1
|
Rodríguez-Berríos RR, Ríos-Delgado AM, Perdomo-Lizardo AP, Cardona-Rivera AE, Vidal-Rosado ÁG, Narváez-Lozano GA, Nieves-Quiñones IA, Rodríguez-Vargas JA, Álamo-Diverse KY, Lebrón-Acosta N, Medina-Berríos N, Rivera-Lugo PS, Avellanet-Crespo YA, Ortiz-Colón YW. Extraction, Isolation, Characterization, and Bioactivity of Polypropionates and Related Polyketide Metabolites from the Caribbean Region. Antibiotics (Basel) 2023; 12:1087. [PMID: 37508183 PMCID: PMC10376297 DOI: 10.3390/antibiotics12071087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
The Caribbean region is a hotspot of biodiversity (i.e., algae, sponges, corals, mollusks, microorganisms, cyanobacteria, and dinoflagellates) that produces secondary metabolites such as polyketides and polypropionates. Polyketides are a diverse class of natural products synthesized by organisms through a biosynthetic pathway catalyzed by polyketide synthase (PKS). This group of compounds is subdivided into fatty acids, aromatics, and polypropionates such as macrolides, and linear and cyclic polyethers. Researchers have studied the Caribbean region to find natural products and focused on isolation, purification, structural characterization, synthesis, and conducting biological assays against parasites, cancer, fungi, and bacteria. These studies have been summarized in this review, including research from 1981 to 2020. This review includes about 90 compounds isolated in the Caribbean that meet the structural properties of polyketides. Out of 90 compounds presented, 73 have the absolute stereochemical configuration, and 82 have shown biological activity. We expect to motivate the researchers to continue exploring the Caribbean region's marine environments to discover and investigate new polyketide and polypropionate natural products.
Collapse
Affiliation(s)
- Raúl R. Rodríguez-Berríos
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, P.O. Box 23346, San Juan PR 00931-3346, Puerto Rico
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Abstract
Invertebrates, particularly sponges, have been a dominant source of new marine natural products. For example, lasonolide A (LSA) is a potential anticancer molecule isolated from the marine sponge Forcepia sp., with nanomolar growth inhibitory activity and a unique cytotoxicity profile against the National Cancer Institute 60-cell-line screen. Here, we identified the putative biosynthetic pathway for LSA. Genomic binning of the Forcepia sponge metagenome revealed a Gram-negative bacterium belonging to the phylum Verrucomicrobia as the candidate producer of LSA. Phylogenetic analysis showed that this bacterium, here named "Candidatus Thermopylae lasonolidus," only has 88.78% 16S rRNA identity with the closest relative, Pedosphaera parvula Ellin514, indicating that it represents a new genus. The lasonolide A (las) biosynthetic gene cluster (BGC) was identified as a trans-acyltransferase (AT) polyketide synthase (PKS) pathway. Compared with its host genome, the las BGC exhibits a significantly different GC content and pentanucleotide frequency, suggesting a potential horizontal acquisition of the gene cluster. Furthermore, three copies of the putative las pathway were identified in the candidate producer genome. Differences between the three las repeats were observed, including the presence of three insertions, two single-nucleotide polymorphisms, and the absence of a stand-alone acyl carrier protein in one of the repeats. Even though the verrucomicrobial producer shows signs of genome reduction, its genome size is still fairly large (about 5 Mbp), and, compared to its closest free-living relative, it contains most of the primary metabolic pathways, suggesting that it is in the early stages of reduction. IMPORTANCE While sponges are valuable sources of bioactive natural products, a majority of these compounds are produced in small quantities by uncultured symbionts, hampering the study and clinical development of these unique compounds. Lasonolide A (LSA), isolated from marine sponge Forcepia sp., is a cytotoxic molecule active at nanomolar concentrations, which causes premature chromosome condensation, blebbing, cell contraction, and loss of cell adhesion, indicating a novel mechanism of action and making it a potential anticancer drug lead. However, its limited supply hampers progression to clinical trials. We investigated the microbiome of Forcepia sp. using culture-independent DNA sequencing, identified genes likely responsible for LSA synthesis in an uncultured bacterium, and assembled the symbiont's genome. These insights provide future opportunities for heterologous expression and cultivation efforts that may minimize LSA's supply problem.
Collapse
|
3
|
Chaudhry GES, Md Akim A, Sung YY, Sifzizul TMT. Cancer and apoptosis: The apoptotic activity of plant and marine natural products and their potential as targeted cancer therapeutics. Front Pharmacol 2022; 13:842376. [PMID: 36034846 PMCID: PMC9399632 DOI: 10.3389/fphar.2022.842376] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 07/13/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer is a multifactorial, multi-stage disease, including complex cascades of signaling pathways—the cell growth governed by dysregulated and abrupt cell division. Due to the complexity and multi-regulatory cancer progression, cancer is still a challenging disease to treat and survive. The screening of extracts and fractions from plants and marine species might lead to the discovery of more effective compounds for cancer therapeutics. The isolated compounds and reformed analogs were known as future prospective contenders for anti-cancer chemotherapy. For example, Taxol, a potent mitotic inhibitor discovered from Taxus brevifolia, suppresses cell growth and arrest, induces apoptosis, and inhibits proliferation. Similarly, marine sponges show remarkable tumor chemo preventive and chemotherapeutic potential. However, there is limited research to date. Several plants and marine-derived anti-cancer compounds having the property to induce apoptosis have been approved for clinical trials. The anti-cancer activity kills the cell and slows the growth of cancer cells. Among cell death mechanisms, apoptosis induction is a more profound mechanism of cell death triggered by naturally isolated anti-cancer agents. Evading apoptosis is the major hurdle in killing cancer cells, a mechanism mainly regulated as intrinsic and extrinsic. However, it is possible to modify the apoptosis-resistant phenotype of the cell by altering many of these mechanisms. Various extracts and fractions successfully induce apoptosis, cell-cycle modulation, apoptosis, and anti-proliferative activity. Therefore, there is a pressing need to develop new anti-cancer drugs of natural origins to reduce the effects on normal cells. Here, we’ve emphasized the most critical elements: i) A better understanding of cancer progression and development and its origins, ii) Molecular strategies to inhibit the cell proliferation/Carcino-genesis, iii) Critical regulators of cancer cell proliferation and development, iv) Signaling Pathways in Apoptosis: Potential Targets for targeted therapeutics, v) Why Apoptosis induction is mandatory for effective chemotherapy, vi) Plants extracts/fractions as potential apoptotic inducers, vii) Marine extracts as Apoptotic inducers, viii) Marine isolated Targeted compounds as Apoptotic inducers (FDA Approved/treatment Phase). This study provides a potential therapeutic option for cancer, although more clinical studies are needed to verify its efficacy in cancer chemotherapy.
Collapse
Affiliation(s)
- Gul-e-Saba Chaudhry
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
- *Correspondence: Gul-e-Saba Chaudhry, ,
| | - Abdah Md Akim
- Department of Biomedical Sciences, Faculty of Medicine and Health sciences, University of Putra Malaysia, Seri Kembangan, Malaysia
| | - Yeong Yik Sung
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | | |
Collapse
|
4
|
Sato T, Suto T, Nagashima Y, Mukai S, Chida N. Total Synthesis of Skipped Diene Natural Products. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100421] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Takaaki Sato
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Takahiro Suto
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Yoshiyuki Nagashima
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Shori Mukai
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Noritaka Chida
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| |
Collapse
|
5
|
Fariña-Ramos M, García C, Martín VS, Álvarez-Méndez SJ. Synthetic efforts on the road to marine natural products bearing 4- O-2,3,4,6-tetrasubstituted THPs: an update. RSC Adv 2021; 11:5832-5858. [PMID: 35423108 PMCID: PMC8694735 DOI: 10.1039/d0ra10755g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/26/2021] [Indexed: 11/21/2022] Open
Abstract
Scientific literature is inundated with secondary metabolites from marine sources. In this ocean of natural products, the presence of recurring patterns has traditionally led scientists to unravel the biosynthetic mechanisms that naturally yield these products, as well as to imitate Nature to prepare them in the laboratory, especially when promising bioactivities and stimulating molecular architectures are involucrate. For instance, natural products containing multisubstituted oxygenated rings and macrocyclic lactones are recurrently selected as targets for developing total syntheses. Thus, in the last decades a noteworthy number of synthetic works regarding miyakolide, madeirolide A and representative compounds of polycavernosides, lasonolides and clavosolides have come to fruition. Up to now, these families of macrolides are the only marine natural products bearing a tetrasubstituted tetrahydropyran ring with carbon substituents at positions 2, 3 and 6, as well as an oxygen at position 4. Their splendid structures have received the attention of the synthetic community, up to the point of starring in dozens of articles, and even some reviews. This work covers all the synthetic studies towards miyakolide and madeirolide A, as well as the synthetic efforts performed after the previous specialised reviews about lasonolide A, polycavernoside A and clavosolides, published in 2006, 2007 and 2016, respectively. In total, this review summarises 22 articles in which these marine natural products with 4-O-2,3,4,6-tetrasubstituted tetrahydropyrans have the leading role.
Collapse
Affiliation(s)
- Marta Fariña-Ramos
- Departamento de Química Orgánica, Universidad de La Laguna Avda Astrofísico Francisco Sánchez 38206 La Laguna Tenerife Spain
- Instituto Universitario de Bio-Orgánica Antonio González, Síntesis Orgánica Sostenible, Unidad Asociada al CSIC, Universidad de La Laguna Avda Astrofísico Francisco Sánchez 38206 La Laguna Tenerife Spain
| | - Celina García
- Departamento de Química Orgánica, Universidad de La Laguna Avda Astrofísico Francisco Sánchez 38206 La Laguna Tenerife Spain
- Instituto Universitario de Bio-Orgánica Antonio González, Síntesis Orgánica Sostenible, Unidad Asociada al CSIC, Universidad de La Laguna Avda Astrofísico Francisco Sánchez 38206 La Laguna Tenerife Spain
| | - Víctor S Martín
- Departamento de Química Orgánica, Universidad de La Laguna Avda Astrofísico Francisco Sánchez 38206 La Laguna Tenerife Spain
- Instituto Universitario de Bio-Orgánica Antonio González, Síntesis Orgánica Sostenible, Unidad Asociada al CSIC, Universidad de La Laguna Avda Astrofísico Francisco Sánchez 38206 La Laguna Tenerife Spain
| | - Sergio J Álvarez-Méndez
- Departamento de Química Orgánica, Universidad de La Laguna Avda Astrofísico Francisco Sánchez 38206 La Laguna Tenerife Spain
- Instituto Universitario de Bio-Orgánica Antonio González, Síntesis Orgánica Sostenible, Unidad Asociada al CSIC, Universidad de La Laguna Avda Astrofísico Francisco Sánchez 38206 La Laguna Tenerife Spain
| |
Collapse
|
6
|
Yang L, Lin Z, Zheng K, Kong L, Hong R. A Modular Synthesis of Antitumor Macrolide (–)‐Lasonolide A †. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lin Yang
- CAS Key Laboratory of Synthetic Chemistry of Natural SubstancesCenter for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
| | - Zuming Lin
- CAS Key Laboratory of Synthetic Chemistry of Natural SubstancesCenter for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Kuan Zheng
- CAS Key Laboratory of Synthetic Chemistry of Natural SubstancesCenter for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
| | - Luyao Kong
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
| | - Ran Hong
- CAS Key Laboratory of Synthetic Chemistry of Natural SubstancesCenter for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
7
|
Dubey R, Stivala CE, Nguyen HQ, Goo YH, Paul A, Carette JE, Trost BM, Rohatgi R. Lipid droplets can promote drug accumulation and activation. Nat Chem Biol 2020; 16:206-213. [PMID: 31932720 PMCID: PMC6989039 DOI: 10.1038/s41589-019-0447-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 12/02/2019] [Indexed: 11/28/2022]
Abstract
Genetic screens in cultured human cells represent a powerful unbiased strategy to identify cellular pathways that determine drug efficacy, providing critical information for clinical development. We used insertional mutagenesis-based screens in haploid cells to identify genes required for the sensitivity to lasonolide A (LasA), a macrolide derived from a marine sponge that kills certain types of cancer cells at low nanomolar concentrations. Our screens converged on a single gene, LDAH, encoding a member of the metabolite serine hydrolase family that is localized on the surface of lipid droplets. Mechanistic studies revealed that LasA accumulates in lipid droplets, where it is cleaved into a toxic metabolite by LDAH. We suggest that selective partitioning of hydrophobic drugs into the oil phase of lipid droplets can influence their activation and eventual toxicity to cells.
Collapse
Affiliation(s)
- Ramin Dubey
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Craig E Stivala
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Genentech, South San Francisco, CA, USA
| | | | - Young-Hwa Goo
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Antoni Paul
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Barry M Trost
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Rajat Rohatgi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
8
|
Affiliation(s)
- Zhipeng Li
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Siti Nur Sarah Morris
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - James A Olzmann
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
9
|
Zhang Q, Xiong M, Liu J, Wang S, Du T, Kang T, Liu Y, Cheng H, Huang M, Gou M. Targeted nanoparticle-mediated LHPP for melanoma treatment. Int J Nanomedicine 2019; 14:3455-3468. [PMID: 31190803 PMCID: PMC6516749 DOI: 10.2147/ijn.s196374] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/12/2019] [Indexed: 02/05/2023] Open
Abstract
Background: Phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) is a novel tumor suppressor. However, whether LHPP is effective to melanoma has not been investigated. Gene therapy provides a new strategy for the treatment of melanoma. Currently, it suffers from the lack of safe and effective gene delivery systems. Methods: A CRGDKGPDC peptide (iRGD) modified hybrid monomethoxy poly(ethylene glycol)-poly(D,L-lactide) nanoparticle (iDPP) was prepared and complexed with a LHPP plasmid, forming an iDPP/LHPP nanocomplex. The iDPP/LHPP nanocomplex was characterized by particle size distribution, zeta potential, morphology, cytotoxicity, and transfection efficiency. The antitumor efficacy of the nanocomplex against melanoma was studied both in vitro and in vivo. Further, the potential epigenetic changes in melanoma induced by iDPP/LHPP nanocomplex were evaluated. Results: The iDPP/LHPP nanocomplex showed high transfection efficiency and low toxicity. Moreover, the nanocomplex displayed a neutral charge that can meet the requirement of intravenous injection for targeted gene therapy. In vitro and in vivo experiments indicated that the iDPP/LHPP nanocomplex significantly inhibited the melanoma growth without causing notable adverse effects. We also found that LHPP played an important role in epigenetics. It regulated the expression of genes related to the proliferation and apoptosis chiefly at the level of transcription. Conclusion: This work demonstrates that the iDPP nanoparticle-delivered LHPP gene has a potential application in melanoma therapy through regulation of the genes associated with epigenetics.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Meimei Xiong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jinlu Liu
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Shuai Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Ting Du
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Tianyi Kang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yu Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Hao Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Meijuan Huang
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
10
|
G2 Premature Chromosome Condensation/Chromosome Aberration Assay: Drug-Induced Premature Chromosome Condensation (PCC) Protocols and Cytogenetic Approaches in Mitotic Chromosome and Interphase Chromatin for Radiation Biology. Methods Mol Biol 2019; 1984:47-60. [PMID: 31267419 DOI: 10.1007/978-1-4939-9432-8_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chromosome analysis is a fundamental technique for a wide range of cytogenetic studies. Chromosome aberrations are easily introduced by many kinds of clastogenic agents such as ionizing irradiation, UV, or alkylating agents, and damaged chromosomes may be prone to cancer. Chromosomes are conventionally prepared from mitotic cells arrested by the colcemid block method. However, obtaining of mitotic chromosomes is sometimes hampered under several circumstances, for example after high-dose (over several Gys of γ-rays) ionizing irradiation exposure accident. As a result, cytogenetic analysis will be often difficult or even impossible in such cases. Premature chromosome condensation (PCC) is an alternative technique that has proved to be a unique and useful way in chromosome analysis. Previously, PCC has been achieved following cell fusion mediated either by fusogenic viruses (for example Sendai virus) or by polyethylene glycol (PEG) (cell-fusion PCC), but the cell-fusion PCC has several drawbacks. The novel drug-induced PCC use of specific inhibitors for serine/threonine protein phosphatase was introduced about 20 years ago. This method is much simple and easy even than the conventional mitotic chromosome preparation using colcemid block protocol and the obtained PCC index (equivalent to mitotic index for metaphase chromosome) is much higher. Furthermore, this method allows the interphase chromatin to be condensed and visualized like mitotic chromosomes, and thus has been opening the way for chromosome analysis not only in metaphase chromosomes but also in interphase chromatin. The drug-induced PCC has therefore proven the usefulness in cytogenetics and other many cell biology fields. Since the first version of drug-induced PCC protocol has been published in 2009 (Gotoh, Methods in molecular biology. Humana Press, New York, 2009), many newer applications of drug-induced PCC in radiation biology and chromosome science fields in a wide range of species from animal to plant have been reported (Gotoh et al., Biomed Res 16:63-68, 1995; Lamadrid Boada et al., Mutat Res 757:45-51, 2013; Ravi et al., Biochimie 95:124-33, 2013; Ono et al., J Cell Biol 200:429-41, 2013; Vagnarelli, Exp Cell Res 318:1435-41, 2012; Roukos et al., Nat Protoc 9:2476-92, 2014; Miura and Blakely, Cytometry A 79:1016-22, 2013; Zabka et al., J Plant Physiol 174:62-70, 2015; Samaniego et al., Planta 215:195-204, 2002; Rybaczek et al., Folia Histochem Cytobiol 40:51-9, 2002; Gotoh and Durante J Cell Physiol 209:297-304, 2006). Therefore as a new edition, I will write in this chapter the drug-induced PCC technique with newer findings, in particular focused drug-induced PCC protocols in radiation biology with referring updated articles published recently.
Collapse
|
11
|
Yang L, Lin Z, Shao S, Zhao Q, Hong R. An Enantioconvergent and Concise Synthesis of Lasonolide A. Angew Chem Int Ed Engl 2018; 57:16200-16204. [PMID: 30320943 DOI: 10.1002/anie.201811093] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Indexed: 12/16/2022]
Abstract
Efficient access to medicinally significant natural products is an essential basis for the development of pharmaceuticals. The limited availability of marine natural products impedes broad biological evaluation. Despite several elegant syntheses of (-)-lasonolide A having been reported, a practical synthesis of this potent anticancer polyketide remains elusive. Based on the application of borane as a traceless protecting group and the development of an unprecedented bissulfone reagent for Julia olefination, (-)-lasonolide A was assembled in an enantioconvergent manner through the application of stereoselective hydroboration, allylation, and oxidation. This concise route may provide a realistic solution for accessing derivatives and analogues.
Collapse
Affiliation(s)
- Lin Yang
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China.,University of Chinese of Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Zuming Lin
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China.,University of Chinese of Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Shunjie Shao
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China.,University of Chinese of Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Qian Zhao
- Jiangsu Key Laboratory of Chiral Drug Development, Jiangsu Aosaikang Parmaceutical CO., LTD., Nanjing, 211112, P. R. China
| | - Ran Hong
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China.,University of Chinese of Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
12
|
Yang L, Lin Z, Shao S, Zhao Q, Hong R. An Enantioconvergent and Concise Synthesis of Lasonolide A. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Lin Yang
- Key Laboratory of Synthetic Chemistry of Natural SubstancesCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
- University of Chinese of Academy of Sciences 19A Yuquan Road Beijing 100049 P. R. China
| | - Zuming Lin
- Key Laboratory of Synthetic Chemistry of Natural SubstancesCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
- University of Chinese of Academy of Sciences 19A Yuquan Road Beijing 100049 P. R. China
| | - Shunjie Shao
- Key Laboratory of Synthetic Chemistry of Natural SubstancesCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
- University of Chinese of Academy of Sciences 19A Yuquan Road Beijing 100049 P. R. China
| | - Qian Zhao
- Jiangsu Key Laboratory of Chiral Drug DevelopmentJiangsu Aosaikang Parmaceutical CO., LTD. Nanjing 211112 P. R. China
| | - Ran Hong
- Key Laboratory of Synthetic Chemistry of Natural SubstancesCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
- University of Chinese of Academy of Sciences 19A Yuquan Road Beijing 100049 P. R. China
| |
Collapse
|
13
|
Ghosh AK, Brindisi M. Nature Inspired Molecular Design: Stereoselective Synthesis of Bicyclic and Polycyclic Ethers for Potent HIV-1 Protease Inhibitors. ASIAN J ORG CHEM 2018; 7:1448-1466. [PMID: 31595212 PMCID: PMC6781882 DOI: 10.1002/ajoc.201800255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Indexed: 12/14/2022]
Abstract
We have developed a conceptually new generation of non-peptidic HIV-1 protease inhibitors incorporating novel structural templates inspired by nature. This has resulted in protease inhibitors with exceptional potency and excellent pharmacological and drug-resistance profiles. The design of a stereochemically defined bis-tetrahydrofuran (bis-THF) scaffold followed by modifications to promote hydrogen bonding interactions with the backbone atoms of HIV-1 protease led to darunavir, the first clinically approved drug for treatment of drug resistant HIV. Subsequent X-ray crystal structure-based design efforts led us to create a range of exceptionally potent inhibitors incorporating other intriguing molecular templates possessing fused ring polycyclic ethers with multiple stereocenters. These structural templates are critical to inhibitors' exceptional potency and drug-like properties. Herein, we will highlight the synthetic strategies that provided access to these complex scaffolds in a stereoselective and optically active form, enabling our medicinal chemistry and drug development efforts.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907 (USA)
| | - Margherita Brindisi
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907 (USA)
| |
Collapse
|
14
|
Marine Sponge Natural Products with Anticancer Potential: An Updated Review. Mar Drugs 2017; 15:md15100310. [PMID: 29027954 PMCID: PMC5666418 DOI: 10.3390/md15100310] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/28/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022] Open
Abstract
Despite the huge investment into research and the significant effort and advances made in the search for new anticancer drugs in recent decades, cancer cure and treatment continue to be a formidable challenge. Many sources, including plants, animals, and minerals, have been explored in the oncological field because of the possibility of identifying novel molecular therapeutics. Marine sponges are a prolific source of secondary metabolites, a number of which showed intriguing tumor chemopreventive and chemotherapeutic properties. Recently, Food and Drug Administration-approved drugs derived from marine sponges have been shown to reduce metastatic breast cancer, malignant lymphoma, and Hodgkin's disease. The chemopreventive and potential anticancer activity of marine sponge-derived compounds could be explained by multiple cellular and molecular mechanisms, including DNA protection, cell-cycle modulation, apoptosis, and anti-inflammatory activities as well as their ability to chemosensitize cancer cells to traditional antiblastic chemotherapy. The present article aims to depict the multiple mechanisms involved in the chemopreventive and therapeutic effects of marine sponges and critically explore the limitations and challenges associated with the development of marine sponge-based anticancer strategy.
Collapse
|
15
|
Pasamontes A, Aksenov AA, Schivo M, Rowles T, Smith CR, Schwacke LH, Wells RS, Yeates L, Venn-Watson S, Davis CE. Noninvasive Respiratory Metabolite Analysis Associated with Clinical Disease in Cetaceans: A Deepwater Horizon Oil Spill Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5737-5746. [PMID: 28406294 DOI: 10.1021/acs.est.6b06482] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Health assessments of wild cetaceans can be challenging due to the difficulty of gaining access to conventional diagnostic matrices of blood, serum and others. While the noninvasive detection of metabolites in exhaled breath could potentially help to address this problem, there exists a knowledge gap regarding associations between known disease states and breath metabolite profiles in cetaceans. This technology was applied to the largest marine oil spill in U.S. history (The 2010 Deepwater Horizon oil spill in the Gulf of Mexico). An accurate analysis was performed to test for associations between the exhaled breath metabolome and sonographic lung abnormalities as well as hematological, serum biochemical, and endocrine hormone parameters. Importantly, metabolites consistent with chronic inflammation, such as products of lung epithelial cellular breakdown and arachidonic acid cascade metabolites were associated with sonographic evidence of lung consolidation. Exhaled breath condensate (EBC) metabolite profiles also correlated with serum hormone concentrations (cortisol and aldosterone), hepatobiliary enzyme levels, white blood cell counts, and iron homeostasis. The correlations among breath metabolites and conventional health measures suggest potential application of breath sampling for remotely assessing health of wild cetaceans. This methodology may hold promise for large cetaceans in the wild for which routine collection of blood and respiratory anomalies are not currently feasible.
Collapse
Affiliation(s)
- Alberto Pasamontes
- Mechanical and Aerospace Engineering, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Alexander A Aksenov
- Mechanical and Aerospace Engineering, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Michael Schivo
- Department of Internal Medicine, University of California , 4150 V Street, Suite 3400, Sacramento, California 95817, United States
- Center for Comparative Respiratory Biology and Medicine, University of California , Davis, California 95616, United States
| | - Teri Rowles
- Office of Protected Resources, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 1315 East West Highway, Silver Spring, Maryland 20910, United States
| | - Cynthia R Smith
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Suite 200, San Diego, California 92106, United States
| | - Lori H Schwacke
- National Centers for Coastal Ocean Science, National Oceanic and Atmospheric Administration, 331 Fort Johnson Road, Charleston, South Carolina 29412, United States
| | - Randall S Wells
- Chicago Zoological Society's Sarasota Dolphin Research Program, c/o Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, Florida 34236, United States
| | - Laura Yeates
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Suite 200, San Diego, California 92106, United States
| | - Stephanie Venn-Watson
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Suite 200, San Diego, California 92106, United States
| | - Cristina E Davis
- Mechanical and Aerospace Engineering, University of California , One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
16
|
Trost BM, Stivala CE, Fandrick DR, Hull KL, Huang A, Poock C, Kalkofen R. Total Synthesis of (-)-Lasonolide A. J Am Chem Soc 2016; 138:11690-701. [PMID: 27548113 PMCID: PMC5728428 DOI: 10.1021/jacs.6b05127] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The lasonolides are novel polyketides that have displayed remarkable biological activity in vitro against a variety of cancer cell lines. Herein we describe our first-generation approach to the formal synthesis of lasonolide A. The key findings from these studies ultimately allowed us to go on and complete a total synthesis of lasonolide A. The convergent approach unites two highly complex fragments utilizing a Ru-catalyzed alkene-alkyne coupling. This type of coupling typically generates branched products; however, through a detailed investigation, we are now able to demonstrate that subtle structural changes to the substrates can alter the selectivity to favor the formation of the linear product. The synthesis of the fragments features a number of atom-economical transformations which are highlighted by the discovery of an engineered enzyme to perform a dynamic kinetic reduction of a β-ketoester to establish the absolute stereochemistry of the southern tetrahydropyran ring with high levels of enantioselectivity.
Collapse
Affiliation(s)
- Barry M. Trost
- Department of Chemistry, Stanford University, Stanford, California 94305-5080
| | - Craig E. Stivala
- Department of Chemistry, Stanford University, Stanford, California 94305-5080
| | - Daniel R. Fandrick
- Department of Chemistry, Stanford University, Stanford, California 94305-5080
| | - Kami L. Hull
- Department of Chemistry, Stanford University, Stanford, California 94305-5080
| | - Audris Huang
- Department of Chemistry, Stanford University, Stanford, California 94305-5080
| | - Caroline Poock
- Department of Chemistry, Stanford University, Stanford, California 94305-5080
| | - Rainer Kalkofen
- Department of Chemistry, Stanford University, Stanford, California 94305-5080
| |
Collapse
|
17
|
Activation of RAF1 (c-RAF) by the Marine Alkaloid Lasonolide A Induces Rapid Premature Chromosome Condensation. Mar Drugs 2015; 13:3625-39. [PMID: 26058013 PMCID: PMC4483648 DOI: 10.3390/md13063625] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/18/2015] [Accepted: 05/26/2015] [Indexed: 01/12/2023] Open
Abstract
Lasonolide A (LSA), a potent antitumor polyketide from the marine sponge, Forcepia sp., induces rapid and reversible protein hyperphosphorylation and premature chromosome condensation (PCC) at nanomolar concentrations independent of cyclin-dependent kinases. To identify cellular targets of LSA, we screened 2951 shRNAs targeting a pool of human kinases and phosphatases (1140 RefSeqs) to identify genes that modulate PCC in response to LSA. This led to the identification of RAF1 (C-RAF) as a mediator of LSA-induced PCC, as shRNAs against RAF1 conferred resistance to LSA. We found that LSA induced RAF1 phosphorylation on Serine 338 within minutes in human colorectal carcinoma HCT-116, ovarian carcinoma OVCAR-8, and Burkitt’s lymphoma CA46 cell lines. RAF1 depletion by siRNAs attenuated LSA-induced PCC in HCT-116 and OVCAR-8 cells. Furthermore, mouse embryonic fibroblasts (MEF) with homozygous deletion in Raf1, but not deletion in the related kinase Braf, were resistant to LSA-induced PCC. Complementation of Raf1−/− MEFs with wild-type human RAF1, but not with kinase-dead RAF1 mutant, restored LSA-induced PCC. Finally, the Raf inhibitor sorafenib, but not the MEK inhibitor AZD6244, effectively suppressed LSA-induced PCC. Our findings implicate a previously unknown, MAPK-independent role of RAF1 in chromatin condensation and potent activation of this pathway by LSA.
Collapse
|
18
|
Gotoh E. Drug-induced premature chromosome condensation (PCC) protocols: cytogenetic approaches in mitotic chromosome and interphase chromatin. Methods Mol Biol 2015; 1288:53-66. [PMID: 25827875 DOI: 10.1007/978-1-4939-2474-5_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chromosome analysis is a fundamental technique which is used in wide areas of cytogenetic study including karyotyping species, hereditary diseases diagnosis, or chromosome biology study. Chromosomes are usually prepared from mitotic cells arrested by colcemid block protocol. However, obtaining mitotic chromosomes is often hampered under several circumstances. As a result, cytogenetic analysis will be sometimes difficult or even impossible in such cases. Premature chromosome condensation (PCC) (see Note 1) is an alternative method that has proved to be a unique and useful way in chromosome analysis. Former, PCC has been achieved following cell fusion method (cell-fusion PCC) mediated either by fusogenic viruses (e.g., Sendai virus) or cell fusion chemicals (e.g., polyethylene glycol), but the cell fusion PCC has several drawbacks. The novel drug-induced PCC using protein phosphatase inhibitors was introduced about 20 years ago. This method is much simpler and easier even than the conventional mitotic chromosome preparation protocol use with colcemid block and furthermore obtained PCC index (equivalent to mitotic index for metaphase chromosome) is usually much higher than colcemid block method. Moreover, this method allows the interphase chromatin to be condensed to visualize like mitotic chromosomes. Therefore drug-induced PCC has opened the way for chromosome analysis not only in metaphase chromosomes but also in interphase chromatin. The drug-induced PCC has thus proven the usefulness in cytogenetics and other cell biology fields. For this second edition version, updated modifications/changes are supplemented in Subheadings 2, 3, and 4, and a new section describing the application of PCC in chromosome science fields is added with citation of updated references.
Collapse
Affiliation(s)
- Eisuke Gotoh
- Department of Radiology, Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan,
| |
Collapse
|
19
|
Farr CJ, Antoniou-Kourounioti M, Mimmack ML, Volkov A, Porter ACG. The α isoform of topoisomerase II is required for hypercompaction of mitotic chromosomes in human cells. Nucleic Acids Res 2014; 42:4414-26. [PMID: 24476913 PMCID: PMC3985649 DOI: 10.1093/nar/gku076] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
As proliferating cells transit from interphase into M-phase, chromatin undergoes extensive reorganization, and topoisomerase (topo) IIα, the major isoform of this enzyme present in cycling vertebrate cells, plays a key role in this process. In this study, a human cell line conditional null mutant for topo IIα and a derivative expressing an auxin-inducible degron (AID)-tagged version of the protein have been used to distinguish real mitotic chromosome functions of topo IIα from its more general role in DNA metabolism and to investigate whether topo IIβ makes any contribution to mitotic chromosome formation. We show that topo IIβ does contribute, with endogenous levels being sufficient for the initial stages of axial shortening. However, a significant effect of topo IIα depletion, seen with or without the co-depletion of topo IIβ, is the failure of chromosomes to hypercompact when delayed in M-phase. This requires much higher levels of topo II protein and is impaired by drugs or mutations that affect enzyme activity. A prolonged delay at the G2/M border results in hyperefficient axial shortening, a process that is topo IIα-dependent. Rapid depletion of topo IIα has allowed us to show that its function during late G2 and M-phase is truly required for shaping mitotic chromosomes.
Collapse
Affiliation(s)
- Christine J Farr
- Department of Genetics, University of Cambridge, Downing St, Cambridge CB2 3EH, UK and Centre for Haematology, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Rd, London W12 0NN, UK
| | | | | | | | | |
Collapse
|
20
|
Solier S, Pommier Y. The nuclear γ-H2AX apoptotic ring: implications for cancers and autoimmune diseases. Cell Mol Life Sci 2014; 71:2289-97. [PMID: 24448903 DOI: 10.1007/s00018-013-1555-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 12/11/2013] [Accepted: 12/30/2013] [Indexed: 01/10/2023]
Abstract
Apoptosis is a fundamental process for metazoan development. It is also relevant to the pathophysiology of immune diseases and cancers and to the outcome of cancer chemotherapies, as well as being a target for cancer therapies. Apoptosis involves intrinsic pathways typically initiated by DNA damaging agents and engaging mitochondria, and extrinsic pathways typically initiated by "death receptors" and their ligands TRAIL and TNF at the cell surface. Recently, we discovered the apoptotic ring, which microscopically looks like a nuclear annular staining early in apoptosis. This ring is, in three-dimensional space, a thick intranuclear shell consisting of epigenetic modifications including histone H2AX and DNA damage response (DDR) proteins. It excludes the DNA repair factors usually associated with γ-H2AX in the DDR nuclear foci. Here, we summarize our knowledge of the apoptotic ring, and discuss its biological and pathophysiological relevance, as well as its value as a potential pharmacodynamic biomarker for anticancer therapies.
Collapse
Affiliation(s)
- Stéphanie Solier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bldg. 37, Rm.5068, NIH, Bethesda, MD, 20892-4255, USA
| | | |
Collapse
|
21
|
Abstract
Lasonolide A is a novel polyketide displaying potent anticancer activity across a broad range of cancer cell lines. Here, an enantioselective convergent total synthesis of the (-)-lasonolide A in 16 longest linear and 34 total steps is described. This approach significantly reduces the step count compared to other known syntheses. The synthetic strategy utilizes alkyne-bearing substrates as core building blocks and is highlighted by stitching together two similarly complex halves via a key Ru-catalyzed alkene-alkyne coupling and macrolactionization.
Collapse
Affiliation(s)
- Barry M. Trost
- Department of Chemistry, Stanford University, Stanford, California 94305-5580
| | - Craig E. Stivala
- Department of Chemistry, Stanford University, Stanford, California 94305-5580
| | - Kami L. Hull
- Department of Chemistry, Stanford University, Stanford, California 94305-5580
| | - Audris Huang
- Department of Chemistry, Stanford University, Stanford, California 94305-5580
| | - Daniel R. Fandrick
- Department of Chemistry, Stanford University, Stanford, California 94305-5580
| |
Collapse
|