1
|
Zhang F, Tang Y, Zhou H, Li K, West JA, Griffin JL, Lilley KS, Zhang N. The Yeast Gsk-3 Kinase Mck1 Is Necessary for Cell Wall Remodeling in Glucose-Starved and Cell Wall-Stressed Cells. Int J Mol Sci 2025; 26:3534. [PMID: 40332024 PMCID: PMC12027387 DOI: 10.3390/ijms26083534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
The cell wall integrity (CWI) pathway is responsible for transcriptional regulation of cell wall remodeling in response to cell wall stress. How cell wall remodeling mediated by the CWI pathway is effected by inputs from other signaling pathways is not well understood. Here, we demonstrate that the Mck1 kinase cooperates with Slt2, the MAP kinase of the CWI pathway, to promote cell wall thickening in glucose-starved cells. Integrative analyses of the transcriptome, proteome and metabolic profiling indicate that Mck1 is required for the accumulation of UDP-glucose (UDPG), the substrate for β-glucan synthesis, through the activation of two regulons: the Msn2/4-dependent stress response and the Cat8-/Adr1-mediated metabolic reprogram dependent on the SNF1 complex. Analysis of the phosphoproteome suggests that similar to mammalian Gsk-3 kinases, Mck1 is involved in the regulation of cytoskeleton-dependent cellular processes, metabolism, signaling and transcription. Specifically, Mck1 may be implicated in the Snf1-dependent metabolic reprogram through PKA inhibition and SAGA (Spt-Ada-Gcn5 acetyltransferase)-mediated transcription activation, a hypothesis further underscored by the significant overlap between the Mck1- and Gcn5-activated transcriptomes. Phenotypic analysis also supports the roles of Mck1 in actin cytoskeleton-mediated exocytosis to ensure plasma membrane homeostasis and cell wall remodeling in cell wall-stressed cells. Together, these findings not only reveal the novel functions of Mck1 in metabolic reprogramming and polarized growth but also provide valuable omics resources for future studies to uncover the underlying mechanisms of Mck1 and other Gsk-3 kinases in cell growth and stress response.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingzhi Tang
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - Houjiang Zhou
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Kaiqiang Li
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - James A. West
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - Julian L. Griffin
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - Kathryn S. Lilley
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - Nianshu Zhang
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| |
Collapse
|
2
|
Zhang J, Li L, Miao Y, Liu X, Sun H, Jiang M, Li X, Li Z, Liu C, Liu B, Xu X, Cao Q, Hou W, Chen C, Lou H. Symmetric control of sister chromatid cohesion establishment. Nucleic Acids Res 2023; 51:4760-4773. [PMID: 36912084 PMCID: PMC10250241 DOI: 10.1093/nar/gkad146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 03/14/2023] Open
Abstract
Besides entrapping sister chromatids, cohesin drives other high-order chromosomal structural dynamics like looping, compartmentalization and condensation. ESCO2 acetylates a subset of cohesin so that cohesion must be established and only be established between nascent sister chromatids. How this process is precisely achieved remains unknown. Here, we report that GSK3 family kinases provide higher hierarchical control through an ESCO2 regulator, CRL4MMS22L. GSK3s phosphorylate Thr105 in MMS22L, resulting in homo-dimerization of CRL4MMS22L and ESCO2 during S phase as evidenced by single-molecule spectroscopy and several biochemical approaches. A single phospho-mimicking mutation on MMS22L (T105D) is sufficient to mediate their dimerization and rescue the cohesion defects caused by GSK3 or MMS22L depletion, whereas non-phosphorylable T105A exerts dominant-negative effects even in wildtype cells. Through cell fractionation and time-course measurements, we show that GSK3s facilitate the timely chromatin association of MMS22L and ESCO2 and subsequently SMC3 acetylation. The necessity of ESCO2 dimerization implicates symmetric control of cohesion establishment in eukaryotes.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Basic Medical Sciences, Shenzhen University Medical School, South China Hospital, Shenzhen 518116. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lili Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Basic Medical Sciences, Shenzhen University Medical School, South China Hospital, Shenzhen 518116. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yu Miao
- School of Life Sciences; Beijing Advanced Innovation Center for Structural Biology; Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing 100084, China
| | - Xiaojing Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Basic Medical Sciences, Shenzhen University Medical School, South China Hospital, Shenzhen 518116. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Haitao Sun
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Basic Medical Sciences, Shenzhen University Medical School, South China Hospital, Shenzhen 518116. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Meiqian Jiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Basic Medical Sciences, Shenzhen University Medical School, South China Hospital, Shenzhen 518116. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoli Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Basic Medical Sciences, Shenzhen University Medical School, South China Hospital, Shenzhen 518116. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Cong Liu
- Department of Paediatrics, SCU-CUHK Joint Laboratory for Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, 610041 Chengdu, China
| | - Baohua Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Basic Medical Sciences, Shenzhen University Medical School, South China Hospital, Shenzhen 518116. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Basic Medical Sciences, Shenzhen University Medical School, South China Hospital, Shenzhen 518116. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qinhong Cao
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Basic Medical Sciences, Shenzhen University Medical School, South China Hospital, Shenzhen 518116. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenya Hou
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Basic Medical Sciences, Shenzhen University Medical School, South China Hospital, Shenzhen 518116. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Shenzhen University General Hospital and School of Medicine, Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Chunlai Chen
- School of Life Sciences; Beijing Advanced Innovation Center for Structural Biology; Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing 100084, China
| | - Huiqiang Lou
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Basic Medical Sciences, Shenzhen University Medical School, South China Hospital, Shenzhen 518116. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Rathi S, Polat I, Pereira G. The budding yeast GSK-3 homologue Mck1 is an essential component of the spindle position checkpoint. Open Biol 2022; 12:220203. [PMID: 36321416 PMCID: PMC9627454 DOI: 10.1098/rsob.220203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The spindle position checkpoint (SPOC) is a mitotic surveillance mechanism in Saccharomyces cerevisiae that prevents cells from completing mitosis in response to spindle misalignment, thereby contributing to genomic integrity. The kinase Kin4, one of the most downstream SPOC components, is essential to stop the mitotic exit network (MEN), a signalling pathway that promotes the exit from mitosis and cell division. Previous work, however, suggested that a Kin4-independent pathway contributes to SPOC, yet the underlying mechanisms remain elusive. Here, we established the glycogen-synthase-kinase-3 (GSK-3) homologue Mck1, as a novel component that works independently of Kin4 to engage SPOC. Our data indicate that both Kin4 and Mck1 work in parallel to counteract MEN activation by the Cdc14 early anaphase release (FEAR) network. We show that Mck1's function in SPOC is mediated by the pre-replication complex protein and mitotic cyclin-dependent kinase (M-Cdk) inhibitor, Cdc6, which is degraded in a Mck1-dependent manner prior to mitosis. Moderate overproduction of Cdc6 phenocopies MCK1 deletion and causes SPOC deficiency via its N-terminal, M-Cdk inhibitory domain. Our data uncover an unprecedented role of GSK-3 kinases in coordinating spindle orientation with cell cycle progression.
Collapse
Affiliation(s)
- Siddhi Rathi
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany,Heidelberg Biosciences International Graduate School (HBIGS) and Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany,German Academic Exchange Service (DAAD), Bonn, Germany
| | - Irem Polat
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Gislene Pereira
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany,Centre for Molecular Biology (ZMBH), University of Heidelberg, Heidelberg, Germany,German Cancer Research Centre (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
4
|
Rathi S, Polat I, Pereira G. The budding yeast GSK-3 homologue Mck1 is an essential component of the spindle position checkpoint. Open Biol 2022. [PMID: 36321416 DOI: 10.6084/m9.figshare.c.6261880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The spindle position checkpoint (SPOC) is a mitotic surveillance mechanism in Saccharomyces cerevisiae that prevents cells from completing mitosis in response to spindle misalignment, thereby contributing to genomic integrity. The kinase Kin4, one of the most downstream SPOC components, is essential to stop the mitotic exit network (MEN), a signalling pathway that promotes the exit from mitosis and cell division. Previous work, however, suggested that a Kin4-independent pathway contributes to SPOC, yet the underlying mechanisms remain elusive. Here, we established the glycogen-synthase-kinase-3 (GSK-3) homologue Mck1, as a novel component that works independently of Kin4 to engage SPOC. Our data indicate that both Kin4 and Mck1 work in parallel to counteract MEN activation by the Cdc14 early anaphase release (FEAR) network. We show that Mck1's function in SPOC is mediated by the pre-replication complex protein and mitotic cyclin-dependent kinase (M-Cdk) inhibitor, Cdc6, which is degraded in a Mck1-dependent manner prior to mitosis. Moderate overproduction of Cdc6 phenocopies MCK1 deletion and causes SPOC deficiency via its N-terminal, M-Cdk inhibitory domain. Our data uncover an unprecedented role of GSK-3 kinases in coordinating spindle orientation with cell cycle progression.
Collapse
Affiliation(s)
- Siddhi Rathi
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany.,Heidelberg Biosciences International Graduate School (HBIGS) and Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany.,German Academic Exchange Service (DAAD), Bonn, Germany
| | - Irem Polat
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Gislene Pereira
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany.,Centre for Molecular Biology (ZMBH), University of Heidelberg, Heidelberg, Germany.,German Cancer Research Centre (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
5
|
Wang M, Chen L, Huang W, Jin M, Wang Q, Gao Z, Jin Z. Improving the anti-keloid outcomes through liposomes loading paclitaxel-cholesterol complexes. Int J Nanomedicine 2019; 14:1385-1400. [PMID: 30863067 PMCID: PMC6390862 DOI: 10.2147/ijn.s195375] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Keloids represent benign fibroproliferative tumors which result from elevated expression of inflammation. Paclitaxel (PTX) was an effective chemotherapeutic agent and has been reported to have anti-fibrotic effects, but the strong hydrophobicity brings a challenge for its clinical application. Purpose The objective of this study was to improve the water solubility of PTX and investigate its anti-keloid effects. Methods We prepared a PTX-cholesterol-loaded liposomes (PTXL) by thin film evaporation fashion and characterized their physicochemical properties. We also investigated the effects of PTX on proliferation, invasion and fibrosis of keloid fibroblasts in vitro and in vivo. Results The prepared PTXL have a spherical appearance, a particle size of 101.43 nm and a zeta potential of −41.63 mV. PTXL possessed a high drug entrapment efficiency of 95.63% and exhibited a good stability within 30 days. The drugs in PTXL were released in a slow and sustained mode. The PTXL could be effectively uptaken into human keloids fibroblast (HKFs) in a time-dependent manner. In vitro, PTXL showed better ability on inhibiting cell proliferation, migration and invasion, and effectively on promoting apoptosis and arresting cell cycle in G2/M phase compared to PTX. Meanwhile, in vivo studies indicated that the PTXL had better performance on inhibiting the keloids growth compared to the PTX in keloid-bearing BALB/c nude mice model. Finally, we found PTX treatment suppressed the production of tumor necrosis factor alpah (TNF-α), interleukin 6 (IL-6) and transforming growth factor beta (TGF-β) and inhibited the expression of alpha smooth muscle actin (α-SMA) and collagen I in HKFs. The activation of protein kinase B (AKT)/glycogen synthase kinase 3 beta (GSK3β) signaling pathway also blocked by PTX in cultured HKFs and keloid tissues. LY294002, a PI3K (phosphatidylinositol 3-kinase)/AKT inhibitor, also suppressed the expression of TNF-α, IL-6 and TGF-β, and simultaneously, reduced the production of α-SMA and collagen I in HKFs. The inhibition of AKT/GSK3β signaling pathway contribute to inhibit the generation of fibrogenic cytokines by PTXL on ameliorating fibrosis progress in keloids. Conclusion Our results suggested that the developed PTXL would become a promising therapeutic agent in the field of anti-keloid therapy.
Collapse
Affiliation(s)
- Mengjiao Wang
- Klebs Research Center, Department of Dermatology, Yanbian University Hospital, Yanji 133000, China,
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China,
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China,
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China,
| | - Qiming Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China,
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China,
| | - Zhehu Jin
- Klebs Research Center, Department of Dermatology, Yanbian University Hospital, Yanji 133000, China,
| |
Collapse
|
6
|
Płonka M, Wawrzycka D, Wysocki R, Boguta M, Cieśla M. Coupling of RNA polymerase III assembly to cell cycle progression in Saccharomyces cerevisiae. Cell Cycle 2019; 18:500-510. [PMID: 30760101 DOI: 10.1080/15384101.2019.1578134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Assembly of the RNA polymerases in both yeast and humans is proposed to occur in the cytoplasm prior to their nuclear import. Our previous studies identified a cold-sensitive mutation, rpc128-1007, in the yeast gene encoding the second largest Pol III subunit, Rpc128. rpc128-1007 is associated with defective assembly of Pol III complex and, in consequence, decreased level of tRNA synthesis. Here, we show that rpc128-1007 mutant cells remain largely unbudded and larger than wild type cells. Flow cytometry revealed that most rpc128-1007 mutant cells have G1 DNA content, suggesting that this mutation causes pronounced cell cycle delay in the G1 phase. Increased expression of gene encoding Rbs1, the Pol III assembly/import factor, could counteract G1 arrest observed in the rpc128-1007 mutant and restore wild type morphology of mutant cells. Concomitantly, cells lacking Rbs1 show a mild delay in G1 phase exit, indicating that Rbs1 is required for timely cell cycle progression. Using the double rpc128-1007 maf1Δ mutant in which tRNA synthesis is recovered, we confirmed that the Pol III assembly defect associated with rpc128-1007 is a primary cause of cell cycle arrest. Together our results indicate that impairment of Pol III complex assembly is coupled to cell cycle inhibition in the G1 phase.
Collapse
Affiliation(s)
- Marta Płonka
- a Department of Genetics, Institute of Biochemistry and Biophysics , Polish Academy of Sciences , Warsaw , Poland
| | - Donata Wawrzycka
- b Department of Genetics and Cell Physiology, Institute of Experimental Biology , University of Wrocław , Wrocław , Poland
| | - Robert Wysocki
- b Department of Genetics and Cell Physiology, Institute of Experimental Biology , University of Wrocław , Wrocław , Poland
| | - Magdalena Boguta
- a Department of Genetics, Institute of Biochemistry and Biophysics , Polish Academy of Sciences , Warsaw , Poland
| | - Małgorzata Cieśla
- a Department of Genetics, Institute of Biochemistry and Biophysics , Polish Academy of Sciences , Warsaw , Poland
| |
Collapse
|
7
|
Lithium chloride antileukemic activity in acute promyelocytic leukemia is GSK-3 and MEK/ERK dependent. Leukemia 2015; 29:2277-84. [PMID: 26108692 DOI: 10.1038/leu.2015.159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 06/04/2015] [Accepted: 06/09/2015] [Indexed: 11/08/2022]
Abstract
We recently identified that the MEK/ERK1/2 pathway synergized with retinoic acid (RA) to restore both transcriptional activity and RA-induced differentiation in RA-resistant acute promyelocytic leukemia (APL) cells. To target the MEK/ERK pathway, we identified glycogen synthase kinase-3β (GSK-3β) inhibitors including lithium chloride (LiCl) as activators of this pathway in APL cells. Using NB4 (RA-sensitive) and UF-1 (RA-resistant) APL cell lines, we observed that LiCl as well as synthetic GSK-3β inhibitors decreased proliferation, induced apoptosis and restored, in RA-resistant cells, the expression of RA target genes and the RA-induced differentiation. Inhibition of the MEK/ERK1/2 pathway abolished these effects. These results were corroborated in primary APL patient cells and translated in vivo using an APL preclinical mouse model in which LiCl given alone was as efficient as RA in increasing survival of leukemic mice compared with untreated mice. When LiCl was combined with RA, we observed a significant survival advantage compared with mice treated by RA alone. In this work, we demonstrate that LiCl, a well-tolerated agent in humans, has antileukemic activity in APL and that it has the potential to restore RA-induced transcriptional activation and differentiation in RA-resistant APL cells in an MEK/ERK-dependent manner.
Collapse
|
8
|
Quan Z, Cao L, Tang Y, Yan Y, Oliver SG, Zhang N. The Yeast GSK-3 Homologue Mck1 Is a Key Controller of Quiescence Entry and Chronological Lifespan. PLoS Genet 2015; 11:e1005282. [PMID: 26103122 PMCID: PMC4477894 DOI: 10.1371/journal.pgen.1005282] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 05/14/2015] [Indexed: 02/06/2023] Open
Abstract
Upon starvation for glucose or any other core nutrient, yeast cells exit from the mitotic cell cycle and acquire a set of G0-specific characteristics to ensure long-term survival. It is not well understood whether or how cell cycle progression is coordinated with the acquisition of different G0-related features during the transition to stationary phase (SP). Here, we identify the yeast GSK-3 homologue Mck1 as a key regulator of G0 entry and reveal that Mck1 acts in parallel to Rim15 to activate starvation-induced gene expression, the acquisition of stress resistance, the accumulation of storage carbohydrates, the ability of early SP cells to exit from quiescence, and their chronological lifespan. FACS and microscopy imaging analyses indicate that Mck1 promotes mother-daughter cell separation and together with Rim15, modulates cell size. This indicates that the two kinases coordinate the transition-phase cell cycle, cell size and the acquisition of different G0-specific features. Epistasis experiments place MCK1, like RIM15, downstream of RAS2 in antagonising cell growth and activating stress resistance and glycogen accumulation. Remarkably, in the ras2∆ cells, deletion of MCK1 and RIM15 together, compared to removal of either of them alone, compromises respiratory growth and enhances heat tolerance and glycogen accumulation. Our data indicate that the nutrient sensor Ras2 may prevent the acquisition of G0-specific features via at least two pathways. One involves the negative regulation of the effectors of G0 entry such as Mck1 and Rim15, while the other likely to involve its functions in promoting respiratory growth, a phenotype also contributed by Mck1 and Rim15.
Collapse
Affiliation(s)
- Zhenzhen Quan
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Lu Cao
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Yingzhi Tang
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Yanchun Yan
- Graduate school of Chinese Academy of Agricultural Sciences, Zhongguancun, Beijing, PR China
| | - Stephen G. Oliver
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Nianshu Zhang
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Qin J, Wang G, Jiang C, Xu JR, Wang C. Fgk3 glycogen synthase kinase is important for development, pathogenesis, and stress responses in Fusarium graminearum. Sci Rep 2015; 5:8504. [PMID: 25703795 PMCID: PMC4336942 DOI: 10.1038/srep08504] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/22/2015] [Indexed: 11/09/2022] Open
Abstract
Wheat scab caused by Fusarium graminearum is an important disease. In a previous study, the FGK3 glycogen synthase kinase gene orthologous to mammalian GSK3 was identified as an important virulence factor. Although GSK3 orthologs are well-conserved, none of them have been functionally characterized in fungal pathogens. In this study, we further characterized the roles of FGK3 gene. The Δfgk3 mutant had pleiotropic defects in growth rate, conidium morphology, germination, and perithecium formation. It was non-pathogenic in infection assays and blocked in DON production. Glycogen accumulation was increased in the Δfgk3 mutant, confirming the inhibitory role of Fgk3 on glycogen synthase. In FGK3-GFP transformants, GFP signals mainly localized to the cytoplasm in conidia but to the cytoplasm and nucleus in hyphae. Moreover, the expression level of FGK3 increased in response to cold, H2O2, and SDS stresses. In the Δfgk3 mutant, cold, heat, and salt stresses failed to induce the expression of the stress response-related genes FgGRE2, FgGPD1, FgCTT1, and FgMSN2. In the presence of 80 mM LiCl, a GSK3 kinase inhibitor, the wild type displayed similar defects to the Δfgk3 mutant. Overall, our results indicate that FGK3 is important for growth, conidiogenesis, DON production, pathogenicity, and stress responses in F. graminearum.
Collapse
Affiliation(s)
- Jun Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Guanghui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, USA
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
10
|
McCubrey JA, Steelman LS, Bertrand FE, Davis NM, Sokolosky M, Abrams SL, Montalto G, D'Assoro AB, Libra M, Nicoletti F, Maestro R, Basecke J, Rakus D, Gizak A, Demidenko ZN, Cocco L, Martelli AM, Cervello M. GSK-3 as potential target for therapeutic intervention in cancer. Oncotarget 2015; 5:2881-911. [PMID: 24931005 PMCID: PMC4102778 DOI: 10.18632/oncotarget.2037] [Citation(s) in RCA: 384] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The serine/threonine kinase glycogen synthase kinase-3 (GSK-3) was initially identified and studied in the regulation of glycogen synthesis. GSK-3 functions in a wide range of cellular processes. Aberrant activity of GSK-3 has been implicated in many human pathologies including: bipolar depression, Alzheimer's disease, Parkinson's disease, cancer, non-insulin-dependent diabetes mellitus (NIDDM) and others. In some cases, suppression of GSK-3 activity by phosphorylation by Akt and other kinases has been associated with cancer progression. In these cases, GSK-3 has tumor suppressor functions. In other cases, GSK-3 has been associated with tumor progression by stabilizing components of the beta-catenin complex. In these situations, GSK-3 has oncogenic properties. While many inhibitors to GSK-3 have been developed, their use remains controversial because of the ambiguous role of GSK-3 in cancer development. In this review, we will focus on the diverse roles that GSK-3 plays in various human cancers, in particular in solid tumors. Recently, GSK-3 has also been implicated in the generation of cancer stem cells in various cell types. We will also discuss how this pivotal kinase interacts with multiple signaling pathways such as: PI3K/PTEN/Akt/mTORC1, Ras/Raf/MEK/ERK, Wnt/beta-catenin, Hedgehog, Notch and others.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology,Brody School of Medicine at East Carolina University Greenville, NC 27858 USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Multifaceted roles of GSK-3 and Wnt/β-catenin in hematopoiesis and leukemogenesis: opportunities for therapeutic intervention. Leukemia 2013; 28:15-33. [PMID: 23778311 PMCID: PMC3887408 DOI: 10.1038/leu.2013.184] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/08/2013] [Accepted: 06/11/2013] [Indexed: 02/08/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is well documented to participate in a complex array of critical cellular processes. It was initially identified in rat skeletal muscle as a serine/threonine kinase that phosphorylated and inactivated glycogen synthase. This versatile protein is involved in numerous signaling pathways that influence metabolism, embryogenesis, differentiation, migration, cell cycle progression and survival. Recently, GSK-3 has been implicated in leukemia stem cell pathophysiology and may be an appropriate target for its eradication. In this review, we will discuss the roles that GSK-3 plays in hematopoiesis and leukemogenesis as how this pivotal kinase can interact with multiple signaling pathways such as: Wnt/β-catenin, phosphoinositide 3-kinase (PI3K)/phosphatase and tensin homolog (PTEN)/Akt/mammalian target of rapamycin (mTOR), Ras/Raf/MEK/extracellular signal-regulated kinase (ERK), Notch and others. Moreover, we will discuss how targeting GSK-3 and these other pathways can improve leukemia therapy and may overcome therapeutic resistance. In summary, GSK-3 is a crucial regulatory kinase interacting with multiple pathways to control various physiological processes, as well as leukemia stem cells, leukemia progression and therapeutic resistance. GSK-3 and Wnt are clearly intriguing therapeutic targets.
Collapse
|