United States of America
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| |
Collapse
|
7
|
Anrather D, Polakova SB, Cipak L, Gregan J. SILAC-Based Proteomic Analysis of Meiosis in the Fission Yeast Schizosaccharomyces pombe. Methods Mol Biol 2023; 2603:19-29. [PMID: 36370267 DOI: 10.1007/978-1-0716-2863-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Stable isotope labeling by amino acids in cell culture (SILAC) provides a powerful tool to quantify proteins and posttranslational modifications. Here we describe how to apply SILAC for protein identification and quantification in synchronous meiotic cultures induced by inactivation of the Pat1 kinase in the fission yeast Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Dorothea Anrather
- Mass Spectrometry Facility, Max Perutz Labs, Vienna BioCenter (VBC), Vienna, Austria.
| | - Silvia Bagelova Polakova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia.
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia.
| | - Lubos Cipak
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Juraj Gregan
- Advanced Microscopy Facility, VBCF and Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
8
|
Sakuno T, Tashiro S, Tanizawa H, Iwasaki O, Ding DQ, Haraguchi T, Noma KI, Hiraoka Y. Rec8 Cohesin-mediated Axis-loop chromatin architecture is required for meiotic recombination. Nucleic Acids Res 2022; 50:3799-3816. [PMID: 35333350 PMCID: PMC9023276 DOI: 10.1093/nar/gkac183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
During meiotic prophase, cohesin-dependent axial structures are formed in the synaptonemal complex (SC). However, the functional correlation between these structures and cohesion remains elusive. Here, we examined the formation of cohesin-dependent axial structures in the fission yeast Schizosaccharomyces pombe. This organism forms atypical SCs composed of linear elements (LinEs) resembling the lateral elements of SC but lacking the transverse filaments. Hi-C analysis using a highly synchronous population of meiotic S. pombe cells revealed that the axis-loop chromatin structure formed in meiotic prophase was dependent on the Rec8 cohesin complex. In contrast, the Rec8-mediated formation of the axis-loop structure occurred in cells lacking components of LinEs. To dissect the functions of Rec8, we identified a rec8-F204S mutant that lost the ability to assemble the axis-loop structure without losing cohesion of sister chromatids. This mutant showed defects in the formation of the axis-loop structure and LinE assembly and thus exhibited reduced meiotic recombination. Collectively, our results demonstrate that the Rec8-dependent axis-loop structure provides a structural platform essential for LinE assembly, facilitating meiotic recombination of homologous chromosomes, independently of its role in sister chromatid cohesion.
Collapse
Affiliation(s)
- Takeshi Sakuno
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Sanki Tashiro
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Hideki Tanizawa
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Osamu Iwasaki
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Da-Qiao Ding
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Ken-ichi Noma
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
- Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
9
|
Nambu M, Kishikawa A, Yamada T, Ichikawa K, Kira Y, Itabashi Y, Honda A, Yamada K, Murakami H, Yamamoto A. Direct evaluation of cohesin-mediated sister kinetochore associations at meiosis I in fission yeast. J Cell Sci 2022; 135:jcs259102. [PMID: 34851403 DOI: 10.1242/jcs.259102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/16/2021] [Indexed: 11/20/2022] Open
Abstract
Kinetochores drive chromosome segregation by mediating chromosome interactions with the spindle. In higher eukaryotes, sister kinetochores are separately positioned on opposite sides of sister centromeres during mitosis, but associate with each other during meiosis I. Kinetochore association facilitates the attachment of sister chromatids to the same pole, enabling the segregation of homologous chromosomes toward opposite poles. In the fission yeast, Schizosaccharomyces pombe, Rec8-containing meiotic cohesin is suggested to establish kinetochore associations by mediating cohesion of the centromere cores. However, cohesin-mediated kinetochore associations on intact chromosomes have never been demonstrated directly. In the present study, we describe a novel method for the direct evaluation of kinetochore associations on intact chromosomes in live S. pombe cells, and demonstrate that sister kinetochores and the centromere cores are positioned separately on mitotic chromosomes but associate with each other on meiosis I chromosomes. Furthermore, we demonstrate that kinetochore association depends on meiotic cohesin and the cohesin regulators Moa1 and Mrc1, and requires mating-pheromone signaling for its establishment. These results confirm cohesin-mediated kinetochore association and its regulatory mechanisms, along with the usefulness of the developed method for its analysis. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Masashi Nambu
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Atsuki Kishikawa
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Takatomi Yamada
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Kento Ichikawa
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Yunosuke Kira
- Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Yuta Itabashi
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Akira Honda
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Kohei Yamada
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hiroshi Murakami
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Ayumu Yamamoto
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
10
|
Sevcovicova A, Plava J, Gazdarica M, Szabova E, Huraiova B, Gaplovska-Kysela K, Cipakova I, Cipak L, Gregan J. Mapping and Analysis of Swi5 and Sfr1 Phosphorylation Sites. Genes (Basel) 2021; 12:1014. [PMID: 34208949 PMCID: PMC8305525 DOI: 10.3390/genes12071014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 01/23/2023] Open
Abstract
The evolutionarily conserved Swi5-Sfr1 complex plays an important role in homologous recombination, a process crucial for the maintenance of genomic integrity. Here, we purified Schizosaccharomyces pombe Swi5-Sfr1 complex from meiotic cells and analyzed it by mass spectrometry. Our analysis revealed new phosphorylation sites on Swi5 and Sfr1. We found that mutations that prevent phosphorylation of Swi5 and Sfr1 do not impair their function but swi5 and sfr1 mutants encoding phosphomimetic aspartate at the identified phosphorylation sites are only partially functional. We concluded that during meiosis, Swi5 associates with Sfr1 and both Swi5 and Sfr1 proteins are phosphorylated. However, the functional relevance of Swi5 and Sfr1 phosphorylation remains to be determined.
Collapse
Affiliation(s)
- Andrea Sevcovicova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia; (A.S.); (J.P.); (M.G.); (E.S.); (B.H.); (K.G.-K.)
| | - Jana Plava
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia; (A.S.); (J.P.); (M.G.); (E.S.); (B.H.); (K.G.-K.)
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Matej Gazdarica
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia; (A.S.); (J.P.); (M.G.); (E.S.); (B.H.); (K.G.-K.)
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Eva Szabova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia; (A.S.); (J.P.); (M.G.); (E.S.); (B.H.); (K.G.-K.)
| | - Barbora Huraiova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia; (A.S.); (J.P.); (M.G.); (E.S.); (B.H.); (K.G.-K.)
| | - Katarina Gaplovska-Kysela
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia; (A.S.); (J.P.); (M.G.); (E.S.); (B.H.); (K.G.-K.)
| | - Ingrid Cipakova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia;
| | - Lubos Cipak
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia;
| | - Juraj Gregan
- Advanced Microscopy Facility, VBCF and Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| |
Collapse
|
11
|
Huraiova B, Kanovits J, Polakova SB, Cipak L, Benko Z, Sevcovicova A, Anrather D, Ammerer G, Duncan CDS, Mata J, Gregan J. Proteomic analysis of meiosis and characterization of novel short open reading frames in the fission yeast Schizosaccharomyces pombe. Cell Cycle 2020; 19:1777-1785. [PMID: 32594847 PMCID: PMC7469465 DOI: 10.1080/15384101.2020.1779470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 01/10/2023] Open
Abstract
Meiosis is the process by which haploid gametes are produced from diploid precursor cells. We used stable isotope labeling by amino acids in cell culture (SILAC) to characterize the meiotic proteome in the fission yeast Schizosaccharomyces pombe. We compared relative levels of proteins extracted from cells harvested around meiosis I with those of meiosis II, and proteins from premeiotic S phase with the interval between meiotic divisions, when S phase is absent. Our proteome datasets revealed peptides corresponding to short open reading frames (sORFs) that have been previously identified by ribosome profiling as new translated regions. We verified expression of selected sORFs by Western blotting and analyzed the phenotype of deletion mutants. Our data provide a resource for studying meiosis that may help understand differences between meiosis I and meiosis II and how S phase is suppressed between the two meiotic divisions.
Collapse
Affiliation(s)
- Barbora Huraiova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Judit Kanovits
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Silvia Bagelova Polakova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Department of Membrane Biochemistry, Inst. Of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lubos Cipak
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zsigmond Benko
- Department of Membrane Biochemistry, Inst. Of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Andrea Sevcovicova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Dorothea Anrather
- Mass Spectrometry Facility and Department of Biochemistry, Max Perutz Labs, University of Vienna, Vienna Biocenter, Austria
| | - Gustav Ammerer
- Mass Spectrometry Facility and Department of Biochemistry, Max Perutz Labs, University of Vienna, Vienna Biocenter, Austria
| | | | - Juan Mata
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Juraj Gregan
- Department of Chromosome Biology, Max Perutz Labs, Vienna Biocenter, University of Vienna, Vienna, Austria
- Advanced Microscopy Facility, Vienna Biocenter Core Facilities, Vienna, Austria
| |
Collapse
|
12
|
Ding DQ, Okamasa K, Katou Y, Oya E, Nakayama JI, Chikashige Y, Shirahige K, Haraguchi T, Hiraoka Y. Chromosome-associated RNA-protein complexes promote pairing of homologous chromosomes during meiosis in Schizosaccharomyces pombe. Nat Commun 2019; 10:5598. [PMID: 31811152 PMCID: PMC6898681 DOI: 10.1038/s41467-019-13609-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 11/18/2019] [Indexed: 01/07/2023] Open
Abstract
Pairing of homologous chromosomes in meiosis is essential for sexual reproduction. We have previously demonstrated that the fission yeast sme2 RNA, a meiosis-specific long noncoding RNA (lncRNA), accumulates at the sme2 chromosomal loci and mediates their robust pairing in meiosis. However, the mechanisms underlying lncRNA-mediated homologous pairing have remained elusive. In this study, we identify conserved RNA-binding proteins that are required for robust pairing of homologous chromosomes. These proteins accumulate mainly at the sme2 and two other chromosomal loci together with meiosis-specific lncRNAs transcribed from these loci. Remarkably, the chromosomal accumulation of these lncRNA–protein complexes is required for robust pairing. Moreover, the lncRNA–protein complexes exhibit phase separation properties, since 1,6-hexanediol treatment reversibly disassembled these complexes and disrupted the pairing of associated loci. We propose that lncRNA–protein complexes assembled at specific chromosomal loci mediate recognition and subsequent pairing of homologous chromosomes. During meiosis, pairing of homologous chromosomes is critical for sexual reproduction. Here the authors reveal in S. pombe the role of lncRNA–protein complexes during the pairing of homologues chromosomes that assemble at specific chromosomal loci to mediate recognition of the pairs.
Collapse
Affiliation(s)
- Da-Qiao Ding
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, 651-2492, Japan.
| | - Kasumi Okamasa
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, 651-2492, Japan
| | - Yuki Katou
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Eriko Oya
- Graduate School of Natural Sciences, Nagoya City University, Nagoya, 467-8501, Japan.,Faculty of Science and Engineering, Chuo University, Tokyo, 112-8551, Japan
| | - Jun-Ichi Nakayama
- Graduate School of Natural Sciences, Nagoya City University, Nagoya, 467-8501, Japan.,Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Yuji Chikashige
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, 651-2492, Japan
| | - Katsuhiko Shirahige
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Tokuko Haraguchi
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, 651-2492, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, 565-0871, Japan
| | - Yasushi Hiraoka
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, 651-2492, Japan. .,Graduate School of Frontier Biosciences, Osaka University, Suita, 565-0871, Japan.
| |
Collapse
|
13
|
Huraiova B, Pozgajova M, Gregan J. Sexual Reproduction: Preventing Re-fertilization in Fission Yeast. Curr Biol 2018; 28:R1300-R1303. [PMID: 30458148 DOI: 10.1016/j.cub.2018.09.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During sexual reproduction, two haploid cells fuse to produce a diploid cell called a zygote. A new study describes how fission yeast prevents a zygote from being formed by the fusion of more than two cells.
Collapse
Affiliation(s)
- Barbora Huraiova
- Department of Genetics, Comenius University, Ilkovicova 6, 84215 Bratislava, Slovak Republic
| | - Miroslava Pozgajova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Juraj Gregan
- Department of Genetics, Comenius University, Ilkovicova 6, 84215 Bratislava, Slovak Republic; Advanced Microscopy Facility, Vienna Biocenter Core Facilities, Dr. Bohr-Gasse 3, 1030 Vienna, Austria; Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
14
|
Marston AL, Wassmann K. Multiple Duties for Spindle Assembly Checkpoint Kinases in Meiosis. Front Cell Dev Biol 2017; 5:109. [PMID: 29322045 PMCID: PMC5733479 DOI: 10.3389/fcell.2017.00109] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/28/2017] [Indexed: 11/17/2022] Open
Abstract
Cell division in mitosis and meiosis is governed by evolutionary highly conserved protein kinases and phosphatases, controlling the timely execution of key events such as nuclear envelope breakdown, spindle assembly, chromosome attachment to the spindle and chromosome segregation, and cell cycle exit. In mitosis, the spindle assembly checkpoint (SAC) controls the proper attachment to and alignment of chromosomes on the spindle. The SAC detects errors and induces a cell cycle arrest in metaphase, preventing chromatid separation. Once all chromosomes are properly attached, the SAC-dependent arrest is relieved and chromatids separate evenly into daughter cells. The signaling cascade leading to checkpoint arrest depends on several protein kinases that are conserved from yeast to man. In meiosis, haploid cells containing new genetic combinations are generated from a diploid cell through two specialized cell divisions. Though apparently less robust, SAC control also exists in meiosis. Recently, it has emerged that SAC kinases have additional roles in executing accurate chromosome segregation during the meiotic divisions. Here, we summarize the main differences between mitotic and meiotic cell divisions, and explain why meiotic divisions pose special challenges for correct chromosome segregation. The less-known meiotic roles of the SAC kinases are described, with a focus on two model systems: yeast and mouse oocytes. The meiotic roles of the canonical checkpoint kinases Bub1, Mps1, the pseudokinase BubR1 (Mad3), and Aurora B and C (Ipl1) will be discussed. Insights into the molecular signaling pathways that bring about the special chromosome segregation pattern during meiosis will help us understand why human oocytes are so frequently aneuploid.
Collapse
Affiliation(s)
- Adele L Marston
- Wellcome Centre for Cell Biology, Institute for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Katja Wassmann
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris Seine, UMR7622, Paris, France.,Centre National de la Recherche Scientifique, Institut de Biologie Paris Seine, UMR7622 Developmental Biology Lab, Paris, France
| |
Collapse
|
15
|
Yamashita A, Sakuno T, Watanabe Y, Yamamoto M. Analysis of Schizosaccharomyces pombe Meiosis. Cold Spring Harb Protoc 2017; 2017:pdb.top079855. [PMID: 28733417 DOI: 10.1101/pdb.top079855] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Meiosis is a specialized cell cycle that generates haploid gametes from diploid cells. The fission yeast Schizosaccharomyces pombe is one of the best model organisms for studying the regulatory mechanisms of meiosis. S. pombe cells, which normally grow in the haploid state, diploidize by conjugation and initiate meiosis when starved for nutrients, especially nitrogen. Following two rounds of chromosome segregation, spore formation takes place. The switch from mitosis to meiosis is controlled by a kinase, Pat1, and an RNA-binding protein, Mei2. Mei2 is also a key factor for meiosis-specific gene expression. Studies on S. pombe have offered insights into cell cycle regulation and chromosome segregation during meiosis. Here we outline the current understanding of the molecular mechanisms regulating the initiation and progression of meiosis, and introduce methods for the study of meiosis in fission yeast.
Collapse
Affiliation(s)
- Akira Yamashita
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Aichi, 444-8585, Japan;
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Takeshi Sakuno
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan
| | - Yoshinori Watanabe
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan
| | - Masayuki Yamamoto
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Aichi, 444-8585, Japan;
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
16
|
Yamashita A, Sakuno T, Watanabe Y, Yamamoto M. Synchronous Induction of Meiosis in the Fission Yeast Schizosaccharomyces pombe. Cold Spring Harb Protoc 2017; 2017:pdb.prot091777. [PMID: 28733399 DOI: 10.1101/pdb.prot091777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In fission yeast Schizosaccharomyces pombe, initiation of meiosis is repressed by Pat1 kinase. This protocol describes how ectopic inactivation of the temperature-sensitive Pat1-114 kinase in G1-arrested h- /h- diploid cells carrying mat1-Pc induces a highly synchronized commitment to and execution of meiosis. Haploid or diploid pat1-114 mutants without mat1-Pc can also be used for convenience, although less synchrony may be attained compared with induction using true diploids. An essentially identical protocol can be used for induction via inhibition of genetically sensitized Pat1 kinase by ATP analogs.
Collapse
Affiliation(s)
- Akira Yamashita
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan; .,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Takeshi Sakuno
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan
| | - Yoshinori Watanabe
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan
| | - Masayuki Yamamoto
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan; .,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
17
|
Escorcia W, Forsburg SL. Destabilization of the replication fork protection complex disrupts meiotic chromosome segregation. Mol Biol Cell 2017; 28:2978-2997. [PMID: 28855376 PMCID: PMC5662257 DOI: 10.1091/mbc.e17-02-0101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 12/17/2022] Open
Abstract
The replication fork protection complex (FPC) coordinates multiple processes that are crucial for unimpeded passage of the replisome through various barriers and difficult to replicate areas of the genome. We examine the function of Swi1 and Swi3, fission yeast's primary FPC components, to elucidate how replication fork stability contributes to DNA integrity in meiosis. We report that destabilization of the FPC results in reduced spore viability, delayed replication, changes in recombination, and chromosome missegregation in meiosis I and meiosis II. These phenotypes are linked to accumulation and persistence of DNA damage markers in meiosis and to problems with cohesion stability at the centromere. These findings reveal an important connection between meiotic replication fork stability and chromosome segregation, two processes with major implications to human reproductive health.
Collapse
Affiliation(s)
- Wilber Escorcia
- Program in Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089-2910
| | - Susan L Forsburg
- Program in Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089-2910
| |
Collapse
|
18
|
Stuart DT. Selection of G1 Phase Yeast Cells for Synchronous Meiosis and Sporulation. Methods Mol Biol 2017; 1471:123-132. [PMID: 28349392 DOI: 10.1007/978-1-4939-6340-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Centrifugal elutriation is a procedure that allows the fractionation of cell populations based upon their size and shape. This allows cells in distinct cell cycle stages can be captured from an asynchronous population. The technique is particularly helpful when performing an experiment to monitor the progression of cells through the cell cycle or meiosis. Yeast sporulation like gametogenesis in other eukaryotes initiates from the G1 phase of the cell cycle. Conveniently, S. cerevisiae arrest in G1 phase when starved for nutrients and so withdrawal of nitrogen and glucose allows cells to abandon vegetative growth in G1 phase before initiating the sporulation program. This simple starvation protocol yields a partial synchronization that has been used extensively in studies of progression through meiosis and sporulation. By using centrifugal elutriation it is possible to isolate a homogeneous population of G1 phase cells and induce them to sporulate synchronously, which is beneficial for investigating progression through meiosis and sporulation. An additionally benefit of this protocol is that cell populations can be isolated based upon size and both large and small cell populations can be tested for progression through meiosis and sporulation. Here we present a protocol for purification of G1 phase diploid cells for examining synchronous progression through meiosis and sporulation.
Collapse
Affiliation(s)
- David T Stuart
- Department of Biochemistry, University of Alberta, 561 Medical Sciences Building, Edmonton, AB, Canada, T6G 2H7.
| |
Collapse
|
19
|
Hyppa RW, Fowler KR, Smith GR. Quantitative Genome-Wide Measurements of Meiotic DNA Double-Strand Breaks and Protein Binding in S. pombe. Methods Mol Biol 2017; 1471:25-49. [PMID: 28349389 PMCID: PMC5771505 DOI: 10.1007/978-1-4939-6340-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
The fission yeast Schizosaccharomyces pombe is especially well suited for studying meiosis in molecular detail. Experiments with S. pombe strains that undergo a nearly synchronous meiosis-at variable temperatures-have elucidated the mechanisms of meiotic progression and the proteins that are involved. For example, studies focused on the initiation of meiotic recombination by programmed DNA double-strand breaks (DSBs) have proven exceptionally informative. In meiosis, some regions of DNA have more frequent DSBs than the surrounding regions. These DSB hotspots can be visualized by Southern blot hybridization of restriction fragments ranging from kilobases (kb) to megabases (Mb) in size. More recently, the benefits of genome-wide analysis to map the distribution and frequency of meiotic DSBs have been attained, with resolution down to the nucleotide level. Infrequent, non-hotspot DSBs previously not detectable have been observed, creating a better understanding of how recombination is regulated. Additional genome-wide analyses have shown proteins that bind specifically to DSB hotspots, providing insight into how the DSB initiation complex functions. We describe here detailed methods for achieving these results.
Collapse
Affiliation(s)
- Randy W Hyppa
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kyle R Fowler
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, CA, USA
| | - Gerald R Smith
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
20
|
Harashima H, Dissmeyer N, Hammann P, Nomura Y, Kramer K, Nakagami H, Schnittger A. Modulation of plant growth in vivo and identification of kinase substrates using an analog-sensitive variant of CYCLIN-DEPENDENT KINASE A;1. BMC PLANT BIOLOGY 2016; 16:209. [PMID: 27669979 PMCID: PMC5037886 DOI: 10.1186/s12870-016-0900-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/16/2016] [Indexed: 05/12/2023]
Abstract
BACKGROUND Modulation of protein activity by phosphorylation through kinases and subsequent de-phosphorylation by phosphatases is one of the most prominent cellular control mechanisms. Thus, identification of kinase substrates is pivotal for the understanding of many - if not all - molecular biological processes. Equally, the possibility to deliberately tune kinase activity is of great value to analyze the biological process controlled by a particular kinase. RESULTS Here we have applied a chemical genetic approach and generated an analog-sensitive version of CDKA;1, the central cell-cycle regulator in Arabidopsis and homolog of the yeast Cdc2/CDC28 kinases. This variant could largely rescue a cdka;1 mutant and is biochemically active, albeit less than the wild type. Applying bulky kinase inhibitors allowed the reduction of kinase activity in an organismic context in vivo and the modulation of plant growth. To isolate CDK substrates, we have adopted a two-dimensional differential gel electrophoresis strategy, and searched for proteins that showed mobility changes in fluorescently labeled extracts from plants expressing the analog-sensitive version of CDKA;1 with and without adding a bulky ATP variant. A pilot set of five proteins involved in a range of different processes could be confirmed in independent kinase assays to be phosphorylated by CDKA;1 approving the applicability of the here-developed method to identify substrates. CONCLUSION The here presented generation of an analog-sensitive CDKA;1 version is functional and represent a novel tool to modulate kinase activity in vivo and identify kinase substrates. Our here performed pilot screen led to the identification of CDK targets that link cell proliferation control to sugar metabolism, proline proteolysis, and glucosinolate production providing a hint how cell proliferation and growth are integrated with plant development and physiology.
Collapse
Affiliation(s)
- Hirofumi Harashima
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du CNRS, IBMP-CNRS - UPR2357, Université de Strasbourg, F-67084 Strasbourg, France
- Trinationales Institut für Pflanzenforschung, F-67084 Strasbourg Cedex, France
- Present address: RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045 Japan
| | - Nico Dissmeyer
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du CNRS, IBMP-CNRS - UPR2357, Université de Strasbourg, F-67084 Strasbourg, France
- Trinationales Institut für Pflanzenforschung, F-67084 Strasbourg Cedex, France
- Present address: Leibniz Institute of Plant Biochemistry (IPB), Independent Junior Research Group on Protein Recognition and Degradation, Weinberg 3, D-06120 Halle, (Saale) Germany
| | - Philippe Hammann
- Plateforme protéomique Strasbourg Esplanade, Institut de Biologie Moléculaire et Cellulaire FRC1589-CNRS, F-67084 Strasbourg, France
| | - Yuko Nomura
- Plant Proteomics Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi Yokohama, 230-0045 Japan
| | - Katharina Kramer
- Max Planck Institute for Plant Breeding Research, Basic Immune System of Plants / Protein Mass Spectrometry, Carl-von-Linne-Weg 10, 50829 Cologne, Germany
| | - Hirofumi Nakagami
- Plant Proteomics Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi Yokohama, 230-0045 Japan
- Max Planck Institute for Plant Breeding Research, Basic Immune System of Plants / Protein Mass Spectrometry, Carl-von-Linne-Weg 10, 50829 Cologne, Germany
| | - Arp Schnittger
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du CNRS, IBMP-CNRS - UPR2357, Université de Strasbourg, F-67084 Strasbourg, France
- Trinationales Institut für Pflanzenforschung, F-67084 Strasbourg Cedex, France
- Department of Developmental Biology, University of Hamburg, Biozentrum Klein Flottbek, Ohnhorststr. 18, D-22609 Hamburg, Germany
| |
Collapse
|
21
|
Dbl2 Regulates Rad51 and DNA Joint Molecule Metabolism to Ensure Proper Meiotic Chromosome Segregation. PLoS Genet 2016; 12:e1006102. [PMID: 27304859 PMCID: PMC4909299 DOI: 10.1371/journal.pgen.1006102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 05/12/2016] [Indexed: 11/19/2022] Open
Abstract
To identify new proteins required for faithful meiotic chromosome segregation, we screened a Schizosaccharomyces pombe deletion mutant library and found that deletion of the dbl2 gene led to missegregation of chromosomes during meiosis. Analyses of both live and fixed cells showed that dbl2Δ mutant cells frequently failed to segregate homologous chromosomes to opposite poles during meiosis I. Removing Rec12 (Spo11 homolog) to eliminate meiotic DNA double-strand breaks (DSBs) suppressed the segregation defect in dbl2Δ cells, indicating that Dbl2 acts after the initiation of meiotic recombination. Analyses of DSBs and Holliday junctions revealed no significant defect in their formation or processing in dbl2Δ mutant cells, although some Rec12-dependent DNA joint molecules persisted late in meiosis. Failure to segregate chromosomes in the absence of Dbl2 correlated with persistent Rad51 foci, and deletion of rad51 or genes encoding Rad51 mediators also suppressed the segregation defect of dbl2Δ. Formation of foci of Fbh1, an F-box helicase that efficiently dismantles Rad51-DNA filaments, was impaired in dbl2Δ cells. Our results suggest that Dbl2 is a novel regulator of Fbh1 and thereby Rad51-dependent DSB repair required for proper meiotic chromosome segregation and viable sex cell formation. The wide conservation of these proteins suggests that our results apply to many species. Meiosis produces haploid gametes from diploid precursor cells. This reduction of chromosome number is achieved by two successive divisions after only a single round of DNA replication. To identify novel regulators of meiosis, we screened a library of fission yeast deletion mutants and found that deletion of the dbl2 gene led to missegregation of chromosomes during meiosis. Analysis of live dbl2Δ cells by fluorescence microscopy showed that chromosomes frequently failed to segregate during the first meiotic division. Further cytological and biochemical analyses revealed that this segregation defect is due to persistent intermediates of DNA double-strand break repair, also called DNA joint molecules. Our results indicate that Dbl2 is required for formation of Fbh1 DNA helicase foci at the sites of DNA double-strand break repair in order to process DNA joint molecules and allow segregation of chromosomes during meiotic divisions. Our bioinformatics searches revealed that Dbl2 is highly conserved in fungi, animals and plants, suggesting that Dbl2 plays a similar role in other organisms–the formation of viable sex cells and healthy progeny.
Collapse
|
22
|
Alves-Rodrigues I, Ferreira PG, Moldón A, Vivancos AP, Hidalgo E, Guigó R, Ayté J. Spatiotemporal Control of Forkhead Binding to DNA Regulates the Meiotic Gene Expression Program. Cell Rep 2016; 14:885-895. [PMID: 26804917 DOI: 10.1016/j.celrep.2015.12.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/13/2015] [Accepted: 12/15/2015] [Indexed: 01/06/2023] Open
Abstract
Meiosis is a differentiated program of the cell cycle that is characterized by high levels of recombination followed by two nuclear divisions. In fission yeast, the genetic program during meiosis is regulated at multiple levels, including transcription, mRNA stabilization, and splicing. Mei4 is a forkhead transcription factor that controls the expression of mid-meiotic genes. Here, we describe that Fkh2, another forkhead transcription factor that is essential for mitotic cell-cycle progression, also plays a pivotal role in the control of meiosis. Fkh2 binding preexists in most Mei4-dependent genes, inhibiting their expression. During meiosis, Fkh2 is phosphorylated in a CDK/Cig2-dependent manner, decreasing its affinity for DNA, which creates a window of opportunity for Mei4 binding to its target genes. We propose that Fkh2 serves as a placeholder until the later appearance of Mei4 with a higher affinity for DNA that induces the expression of a subset of meiotic genes.
Collapse
Affiliation(s)
- Isabel Alves-Rodrigues
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Pedro G Ferreira
- Center for Genomic Regulation, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Alberto Moldón
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Ana P Vivancos
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain
| | - Elena Hidalgo
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Roderic Guigó
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona 08003, Spain; Center for Genomic Regulation, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - José Ayté
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona 08003, Spain.
| |
Collapse
|
23
|
Gutiérrez-Escribano P, Nurse P. A single cyclin-CDK complex is sufficient for both mitotic and meiotic progression in fission yeast. Nat Commun 2015; 6:6871. [PMID: 25891897 PMCID: PMC4411289 DOI: 10.1038/ncomms7871] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/06/2015] [Indexed: 11/18/2022] Open
Abstract
The dominant model for eukaryotic cell cycle control proposes that cell cycle progression is driven by a succession of CDK complexes with different substrate specificities. However, in fission yeast it has been shown that a single CDK complex generated by the fusion of the Cdc13 cyclin with the CDK protein Cdc2 can drive the mitotic cell cycle. Meiosis is a modified cell cycle programme in which a single S-phase is followed by two consecutive rounds of chromosome segregation. Here we systematically analyse the requirements of the different fission yeast cyclins for meiotic cell cycle progression. We also show that a single Cdc13-Cdc2 complex, in the absence of the other cyclins, can drive the meiotic cell cycle. We propose that qualitatively different CDK complexes are not absolutely required for cell cycle progression either during mitosis or meiosis, and that a single CDK complex can drive both cell cycle programmes.
Collapse
Affiliation(s)
| | - Paul Nurse
- Cell Cycle Laboratory Cancer Research UK London Research Institute, London WC2A 3LY, UK
- Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, New York, New York 10065, USA
- The Francis Crick Institute, London NW1 2BE, UK
| |
Collapse
|
24
|
Aoi Y, Sato M, Sutani T, Shirahige K, Kapoor TM, Kawashima SA. Dissecting the first and the second meiotic divisions using a marker-less drug-hypersensitive fission yeast. Cell Cycle 2014; 13:1327-34. [PMID: 24621506 DOI: 10.4161/cc.28294] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Faithful chromosome segregation during meiosis is indispensable to prevent birth defects and infertility. Canonical genetic manipulations have not been very useful for studying meiosis II, since mutations of genes involved in cell cycle regulation or chromosome segregation may affect meiosis I, making interpretations of any defects observed in meiosis II complicated. Here we present a powerful strategy to dissect meiosis I and meiosis II, using chemical inhibitors in genetically tractable model organism fission yeast (Schizosaccharomyces pombe). As various chemical probes are not active in fission yeast, mainly due to an effective multidrug resistance (MDR) response, we have recently developed a drug-hypersensitive MDR-sup strain by suppression of the key genes responsible for MDR response. We further developed the MDR-supML (marker-less) strain by deleting 7 MDR genes without commonly used antibiotic markers. The new strain makes fluorescent tagging and gene deletion much simpler, which enables effective protein visualization in varied genetic backgrounds. Using the MDR-supML strain with chemical inhibitors and live cell fluorescence microscopy, we established cell cycle arrest at meiosis I and meiosis II and examined Aurora-dependent spindle assembly checkpoint (SAC) regulation during meiosis. We found that Aurora B/Ark1 kinase activity is required for recruitment of Bub1, an essential SAC kinase, to unattached kinetochore in prometaphase I and prometaphase II as in mitosis. Thus, Aurora's role in SAC activation is likely conserved in mitosis, meiosis I, and meiosis II. Together, our MDR-supML strain will be useful to dissect complex molecular mechanisms in mitosis and 2 successive meiotic divisions.
Collapse
Affiliation(s)
- Yuki Aoi
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; Bunkyo-ku, Tokyo, Japan
| | - Masamitsu Sato
- Department of Life Science and Medical Bioscience; Graduate School of Advanced Science and Engineering; Waseda University; Shinjuku, Tokyo, Japan
| | - Takashi Sutani
- Institute of Molecular and Cellular Biosciences; The University of Tokyo; Bunkyo-ku, Tokyo, Japan
| | - Katsuhiko Shirahige
- Institute of Molecular and Cellular Biosciences; The University of Tokyo; Bunkyo-ku, Tokyo, Japan
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology; Rockefeller University; New York, NY USA
| | - Shigehiro A Kawashima
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
25
|
Synchronized fission yeast meiosis using an ATP analog-sensitive Pat1 protein kinase. Nat Protoc 2014; 9:223-31. [PMID: 24385151 DOI: 10.1038/nprot.2014.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Synchronous cultures are often indispensable for studying meiosis. Here we present an optimized protocol for induction of synchronous meiosis in the fission yeast Schizosaccharomyces pombe. Chemical inactivation of an ATP analog-sensitive form of the Pat1 kinase (pat1-as2) by adding the ATP analog 1-NM-PP1 in G1-arrested cells allows the induction of synchronous meiosis at optimal temperature (25°C). Importantly, this protocol eliminates detrimental effects of elevated temperature (34°C), which is required to inactivate the commonly used temperature-sensitive Pat1 kinase mutant (pat1-114). The addition of the mat-Pc gene to a mat1-M strain further improves chromosome segregation and spore viability. Thus, our protocol offers highly synchronous meiosis at optimal temperature, with most characteristics similar to those of wild-type meiosis. The synchronization protocol can be completed in 5 d (not including strain production, which may take as long as 2 or 3 months).
Collapse
|
26
|
Hyppa RW, Fowler KR, Cipak L, Gregan J, Smith GR. DNA intermediates of meiotic recombination in synchronous S. pombe at optimal temperature. Nucleic Acids Res 2014; 42:359-69. [PMID: 24089141 PMCID: PMC3874177 DOI: 10.1093/nar/gkt861] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 09/03/2013] [Accepted: 09/03/2013] [Indexed: 11/16/2022] Open
Abstract
Crossovers formed by recombination between homologous chromosomes are important for proper homolog segregation during meiosis and for generation of genetic diversity. Optimal molecular analysis of DNA intermediates of recombination requires synchronous cultures. We previously described a mutant, pat1-as2, of the fission yeast Schizosaccharomyces pombe that undergoes synchronous meiosis at 25°C when an ATP analog is added to the culture. Here, we compare recombination intermediates in pat1-as2 at 25°C with those in the widely used pat1-114 temperature-sensitive mutant at 34°C, a temperature higher than optimal. DNA double-strand breaks at most hotspots are similarly abundant in the two conditions but, remarkably, a few hotspots are distinctly deficient at 25°C. In both conditions, Holliday junctions at DNA break hotspots form more frequently between sister chromatids than between homologs, but a novel species, perhaps arising from invasion by only one end of broken DNA, is more readily observed at 25°C. Our results confirm the validity of previous assays of recombination intermediates in S. pombe and provide new information on the mechanism of meiotic recombination.
Collapse
Affiliation(s)
- Randy W. Hyppa
- Fred Hutchinson Cancer Research Center, Division of Basic Sciences, Seattle, WA, 98109, USA, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria, Cancer Research Institute, Slovak Academy of Sciences, 83391 Bratislava, Slovak Republic Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynska Dolina, 842 15 Bratislava, Slovak Republic
| | - Kyle R. Fowler
- Fred Hutchinson Cancer Research Center, Division of Basic Sciences, Seattle, WA, 98109, USA, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria, Cancer Research Institute, Slovak Academy of Sciences, 83391 Bratislava, Slovak Republic Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynska Dolina, 842 15 Bratislava, Slovak Republic
| | - Lubos Cipak
- Fred Hutchinson Cancer Research Center, Division of Basic Sciences, Seattle, WA, 98109, USA, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria, Cancer Research Institute, Slovak Academy of Sciences, 83391 Bratislava, Slovak Republic Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynska Dolina, 842 15 Bratislava, Slovak Republic
| | - Juraj Gregan
- Fred Hutchinson Cancer Research Center, Division of Basic Sciences, Seattle, WA, 98109, USA, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria, Cancer Research Institute, Slovak Academy of Sciences, 83391 Bratislava, Slovak Republic Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynska Dolina, 842 15 Bratislava, Slovak Republic
| | - Gerald R. Smith
- Fred Hutchinson Cancer Research Center, Division of Basic Sciences, Seattle, WA, 98109, USA, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria, Cancer Research Institute, Slovak Academy of Sciences, 83391 Bratislava, Slovak Republic Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynska Dolina, 842 15 Bratislava, Slovak Republic
| |
Collapse
|
27
|
Polakova S, Benko Z, Zhang L, Gregan J. Mal3, the Schizosaccharomyces pombe homolog of EB1, is required for karyogamy and for promoting oscillatory nuclear movement during meiosis. Cell Cycle 2013; 13:72-7. [PMID: 24196444 PMCID: PMC3925738 DOI: 10.4161/cc.26815] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Two successive rounds of chromosome segregation following a single round of DNA replication enable the production of haploid gametes during meiosis. In the fission yeast Schizosaccharomyces pombe, karyogamy is the process where the nuclei from 2 haploid cells fuse to create a diploid nucleus, which then undergoes meiosis to produce 4 haploid spores. By screening a collection of S. pombe deletion strains, we found that the deletion of 2 genes, mal3 and mto1, leads to the production of asci containing up to 8 spores. Here, we show that Mal3, the fission yeast member of the EB1 family of conserved microtubule plus-end tracking proteins, is required for karyogamy, oscillatory nuclear movement, and proper segregation of chromosomes during meiosis. In the absence of Mal3, meiosis frequently initiates before the completion of karyogamy, thus producing up to 8 nuclei in a single ascus. Our results provide new evidence that fission yeast can initiate meiosis prior to completing karyogamy.
Collapse
Affiliation(s)
- Silvia Polakova
- Max F. Perutz Laboratories; Department of Chromosome Biology; University of Vienna; Vienna, Austria
| | - Zsigmond Benko
- Max F. Perutz Laboratories; Department of Chromosome Biology; University of Vienna; Vienna, Austria
| | - Lijuan Zhang
- Max F. Perutz Laboratories; Department of Chromosome Biology; University of Vienna; Vienna, Austria
| | - Juraj Gregan
- Max F. Perutz Laboratories; Department of Chromosome Biology; University of Vienna; Vienna, Austria; Department of Genetics; Comenius University; Bratislava, Slovak Republic
| |
Collapse
|
28
|
Fleißner A. Turning the switch: using chemical genetics to elucidate protein kinase functions in filamentous fungi. FUNGAL BIOL REV 2013. [DOI: 10.1016/j.fbr.2013.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Cipak L, Gupta S, Rajovic I, Jin QW, Anrather D, Ammerer G, McCollum D, Gregan J. Crosstalk between casein kinase II and Ste20-related kinase Nak1. Cell Cycle 2013; 12:884-8. [PMID: 23462181 PMCID: PMC3637346 DOI: 10.4161/cc.24095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although the sterile 20 (Ste20) serine/threonine protein kinase was originally identified as a component of the S. cerevisiae mating pathway, it has homologs in higher eukaryotes and is part of a larger family of Ste20-like kinases. Ste20-like kinases are involved in multiple cellular processes, such as cell growth, morphogenesis, apoptosis and immune response. Carrying out such a diverse array of biological functions requires numerous regulatory inputs and outputs in the form of protein-protein interactions and post-translational modifications. Hence, a thorough knowledge of Ste20-like kinase binding partners and phosphorylation sites will be essential for understanding the various roles of these kinases. Our recent study revealed that Schizosaccharomyces pombe Nak1 (a conserved member of the GC-kinase sub-family of Ste20-like kinases) is in a complex with the leucine-rich repeat-containing protein Sog2. Here, we show a novel and unexpected interaction between the Nak1-Sog2 kinase complex and Casein kinase 2 (Cka1, Ckb1 and Ckb2) using tandem-affinity purification followed by mass spectrometric analysis. In addition, we identify unique phosphosites on Nak1, Sog2 and the catalytic subunit of casein kinase 2, Cka1. Given the conserved nature of these kinases, we expect this work will shed light on the functions of these proteins both in yeast and higher eukaryotes.
Collapse
Affiliation(s)
- Lubos Cipak
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Gaplovska-Kysela K, Sevcovicova A. Phosphorylation: a key regulator of meiosis. Cell Cycle 2013; 12:716. [PMID: 23422858 PMCID: PMC3610716 DOI: 10.4161/cc.23910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
31
|
Pozgajova M, Trakovická A. Protein kinases required for proper segregation of chromosomes during meiosis. Cell Cycle 2013; 12:717. [PMID: 23422856 PMCID: PMC3610717 DOI: 10.4161/cc.23912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Miroslava Pozgajova
- Department of Genetics and Breeding Biology, Slovak University of Agriculture, Nitra, Slovak Republic.
| | | |
Collapse
|
32
|
Kovacikova I, Polakova S, Benko Z, Cipak L, Zhang L, Rumpf C, Miadokova E, Gregan J. A knockout screen for protein kinases required for the proper meiotic segregation of chromosomes in the fission yeast Schizosaccharomyces pombe. Cell Cycle 2013; 12:618-24. [PMID: 23370392 PMCID: PMC3594262 DOI: 10.4161/cc.23513] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The reduction of chromosome number during meiosis is achieved by two successive rounds of chromosome segregation after just single round of DNA replication. To identify novel proteins required for the proper segregation of chromosomes during meiosis, we analyzed the consequences of deleting Schizosaccharomyces pombe genes predicted to encode protein kinases that are not essential for cell viability. We show that Mph1, a member of the Mps1 family of spindle assembly checkpoint kinases, is required to prevent meiosis I homolog non-disjunction. We also provide evidence for a novel function of Spo4, the fission yeast ortholog of Dbf4-dependent Cdc7 kinase, in regulating the length of anaphase II spindles. In the absence of Spo4, abnormally elongated anaphase II spindles frequently overlap and thus destroy the linear order of nuclei in the ascus. Our observation that the spo4Δ mutant phenotype can be partially suppressed by inhibiting Cdc2-as suggests that dysregulation of the activity of this cyclin-dependent kinase may cause abnormal elongation of anaphase II spindles in spo4Δ mutant cells.
Collapse
Affiliation(s)
- Ines Kovacikova
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Navarro FJ, Weston L, Nurse P. Global control of cell growth in fission yeast and its coordination with the cell cycle. Curr Opin Cell Biol 2012; 24:833-7. [PMID: 23182517 DOI: 10.1016/j.ceb.2012.10.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 10/19/2012] [Accepted: 10/22/2012] [Indexed: 11/24/2022]
Abstract
Cell growth is a fundamental process for every cell but its pleiotropic complexity makes it difficult to comprehend. Global aspects of cellular growth, like the overall determinants of growth rate are not well understood. Here we examine the cell growth pattern of the fission yeast Schizosaccharomyces pombe during the mitotic and meiotic cell cycles. We also explore recent findings illuminating aspects of cell size homeostasis and cell growth regulation, and propose that there are global controls over growth acting at the level of the cell.
Collapse
Affiliation(s)
- Francisco J Navarro
- Cell Cycle Lab, Cancer Research UK, London Research Institute. 44 Lincoln's Inn Fields, London, WC2A 3LY, UK.
| | | | | |
Collapse
|
34
|
Wu PYJ. Insights from a new tool for meiotic induction in fission yeast. Cell Cycle 2012; 11:2050. [PMID: 22622085 DOI: 10.4161/cc.20537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Pei-Yun Jenny Wu
- Institute of Genetics and Development of Rennes, CNRS UMR 6290, Rennes, France.
| |
Collapse
|
35
|
Affiliation(s)
- Hiroshi Murakami
- Department of Regulatory Biology; Graduate School of Science and Engineering; Saitama University; Saitama, Japan.
| | | |
Collapse
|
36
|
Pérez-Hidalgo L, Moreno S. Chemical inactivation of Pat1: a novel approach to synchronize meiosis. Cell Cycle 2012; 11:1875. [PMID: 22580453 DOI: 10.4161/cc.20512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Livia Pérez-Hidalgo
- Instituto de Biología Molecular y Celular del Cáncer and Instituto de Biología Funcional y Genómica; CSIC/Universidad de Salamanca; Instituto de Investigación Biomédica de Salamanca; Salamanca, Spain
| | | |
Collapse
|
37
|
|