1
|
Vipat S, Moiseeva TN. The TIMELESS Roles in Genome Stability and Beyond. J Mol Biol 2024; 436:168206. [PMID: 37481157 DOI: 10.1016/j.jmb.2023.168206] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/20/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023]
Abstract
TIMELESS protein (TIM) protects replication forks from stalling at difficult-to-replicate regions and plays an important role in DNA damage response, including checkpoint signaling, protection of stalled replication forks and DNA repair. Loss of TIM causes severe replication stress, while its overexpression is common in various types of cancer, providing protection from DNA damage and resistance to chemotherapy. Although TIM has mostly been studied for its part in replication stress response, its additional roles in supporting genome stability and a wide variety of other cellular pathways are gradually coming to light. This review discusses the diverse functions of TIM and its orthologs in healthy and cancer cells, open questions, and potential future directions.
Collapse
Affiliation(s)
- Sameera Vipat
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia
| | - Tatiana N Moiseeva
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia.
| |
Collapse
|
2
|
Wei S, Wu X, Chen M, Xiang Z, Li X, Zhang J, Dong W. Exosomal-miR-129-2-3p derived from Fusobacterium nucleatum-infected intestinal epithelial cells promotes experimental colitis through regulating TIMELESS-mediated cellular senescence pathway. Gut Microbes 2023; 15:2240035. [PMID: 37550944 PMCID: PMC10411316 DOI: 10.1080/19490976.2023.2240035] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/09/2023] Open
Abstract
Fusobacterium nucleatum (Fn) infection is known to exacerbate ulcerative colitis (UC). However, the link between Fn-infected intestinal epithelial cell (IEC)-derived exosomes (Fn-Exo) and UC progression has not been investigated. Differentially expressed miRNAs in Fn-Exo and non-infected IECs-derived exosomes (Con-Exo) were identified by miRNA sequencing. Then, the biological role and mechanism of Fn-Exo in UC development were determined in vitro and in vivo. We found that exosomes delivered miR-129-2-3p from Fn-infected IECs into non-infected IECs, exacerbating epithelial barrier dysfunction and experimental colitis. Mechanically, Fn-Exo induces DNA damage via the miR-129-2-3p/TIMELESS axis and subsequently activates the ATM/ATR/p53 pathway, ultimately promoting cellular senescence and colonic inflammation. In conclusion, Exo-miR-129-2-3p/TIMELESS/ATM/ATR/p53 pathway aggravates cellular senescence, barrier damage, and experimental colitis. The current study revealed a previously unknown regulatory pathway in the progression of Fn-infectious UC. Furthermore, Exosomal-miR-129-2-3p in serum and TIMELESS may function as novel potential diagnostic biomarkers for UC and Fn-high-UC.
Collapse
Affiliation(s)
- Shuchun Wei
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaohan Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Meilin Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zixuan Xiang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xiangyun Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jixiang Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
3
|
Nguyen DD, Kim EY, Sang PB, Chai W. Roles of OB-Fold Proteins in Replication Stress. Front Cell Dev Biol 2020; 8:574466. [PMID: 33043007 PMCID: PMC7517361 DOI: 10.3389/fcell.2020.574466] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022] Open
Abstract
Accurate DNA replication is essential for maintaining genome stability. However, this stability becomes vulnerable when replication fork progression is stalled or slowed - a condition known as replication stress. Prolonged fork stalling can cause DNA damage, leading to genome instabilities. Thus, cells have developed several pathways and a complex set of proteins to overcome the challenge at stalled replication forks. Oligonucleotide/oligosaccharide binding (OB)-fold containing proteins are a group of proteins that play a crucial role in fork protection and fork restart. These proteins bind to single-stranded DNA with high affinity and prevent premature annealing and unwanted nuclease digestion. Among these OB-fold containing proteins, the best studied in eukaryotic cells are replication protein A (RPA) and breast cancer susceptibility protein 2 (BRCA2). Recently, another RPA-like protein complex CTC1-STN1-TEN1 (CST) complex has been found to counter replication perturbation. In this review, we discuss the latest findings on how these OB-fold containing proteins (RPA, BRCA2, CST) cooperate to safeguard DNA replication and maintain genome stability.
Collapse
Affiliation(s)
| | | | | | - Weihang Chai
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States
| |
Collapse
|
4
|
Implications of CLSPN Variants in Cellular Function and Susceptibility to Cancer. Cancers (Basel) 2020; 12:cancers12092396. [PMID: 32847043 PMCID: PMC7565888 DOI: 10.3390/cancers12092396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/05/2020] [Accepted: 08/20/2020] [Indexed: 11/28/2022] Open
Abstract
Claspin is a multifunctional protein that participates in physiological processes essential for cell homeostasis that are often defective in cancer, namely due to genetic changes. It is conceivable that Claspin gene (CLSPN) alterations may contribute to cancer development. Therefore, CLSPN germline alterations were characterized in sporadic and familial breast cancer and glioma samples, as well as in six cancer cell lines. Their association to cancer susceptibility and functional impact were investigated. Eight variants were identified (c.-68C>T, c.17G>A, c.1574A>G, c.2230T>C, c.2028+16G>A, c.3595-3597del, and c.3839C>T). CLSPN c.1574A>G (p.Asn525Ser) was significantly associated with breast cancer and was shown to cause partial exon skipping and decreased Claspin expression and Chk1 activation in a minigene splicing assay and in signalling experiments, respectively. CLSPN c.2028+16G>A was significantly associated with familial breast cancer and glioma, whereas c.2230T>C (p.Ser744Pro), was exclusively detected in breast cancer and glioma patients, but not in healthy controls. The remaining variants lacked a significant association with cancer. Nevertheless, the c.-68C>T promoter variant increased transcriptional activity in a luciferase assay. In conclusion, some of the CLSPN variants identified in the present study appear to modulate Claspin’s function by altering CLSPN transcription and RNA processing, as well as Chk1 activation.
Collapse
|
5
|
Chakraborty A, Aziz F, Roh E, Le LTM, Dey R, Zhang T, Rathore MG, Biswas AS, Bode AM, Dong Z. Knock-down of the TIM/TIPIN complex promotes apoptosis in melanoma cells. Oncotarget 2020; 11:1846-1861. [PMID: 32499870 PMCID: PMC7244016 DOI: 10.18632/oncotarget.27572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/10/2020] [Indexed: 11/25/2022] Open
Abstract
The Timeless (TIM) and it's interacting partner TIPIN protein complex is well known for its role in replication checkpoints and normal DNA replication processes. Recent studies revealed the involvement of TIM and TIPIN in human malignancies; however, no evidence is available regarding the expression of the TIM/TIPIN protein complex or its potential role in melanoma. Therefore, we investigated the role of this complex in melanoma. To assess the role of the TIM/TIPIN complex in melanoma, we analyzed TIM/TIPIN expression data from the publicly accessible TCGA online database, Western blot analysis, and RT-qPCR in a panel of melanoma cell lines. Lentivirus-mediated TIM/TIPIN knockdown in A375 melanoma cells was used to examine proliferation, colony formation, and apoptosis. A xenograft tumor formation assay was also performed. The TIM/TIPIN complex is frequently overexpressed in melanoma cells compared to normal melanocytes. We also discovered that the overexpression of TIM and TIPIN was significantly associated with poorer prognosis of melanoma patients. Furthermore, we observed that shRNA-mediated knockdown of TIM and TIPIN reduced cell viability and proliferation due to the induction of apoptosis and increased levels of γH2AX, a marker of DNA damage. In a xenograft tumor nude mouse model, shRNA-knockdown of TIM/TIPIN significantly reduced tumor growth. Our results suggest that the TIM/TIPIN complex plays an important role in tumorigenesis of melanoma, which might reveal novel approaches for the development of new melanoma therapies. Our studies also provide a beginning structural basis for understanding the assembly of the TIM/TIPIN complex. Further mechanistic investigations are needed to determine the complex’s potential as a biomarker of melanoma susceptibility. Targeting TIM/TIPIN might be a potential therapeutic strategy against melanoma.
Collapse
Affiliation(s)
- Abhijit Chakraborty
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA.,Immunology, Allergy and Rheumatology Section, Baylor College of Medicine, Houston, TX 77030, USA
| | - Faisal Aziz
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Eunmiri Roh
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Le Thi My Le
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Raja Dey
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Tianshun Zhang
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Moeez G Rathore
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Aalekhya Sharma Biswas
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA.,Pediatric Gastroenterology and Liver Center, Baylor College of Medicine, Houston, Texas, Houston, TX 77030, USA
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA.,College of Medicine, Zhengzhou University, Zhengzhou, Henan Province 450052, China
| |
Collapse
|
6
|
Neilsen BK, Frodyma DE, McCall JL, Fisher KW, Lewis RE. ERK-mediated TIMELESS expression suppresses G2/M arrest in colon cancer cells. PLoS One 2019; 14:e0209224. [PMID: 30629587 PMCID: PMC6328106 DOI: 10.1371/journal.pone.0209224] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/30/2018] [Indexed: 01/04/2023] Open
Abstract
The cell cycle is under circadian regulation. Oncogenes can dysregulate circadian-regulated genes to disrupt the cell cycle, promoting tumor cell proliferation. As a regulator of G2/M arrest in response to DNA damage, the circadian gene Timeless Circadian Clock (TIMELESS) coordinates this connection and is a potential locus for oncogenic manipulation. TIMELESS expression was evaluated using RNASeq data from TCGA and by RT-qPCR and western blot analysis in a panel of colon cancer cell lines. TIMELESS expression following ERK inhibition was examined via western blot. Cell metabolic capacity, propidium iodide, and CFSE staining were used to evaluate the effect of TIMELESS depletion on colon cancer cell survival and proliferation. Cell metabolic capacity following TIMELESS depletion in combination with Wee1 or CHK1 inhibition was assessed. TIMELESS is overexpressed in cancer and required for increased cancer cell proliferation. ERK activation promotes TIMELESS expression. TIMELESS depletion increases γH2AX, a marker of DNA damage, and triggers G2/M arrest via increased CHK1 and CDK1 phosphorylation. TIMELESS depletion in combination with Wee1 or CHK1 inhibition causes an additive decrease in cancer cell metabolic capacity with limited effects in non-transformed human colon epithelial cells. The data show that ERK activation contributes to the overexpression of TIMELESS in cancer. Depletion of TIMELESS increases γH2AX and causes G2/M arrest, limiting cell proliferation. These results demonstrate a role for TIMELESS in cancer and encourage further examination of the link between circadian rhythm dysregulation and cancer cell proliferation.
Collapse
Affiliation(s)
- Beth K. Neilsen
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Danielle E. Frodyma
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Jamie L. McCall
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Kurt W. Fisher
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Robert E. Lewis
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
7
|
Azenha D, Lopes MC, Martins TC. Claspin functions in cell homeostasis-A link to cancer? DNA Repair (Amst) 2017; 59:27-33. [PMID: 28942358 DOI: 10.1016/j.dnarep.2017.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
Abstract
Cancer remains one of the leading causes of mortality worldwide. Most cancers present high degrees of genomic instability. DNA damage and replication checkpoints function as barriers to halt cell cycle progression until damage is resolved, preventing the perpetuation of errors. Activation of these checkpoints is critically dependent on Claspin, an adaptor protein that mediates the phosphorylation of the effector kinase Chk1 by ATR. However, Claspin also performs other roles related to the protection and maintenance of cell and genome integrity. For instance, following DNA damage and checkpoint activation, Claspin bridges checkpoint responses to DNA repair or to apoptosis. During DNA replication, Claspin acts a sensor and couples DNA unwinding to strand polymerization, and may also indirectly regulate replication initiation at firing origins. As Claspin participates in several processes that are vital to maintenance of cell homeostasis, its function is tightly regulated at multiple levels. Nevertheless, little is known about its role in cancer. Accumulating evidence suggests that Claspin inactivation could be an essential event during carcinogenesis, indicating that Claspin may function as a tumour suppressor. In this review, we will examine the functions of Claspin and how its deregulation may contribute to cancer initiation and progression. To conclude, we will discuss means by which Claspin can be targeted for cancer therapy.
Collapse
Affiliation(s)
- Diana Azenha
- Faculdade de Farmácia da Universidade de Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Rua Larga, Faculdade de Medicina, Pólo I, 1º andar, 3004-504 Coimbra, Portugal; Instituto Português de Oncologia de Coimbra de Francisco Gentil, Av. Bissaya Barreto 98, Apartado 2005, 3000-651, Coimbra, Portugal.
| | - Maria Celeste Lopes
- Faculdade de Farmácia da Universidade de Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Rua Larga, Faculdade de Medicina, Pólo I, 1º andar, 3004-504 Coimbra, Portugal.
| | - Teresa C Martins
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Rua Larga, Faculdade de Medicina, Pólo I, 1º andar, 3004-504 Coimbra, Portugal; Instituto Português de Oncologia de Coimbra de Francisco Gentil, Av. Bissaya Barreto 98, Apartado 2005, 3000-651, Coimbra, Portugal.
| |
Collapse
|
8
|
Inhibition of ATR-dependent feedback activation of Chk1 sensitises cancer cells to Chk1 inhibitor monotherapy. Cancer Lett 2016; 383:41-52. [PMID: 27693461 DOI: 10.1016/j.canlet.2016.09.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 11/23/2022]
Abstract
The Chk1 and ATR kinases are critical mediators of the DNA damage response pathway and help protect cancer cells from endogenous and oncogene induced replication stress. Inhibitors of both kinases are currently being evaluated in clinical trials. Chk1 inhibition with V158411 increases DNA damage and activates the ATR, ATM and DNA-PKcs dependent DNA damage response pathways. Inhibiting ATR, ATM and/or DNA-PKcs has the potential to increase the therapeutic activity of Chk1 inhibitors. ATR inhibition but not ATM or DNA-PKcs inhibition potentiated the cytotoxicity of V158411 in p53 mutant and wild type human cancer cell lines. This increased cytotoxicity correlated with increased nuclear DNA damage and replication stress in a dose and time dependent manner. γH2AX induction following Chk1 inhibition protected cells from caspase-dependent apoptosis. Inhibition of ATR increased Chk1 inhibitor induced cell death independently of caspase activation. The effect of ATR, ATM and/or DNA-PK inhibition on Chk1 inhibitor induced replication stress was dependent on the concentration of Chk1 inhibitor. ATR inhibition potentiated Chk1 inhibitor induced replication stress and cytotoxicity via the abrogation of ATR-dependent feedback activation of Chk1 induced by Chk1 inhibitor generated replication stress. This study suggests that combining an ATR inhibitor to lower the threshold by which a Chk1 inhibitor induces replication stress, DNA damage and tumour cell death in a wide range of cancer types may be a useful clinical approach.
Collapse
|
9
|
A Timeless Link Between Circadian Patterns and Disease. Trends Mol Med 2016; 22:68-81. [DOI: 10.1016/j.molmed.2015.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 02/06/2023]
|
10
|
SWI/SNF complexes are required for full activation of the DNA-damage response. Oncotarget 2015; 6:732-45. [PMID: 25544751 PMCID: PMC4359251 DOI: 10.18632/oncotarget.2715] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/09/2014] [Indexed: 01/09/2023] Open
Abstract
SWI/SNF complexes utilize BRG1 (also known as SMARCA4) or BRM (also known as SMARCA2) as alternative catalytic subunits with ATPase activity to remodel chromatin. These chromatin-remodeling complexes are required for mammalian development and are mutated in ~20% of all human primary tumors. Yet our knowledge of their tumor-suppressor mechanism is limited. To investigate the role of SWI/SNF complexes in the DNA-damage response (DDR), we used shRNAs to deplete BRG1 and BRM and then exposed these cells to a panel of 6 genotoxic agents. Compared to controls, the shRNA knockdown cells were hypersensitive to certain genotoxic agents that cause double-strand breaks (DSBs) associated with stalled/collapsed replication forks but not to ionizing radiation-induced DSBs that arise independently of DNA replication. These findings were supported by our analysis of DDR kinases, which demonstrated a more prominent role for SWI/SNF in the activation of the ATR-Chk1 pathway than the ATM-Chk2 pathway. Surprisingly, γH2AX induction was attenuated in shRNA knockdown cells exposed to a topoisomerase II inhibitor (etoposide) but not to other genotoxic agents including IR. However, this finding is compatible with recent studies linking SWI/SNF with TOP2A and TOP2BP1. Depletion of BRG1 and BRM did not result in genomic instability in a tumor-derived cell line but did result in nucleoplasmic bridges in normal human fibroblasts. Taken together, these results suggest that SWI/SNF tumor-suppressor activity involves a role in the DDR to attenuate replicative stress and genomic instability. These results may also help to inform the selection of chemotherapeutics for tumors deficient for SWI/SNF function.
Collapse
|
11
|
Massey AJ, Stephens P, Rawlinson R, McGurk L, Plummer R, Curtin NJ. mTORC1 and DNA-PKcs as novel molecular determinants of sensitivity to Chk1 inhibition. Mol Oncol 2015; 10:101-12. [PMID: 26471831 DOI: 10.1016/j.molonc.2015.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Chk1 inhibitors are currently under clinical evaluation as single agents and in combination with cytotoxic chemotherapy. Understanding determinants of sensitivity and novel combinations is critical for further clinical development. METHODS Potentiation of mTOR inhibitor cytotoxicity by the Chk1 inhibitor V158411 was determined in p53 mutant colon cancer cells. DNA damage response, expression levels of repair proteins, cell cycle effects and the contribution of alternative DSB repair pathways were further evaluated by western blotting and high content analysis. RESULTS mTOR inhibitors AZD8055, RAD-001, rapamycin and BEZ235 induced synergistic cytotoxicity with the Chk1 inhibitor V158411 in p53 mutant colon cancer cells. Reduced FANCD2, RAD51 and RPA70, core proteins in homologous recombination repair (HRR) and interstrand crosslink repair (ICLR), following inhibition of mTOR was associated with increased V158411 induced DSBs and caspase 3-independent cell death. Dual mTOR and Chk1 inhibition activated DNA-PKcs. Cells defective in DNA-PKcs exhibited increased resistance to V158411 with Chk1 expression closely correlated to DNA-PKcs expression in various types of cancer. CONCLUSIONS Down regulation of proteins involved in HRR or ICLR by mTOR inhibitors is associated with increased sensitivity of human tumours to Chk1 inhibitors such as V158411. High levels of DNA-PKcs may be a potential biomarker to stratify patients to Chk1 inhibitor therapy alone or in combination with mTOR inhibitors.
Collapse
Affiliation(s)
| | - Peter Stephens
- Newcastle University, Northern Institute for Cancer Research, Newcastle upon Tyne, NE2 4HH, UK
| | | | - Lauren McGurk
- Newcastle University, Northern Institute for Cancer Research, Newcastle upon Tyne, NE2 4HH, UK
| | - Ruth Plummer
- Newcastle University, Northern Institute for Cancer Research, Newcastle upon Tyne, NE2 4HH, UK
| | - Nicola J Curtin
- Newcastle University, Northern Institute for Cancer Research, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
12
|
Baldeyron C, Brisson A, Tesson B, Némati F, Koundrioukoff S, Saliba E, De Koning L, Martel E, Ye M, Rigaill G, Meseure D, Nicolas A, Gentien D, Decaudin D, Debatisse M, Depil S, Cruzalegui F, Pierré A, Roman-Roman S, Tucker GC, Dubois T. TIPIN depletion leads to apoptosis in breast cancer cells. Mol Oncol 2015; 9:1580-98. [PMID: 26004086 DOI: 10.1016/j.molonc.2015.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 03/10/2015] [Accepted: 04/23/2015] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the breast cancer subgroup with the most aggressive clinical behavior. Alternatives to conventional chemotherapy are required to improve the survival of TNBC patients. Gene-expression analyses for different breast cancer subtypes revealed significant overexpression of the Timeless-interacting protein (TIPIN), which is involved in the stability of DNA replication forks, in the highly proliferative associated TNBC samples. Immunohistochemistry analysis showed higher expression of TIPIN in the most proliferative and aggressive breast cancer subtypes including TNBC, and no TIPIN expression in healthy breast tissues. The depletion of TIPIN by RNA interference impairs the proliferation of both human breast cancer and non-tumorigenic cell lines. However, this effect may be specifically associated with apoptosis in breast cancer cells. TIPIN silencing results in higher levels of single-stranded DNA (ssDNA), indicative of replicative stress (RS), in TNBC compared to non-tumorigenic cells. Upon TIPIN depletion, the speed of DNA replication fork was significantly decreased in all BC cells. However, TIPIN-depleted TNBC cells are unable to fire additional replication origins in response to RS and therefore undergo apoptosis. TIPIN knockdown in TNBC cells decreases tumorigenicity in vitro and delays tumor growth in vivo. Our findings suggest that TIPIN is important for the maintenance of DNA replication and represents a potential treatment target for the worst prognosis associated breast cancers, such as TNBC.
Collapse
Affiliation(s)
- Céline Baldeyron
- Institut Curie, Centre de Recherche, Paris, F-75248, France; Breast Cancer Biology Group, Department of Translational Research, Paris, F-75248, France
| | - Amélie Brisson
- Institut Curie, Centre de Recherche, Paris, F-75248, France; Breast Cancer Biology Group, Department of Translational Research, Paris, F-75248, France
| | - Bruno Tesson
- Institut Curie, Centre de Recherche, Paris, F-75248, France; Breast Cancer Biology Group, Department of Translational Research, Paris, F-75248, France; INSERM, U900, Bioinformatics, Biostatistics, Epidemiology and Computational Systems Biology of Cancer, Paris, F-75248, France; Mines ParisTech, Fontainebleau, F-77300, France
| | - Fariba Némati
- Institut Curie, Centre de Recherche, Paris, F-75248, France; Laboratory of Preclinical Investigation, Department of Translational Research, Paris, F-75248, France
| | - Stéphane Koundrioukoff
- Institut Curie, Centre de Recherche, Paris, F-75248, France; CNRS, UMR 3244, Paris, F-75248, France; Université Pierre and Marie Curie Paris VI, Paris, F-75005, France
| | - Elie Saliba
- Institut Curie, Centre de Recherche, Paris, F-75248, France; Breast Cancer Biology Group, Department of Translational Research, Paris, F-75248, France
| | - Leanne De Koning
- Institut Curie, Centre de Recherche, Paris, F-75248, France; RPPA Platform, Department of Translational Research, Paris, F-75248, France
| | - Elise Martel
- Institut Curie, Investigative Pathology Platform, Paris, F-75248, France
| | - Mengliang Ye
- Institut Curie, Centre de Recherche, Paris, F-75248, France; Breast Cancer Biology Group, Department of Translational Research, Paris, F-75248, France
| | - Guillem Rigaill
- Unité de Recherche en Génomique Végétale, INRA-CNRS-Université d'Evry Val d'Essonne, Evry, F-91057, France
| | - Didier Meseure
- Institut Curie, Investigative Pathology Platform, Paris, F-75248, France
| | - André Nicolas
- Institut Curie, Investigative Pathology Platform, Paris, F-75248, France
| | - David Gentien
- Institut Curie, Centre de Recherche, Paris, F-75248, France; Platform of Molecular Biology Facilities, Department of Translational Research, Paris, F-75248, France
| | - Didier Decaudin
- Institut Curie, Centre de Recherche, Paris, F-75248, France; Laboratory of Preclinical Investigation, Department of Translational Research, Paris, F-75248, France
| | - Michelle Debatisse
- Institut Curie, Centre de Recherche, Paris, F-75248, France; CNRS, UMR 3244, Paris, F-75248, France; Université Pierre and Marie Curie Paris VI, Paris, F-75005, France
| | - Stéphane Depil
- Institut de Recherches SERVIER, Pôle Innovation Thérapeutique Oncologie, Croissy-sur-Seine, F-78290, France
| | - Francisco Cruzalegui
- Institut de Recherches SERVIER, Pôle Innovation Thérapeutique Oncologie, Croissy-sur-Seine, F-78290, France
| | - Alain Pierré
- Institut de Recherches SERVIER, Pôle Innovation Thérapeutique Oncologie, Croissy-sur-Seine, F-78290, France
| | - Sergio Roman-Roman
- Institut Curie, Centre de Recherche, Paris, F-75248, France; Breast Cancer Biology Group, Department of Translational Research, Paris, F-75248, France
| | - Gordon C Tucker
- Institut de Recherches SERVIER, Pôle Innovation Thérapeutique Oncologie, Croissy-sur-Seine, F-78290, France
| | - Thierry Dubois
- Institut Curie, Centre de Recherche, Paris, F-75248, France; Breast Cancer Biology Group, Department of Translational Research, Paris, F-75248, France.
| |
Collapse
|
13
|
Mehta A, Zhang L, Boufraqech M, Liu-Chittenden Y, Zhang Y, Patel D, Davis S, Rosenberg A, Ylaya K, Aufforth R, Li Z, Shen M, Kebebew E. Inhibition of Survivin with YM155 Induces Durable Tumor Response in Anaplastic Thyroid Cancer. Clin Cancer Res 2015; 21:4123-32. [PMID: 25944801 DOI: 10.1158/1078-0432.ccr-14-3251] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/19/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Anaplastic thyroid cancer (ATC) is a rare but lethal malignancy without any effective therapy. The aim of this study is to use a high-throughput drug library screening to identify a novel therapeutic agent that targets dysregulated genes/pathways in ATC. EXPERIMENTALDESIGN We performed quantitative high-throughput screening (qHTS) in ATC cell lines using a compound library of 3,282 drugs. Dysregulated genes in ATC were analyzed using genome-wide expression analysis and immunohistochemistry in human ATC tissue samples and ATC cell lines. In vitro and in vivo studies were performed for determining drug activity, effectiveness of targeting, and the mechanism of action. RESULTS qHTS identified 100 active compounds in three ATC cell lines. One of the most active agents was the first-in-class survivin inhibitor YM155. Genome-wide expression analysis and immunohistochemistry showed overexpression of survivin in human ATC tissue samples, and survivin was highly expressed in all ATC cell lines tested. YM155 significantly inhibited ATC cellular proliferation. Mechanistically, YM155 inhibited survivin expression in ATC cells. Furthermore, YM155 treatment reduced claspin expression, which was associated with S-phase arrest in ATC cells. In vivo, YM155 significantly inhibited growth and metastases and prolonged survival. CONCLUSIONS Our data show that YM155 is a promising anticancer agent for ATC and that its target, survivin, is overexpressed in ATC. Our findings support the use of YM155 in clinical trials as a therapeutic option in advanced and metastatic ATC.
Collapse
Affiliation(s)
- Amit Mehta
- Endocrine Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland. Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Lisa Zhang
- Endocrine Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Myriem Boufraqech
- Endocrine Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Yi Liu-Chittenden
- Endocrine Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Yaqin Zhang
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | - Dhaval Patel
- Endocrine Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Sean Davis
- Cancer Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Avi Rosenberg
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Kris Ylaya
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Rachel Aufforth
- Endocrine Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Zhuyin Li
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | - Min Shen
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | - Electron Kebebew
- Endocrine Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
14
|
Goglia AG, Delsite R, Luz AN, Shahbazian D, Salem AF, Sundaram RK, Chiaravalli J, Hendrikx PJ, Wilshire JA, Jasin M, Kluger HM, Glickman JF, Powell SN, Bindra RS. Identification of novel radiosensitizers in a high-throughput, cell-based screen for DSB repair inhibitors. Mol Cancer Ther 2015; 14:326-42. [PMID: 25512618 PMCID: PMC4326563 DOI: 10.1158/1535-7163.mct-14-0765] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Most cancer therapies involve a component of treatment that inflicts DNA damage in tumor cells, such as double-strand breaks (DSBs), which are considered the most serious threat to genomic integrity. Complex systems have evolved to repair these lesions, and successful DSB repair is essential for tumor cell survival after exposure to ionizing radiation (IR) and other DNA-damaging agents. As such, inhibition of DNA repair is a potentially efficacious strategy for chemo- and radiosensitization. Homologous recombination (HR) and nonhomologous end-joining (NHEJ) represent the two major pathways by which DSBs are repaired in mammalian cells. Here, we report the design and execution of a high-throughput, cell-based small molecule screen for novel DSB repair inhibitors. We miniaturized our recently developed dual NHEJ and HR reporter system into a 384-well plate-based format and interrogated a diverse library of 20,000 compounds for molecules that selectively modulate NHEJ and HR repair in tumor cells. We identified a collection of novel hits that potently inhibit DSB repair, and we have validated their functional activity in a comprehensive panel of orthogonal secondary assays. A selection of these inhibitors was found to radiosensitize cancer cell lines in vitro, which suggests that they may be useful as novel chemo- and radio sensitizers. Surprisingly, we identified several FDA-approved drugs, including the calcium channel blocker mibefradil dihydrochloride, that demonstrated activity as DSB repair inhibitors and radiosensitizers. These findings suggest the possibility for repurposing them as tumor cell radiosensitizers in the future. Accordingly, we recently initiated a phase I clinical trial testing mibefradil as a glioma radiosensitizer.
Collapse
Affiliation(s)
- Alexander G Goglia
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Robert Delsite
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Antonio N Luz
- High Throughput and Spectroscopy Resource Center, Rockefeller University, New York, New York
| | - David Shahbazian
- Section of Medical Oncology, Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Ahmed F Salem
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Ranjini K Sundaram
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Jeanne Chiaravalli
- High Throughput and Spectroscopy Resource Center, Rockefeller University, New York, New York
| | - Petrus J Hendrikx
- Flow Cytometry Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jennifer A Wilshire
- Flow Cytometry Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Harriet M Kluger
- Section of Medical Oncology, Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - J Fraser Glickman
- High Throughput and Spectroscopy Resource Center, Rockefeller University, New York, New York
| | - Simon N Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
15
|
Soong CP, Breuer GA, Hannon RA, Kim SD, Salem AF, Wang G, Yu R, Carriero NJ, Bjornson R, Sundaram RK, Bindra RS. Development of a novel method to create double-strand break repair fingerprints using next-generation sequencing. DNA Repair (Amst) 2014; 26:44-53. [PMID: 25547252 DOI: 10.1016/j.dnarep.2014.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/05/2014] [Accepted: 12/09/2014] [Indexed: 11/15/2022]
Abstract
Efficient DNA double-strand break (DSB) repair is a critical determinant of cell survival in response to DNA damaging agents, and it plays a key role in the maintenance of genomic integrity. Homologous recombination (HR) and non-homologous end-joining (NHEJ) represent the two major pathways by which DSBs are repaired in mammalian cells. We now understand that HR and NHEJ repair are composed of multiple sub-pathways, some of which still remain poorly understood. As such, there is great interest in the development of novel assays to interrogate these key pathways, which could lead to the development of novel therapeutics, and a better understanding of how DSBs are repaired. Furthermore, assays which can measure repair specifically at endogenous chromosomal loci are of particular interest, because of an emerging understanding that chromatin interactions heavily influence DSB repair pathway choice. Here, we present the design and validation of a novel, next-generation sequencing-based approach to study DSB repair at chromosomal loci in cells. We demonstrate that NHEJ repair "fingerprints" can be identified using our assay, which are dependent on the status of key DSB repair proteins. In addition, we have validated that our system can be used to detect dynamic shifts in DSB repair activity in response to specific perturbations. This approach represents a unique alternative to many currently available DSB repair assays, which typical rely on the expression of reporter genes as an indirect read-out for repair. As such, we believe this tool will be useful for DNA repair researchers to study NHEJ repair in a high-throughput and sensitive manner, with the capacity to detect subtle changes in DSB repair patterns that was not possible previously.
Collapse
Affiliation(s)
- Chen-Pang Soong
- Department of Internal Medicine, University of Connecticut, Farmington, CT 06030, United States
| | - Gregory A Breuer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, United States
| | - Ryan A Hannon
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, United States
| | - Savina D Kim
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, United States
| | - Ahmed F Salem
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, United States
| | - Guilin Wang
- Yale Center for Genomic Analysis (YCGA), Orange, CT 06477, United States
| | - Ruoxi Yu
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, United States
| | - Nicholas J Carriero
- Department of Computer Science, Yale University, New Haven, CT 06511, United States
| | - Robert Bjornson
- Department of Computer Science, Yale University, New Haven, CT 06511, United States
| | - Ranjini K Sundaram
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, United States
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, United States.
| |
Collapse
|
16
|
González Besteiro MA, Gottifredi V. The fork and the kinase: a DNA replication tale from a CHK1 perspective. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:168-80. [PMID: 25795119 DOI: 10.1016/j.mrrev.2014.10.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 10/07/2014] [Accepted: 10/10/2014] [Indexed: 11/30/2022]
Abstract
Replication fork progression is being continuously hampered by exogenously introduced and naturally occurring DNA lesions and other physical obstacles. Checkpoint kinase 1 (Chk1) is activated at replication forks that encounter damaged DNA. Subsequently, Chk1 inhibits the initiation of new replication factories and stimulates the firing of dormant origins (those in the vicinity of stalled forks). Chk1 also avoids fork collapse into DSBs (double strand breaks) and promotes fork elongation. At the molecular level, the current model considers stalled forks as the site of Chk1 activation and the nucleoplasm as the location where Chk1 phosphorylates target proteins. This model certainly serves to explain how Chk1 modulates origin firing, but how Chk1 controls the fate of stalled forks is less clear. Interestingly, recent reports demonstrating that Chk1 phosphorylates chromatin-bound proteins and even holds kinase-independent functions might shed light on how Chk1 contributes to the elongation of damaged DNA. Indeed, such findings have unveiled a puzzling connection between Chk1 and DNA lesion bypass, which might be central to promoting fork elongation and checkpoint attenuation. In summary, Chk1 is a multifaceted and versatile signaling factor that acts at ongoing forks and replication origins to determine the extent and quality of the cellular response to replication stress.
Collapse
Affiliation(s)
- Marina A González Besteiro
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir, CONICET, Buenos Aires, Argentina
| | - Vanesa Gottifredi
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
17
|
Kaufmann WK, Carson CC, Omolo B, Filgo AJ, Sambade MJ, Simpson DA, Shields JM, Ibrahim JG, Thomas NE. Mechanisms of chromosomal instability in melanoma. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:457-71. [PMID: 24616037 PMCID: PMC4128338 DOI: 10.1002/em.21859] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 05/25/2023]
Abstract
A systems biology approach was applied to investigate the mechanisms of chromosomal instability in melanoma cell lines. Chromosomal instability was quantified using array comparative genomic hybridization to identify somatic copy number alterations (deletions and duplications). Primary human melanocytes displayed an average of 8.5 alterations per cell primarily representing known polymorphisms. Melanoma cell lines displayed 25 to 131 alterations per cell, with an average of 68, indicative of chromosomal instability. Copy number alterations included approximately equal numbers of deletions and duplications with greater numbers of hemizygous (-1,+1) alterations than homozygous (-2,+2). Melanoma oncogenes, such as BRAF and MITF, and tumor suppressor genes, such as CDKN2A/B and PTEN, were included in these alterations. Duplications and deletions were functional as there were significant correlations between DNA copy number and mRNA expression for these genes. Spectral karyotype analysis of three lines confirmed extensive chromosomal instability with polyploidy, aneuploidy, deletions, duplications, and chromosome rearrangements. Bioinformatic analysis identified a signature of gene expression that was correlated with chromosomal instability but this signature provided no clues to the mechanisms of instability. The signature failed to generate a significant (P = 0.105) prediction of melanoma progression in a separate dataset. Chromosomal instability was not correlated with elements of DNA damage response (DDR) such as radiosensitivity, nucleotide excision repair, expression of the DDR biomarkers γH2AX and P-CHEK2, nor G1 or G2 checkpoint function. Chromosomal instability in melanoma cell lines appears to influence gene function but it is not simply explained by alterations in the system of DDR.
Collapse
Affiliation(s)
- William K Kaufmann
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sproul CD, Rao S, Ibrahim JG, Kaufmann WK, Cordeiro-Stone M. Is activation of the intra-S checkpoint in human fibroblasts an important factor in protection against UV-induced mutagenesis? Cell Cycle 2013; 12:3555-63. [PMID: 24091629 DOI: 10.4161/cc.26590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The ATR/CHK1-dependent intra-S checkpoint inhibits replicon initiation and replication fork progression in response to DNA damage caused by UV (UV) radiation. It has been proposed that this signaling cascade protects against UV-induced mutations by reducing the probability that damaged DNA will be replicated before it can be repaired. Normal human fibroblasts (NHF) were depleted of ATR or CHK1, or treated with the CHK1 kinase inhibitor TCS2312, and the UV-induced mutation frequency at the HPRT locus was measured. Despite clear evidence of S-phase checkpoint abrogation, neither ATR/CHK1 depletion nor CHK1 inhibition caused an increase in the UV-induced HPRT mutation frequency. These results question the premise that the UV-induced intra-S checkpoint plays a prominent role in protecting against UV-induced mutagenesis.
Collapse
Affiliation(s)
- Christopher D Sproul
- Curriculum in Toxicology; University of North Carolina-Chapel Hill; Chapel Hill, NC USA
| | | | | | | | | |
Collapse
|