1
|
Zhang X, Baumann C, De La Fuente R. Fluo-Cast-Bright: a deep learning pipeline for the non-invasive prediction of chromatin structure and developmental potential in live oocytes. Commun Biol 2025; 8:141. [PMID: 39880880 PMCID: PMC11779945 DOI: 10.1038/s42003-025-07568-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025] Open
Abstract
In mammalian oocytes, large-scale chromatin organization regulates transcription, nuclear architecture, and maintenance of chromosome stability in preparation for meiosis onset. Pre-ovulatory oocytes with distinct chromatin configurations exhibit profound differences in metabolic and transcriptional profiles that ultimately determine meiotic competence and developmental potential. Here, we developed a deep learning pipeline for the non-invasive prediction of chromatin structure and developmental potential in live mouse oocytes. Our Fluorescence prediction and Classification on Bright-field (Fluo-Cast-Bright) pipeline achieved 91.3% accuracy in the classification of chromatin state in fixed oocytes and 85.7% accuracy in live oocytes. Importantly, transcriptome analysis following non-invasive selection revealed that meiotically competent oocytes exhibit a higher expression of transcripts associated with RNA and protein nuclear export, maternal mRNA deadenylation, histone modifications, chromatin remodeling and signaling pathways regulating microtubule dynamics during the metaphase-I to metaphase-II transition. Fluo-Cast-Bright provides fast and non-invasive selection of meiotically competent oocytes for downstream research and clinical applications.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Claudia Baumann
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Rabindranath De La Fuente
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA.
- Regenerative Bioscience Center (RBC), University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
2
|
Demond H, Khan S, Castillo-Fernandez J, Hanna CW, Kelsey G. Transcriptome and DNA methylation profiling during the NSN to SN transition in mouse oocytes. BMC Mol Cell Biol 2025; 26:2. [PMID: 39754059 PMCID: PMC11697814 DOI: 10.1186/s12860-024-00527-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND During the latter stages of their development, mammalian oocytes under dramatic chromatin reconfiguration, transitioning from a non-surrounded nucleolus (NSN) to a surrounded nucleolus (SN) stage, and concomitant transcriptional silencing. Although the NSN-SN transition is known to be essential for developmental competence of the oocyte, less is known about the accompanying molecular changes. Here we examine the changes in the transcriptome and DNA methylation during the NSN to SN transition in mouse oocytes. RESULTS To study the transcriptome and DNA methylation dynamics during the NSN to SN transition, we used single-cell (sc)M&T-seq to generate scRNA-seq and sc-bisulphite-seq (scBS-seq) data from GV oocytes classified as NSN or SN by Hoechst staining of their nuclei. Transcriptome analysis showed a lower number of detected transcripts in SN compared with NSN oocytes as well as downregulation of 576 genes, which were enriched for processes related to mRNA processing. We used the transcriptome data to generate a classifier that can infer chromatin stage in scRNA-seq datasets. The classifier was successfully tested in multiple published datasets of mouse models with a known skew in NSN: SN ratios. Analysis of the scBS-seq data showed increased DNA methylation in SN compared to NSN oocytes, which was most pronounced in regions with intermediate levels of methylation. Overlap with chromatin immunoprecipitation and sequencing (ChIP-seq) data for the histone modifications H3K36me3, H3K4me3 and H3K27me3 showed that regions gaining methylation in SN oocytes are enriched for overlapping H3K36me3 and H3K27me3, which is an unusual combination, as these marks do not typically coincide. CONCLUSIONS We characterise the transcriptome and DNA methylation changes accompanying the NSN-SN transition in mouse oocytes. We develop a classifier that can be used to infer chromatin status in single-cell or bulk RNA-seq data, enabling identification of altered chromatin transition in genetic knock-outs, and a quality control to identify skewed NSN-SN proportions that could otherwise confound differential gene expression analysis. We identify late-methylating regions in SN oocytes that are associated with an unusual combination of chromatin modifications, which may be regions with high chromatin plasticity and transitioning between H3K27me3 and H3K36me3, or reflect heterogeneity on a single-cell level.
Collapse
Affiliation(s)
- Hannah Demond
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- BMRC, Biomedical Research Consortium Chile, Santiago, Chile
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Soumen Khan
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
| | | | - Courtney W Hanna
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK.
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK.
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
3
|
Zhu S, Li J, Wang X, Jin Y, Wang H, An H, Sun H, Han L, Shen B, Wang Q. The chromatin accessibility landscape of mouse oocytes during configuration transition. Cell Prolif 2025; 58:e13733. [PMID: 39245646 PMCID: PMC11693577 DOI: 10.1111/cpr.13733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 09/10/2024] Open
Abstract
The transition of chromatin configuration in mammalian oocytes from a non-surrounded nucleolus (NSN) to a surrounded nucleolus (SN) is critical for acquiring the developmental competence. However, the genomic and epigenomic features underlying this process remain poorly understood. In the present study, we first establish the chromatin accessibility landscape of mouse oocytes from NSN to SN stage. Through the integrative analysis of multi-omics, we find that the establishment of DNA methylation in oocytes is independent of the dynamics of chromatin accessibility. In contrast, histone H3K4me3 status is closely associated with the dynamics of accessible regions during configuration transition. Furthermore, by focusing on the actively transcribed genes in NSN and SN oocytes, we discover that chromatin accessibility coupled with histone methylation (H3K4me3 and H3K27me3) participates in the transcriptional control during phase transition. In sum, our data provide a comprehensive resource for probing configuration transition in oocytes, and offer insights into the mechanisms determining chromatin dynamics and oocyte quality.
Collapse
Affiliation(s)
- Shuai Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical CenterNanjing Medical UniversityNanjingChina
| | - Jiashuo Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical CenterNanjing Medical UniversityNanjingChina
| | - Xiuwan Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical CenterNanjing Medical UniversityNanjingChina
| | - Yifei Jin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical CenterNanjing Medical UniversityNanjingChina
| | - Hengjie Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical CenterNanjing Medical UniversityNanjingChina
| | - Huiqing An
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical CenterNanjing Medical UniversityNanjingChina
| | - Hongzheng Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical CenterNanjing Medical UniversityNanjingChina
| | - Longsen Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical CenterNanjing Medical UniversityNanjingChina
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical CenterNanjing Medical UniversityNanjingChina
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical CenterNanjing Medical UniversityNanjingChina
- Center for Global Health, School of Public HealthNanjing Medical UniversityNanjingChina
| |
Collapse
|
4
|
Cheng S, Schuh M. Two mechanisms repress cyclin B1 translation to maintain prophase arrest in mouse oocytes. Nat Commun 2024; 15:10044. [PMID: 39567493 PMCID: PMC11579420 DOI: 10.1038/s41467-024-54161-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
In mammals, oocytes are arrested in prophase of meiosis I for long periods of time. Prophase arrest is critical for reproduction because it allows oocytes to grow to their full size to support meiotic maturation and embryonic development. Prophase arrest requires the inhibitory phosphorylation of the mitotic kinase CDK1. Whether prophase arrest is also regulated at the translational level is unknown. Here, we show that prophase arrest is regulated by translational control of dormant cyclin B1 mRNAs. Using Trim-Away, we identify two mechanisms that maintain cyclin B1 dormancy and thus prophase arrest. First, a complex of the RNA-binding proteins DDX6, LSM14B and CPEB1 directly represses cyclin B1 translation through interacting with its 3'UTR. Second, cytoplasmic poly(A)-binding proteins (PABPCs) indirectly repress the translation of cyclin B1 and other poly(A)-tail-less or short-tailed mRNAs by sequestering the translation machinery on long-tailed mRNAs. Together, we demonstrate how RNA-binding proteins coordinately regulate prophase arrest, and reveal an unexpected role for PABPCs in controlling mRNA dormancy.
Collapse
Affiliation(s)
- Shiya Cheng
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, TaiKang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, 430072, Wuhan, China
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
5
|
Nikolova V, Markova M, Zhivkova R, Chakarova I, Hadzhinesheva V, Delimitreva S. How the Oocyte Nucleolus Is Turned into a Karyosphere: The Role of Heterochromatin and Structural Proteins. J Dev Biol 2024; 12:28. [PMID: 39449320 PMCID: PMC11503394 DOI: 10.3390/jdb12040028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Oocyte meiotic maturation includes large-scale chromatin remodeling as well as cytoskeleton and nuclear envelope rearrangements. This review addresses the dynamics of key cytoskeletal proteins (tubulin, actin, vimentin, and cytokeratins) and nuclear envelope proteins (lamin A/C, lamin B, and the nucleoporin Nup160) in parallel with chromatin reorganization in maturing mouse oocytes. A major feature of this reorganization is the concentration of heterochromatin into a spherical perinucleolar rim called surrounded nucleolus or karyosphere. In early germinal vesicle (GV) oocytes with non-surrounded nucleolus (without karyosphere), lamins and Nup160 are at the nuclear envelope while cytoplasmic cytoskeletal proteins are outside the nucleus. At the beginning of karyosphere formation, lamins and Nup160 follow the heterochromatin relocation assembling a new spherical structure in the GV. In late GV oocytes with surrounded nucleolus (fully formed karyosphere), the nuclear envelope gradually loses its integrity and cytoplasmic cytoskeletal proteins enter the nucleus. At germinal vesicle breakdown, lamin B occupies the karyosphere interior while all the other proteins stay at the karyosphere border or connect to chromatin. In metaphase oocytes, lamin A/C surrounds the spindle, Nup160 localizes to its poles, actin and lamin B are attached to the spindle fibers, and cytoplasmic intermediate filaments associate with both the spindle fibers and the metaphase chromosomes.
Collapse
Affiliation(s)
- Venera Nikolova
- Medical Faculty, Department of Biology, Medical University of Sofia, 1431 Sofia, Bulgaria; (M.M.); (R.Z.); (I.C.); (V.H.); (S.D.)
| | | | | | | | | | | |
Collapse
|
6
|
Yu W, Peng X, Cai X, Xu H, Wang C, Liu F, Luo D, Tang S, Wang Y, Du X, Gao Y, Tian T, Liang S, Chen C, Kim NH, Yuan B, Zhang J, Jiang H. Transcriptome analysis of porcine oocytes during postovulatory aging. Theriogenology 2024; 226:387-399. [PMID: 38821784 DOI: 10.1016/j.theriogenology.2024.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
Decreased oocyte quality is a significant contributor to the decline in female fertility that accompanies aging in mammals. Oocytes rely on mRNA stores to support their survival and integrity during the protracted period of transcriptional dormancy as they await ovulation. However, the changes in mRNA levels and interactions that occur during porcine oocyte maturation and aging remain unclear. In this study, the mRNA expression profiles of porcine oocytes during the GV, MII, and aging (24 h after the MII stage) stages were explored by transcriptome sequencing to identify the key genes and pathways that affect oocyte maturation and postovulatory aging. The results showed that 10,929 genes were coexpressed in porcine oocytes during the GV stage, MII stage, and aging stage. In addition, 3037 genes were expressed only in the GV stage, 535 genes were expressed only in the MII stage, and 120 genes were expressed only in the aging stage. The correlation index between the GV and MII stages (0.535) was markedly lower than that between the MII and aging stages (0.942). A total of 3237 genes, which included 1408 upregulated and 1829 downregulated genes, were differentially expressed during porcine oocyte postovulatory aging (aging stage vs. MII stage). Key functional genes, including ATP2A1, ATP2A3, ATP2B2, NDUFS1, NDUFA2, NDUFAF3, SREBF1, CYP11A1, CYP3A29, GPx4, CCP110, STMN1, SPC25, Sirt2, SYCP3, Fascin1/2, PFN1, Cofilin, Tmod3, FLNA, LRKK2, CHEK1/2, DDB1/2, DDIT4L, and TONSL, and key molecular pathways, such as the calcium signaling pathway, MAPK signaling pathway, TGF-β signaling pathway, PI3K/Akt signaling pathway, FoxO signaling pathway, gap junctions, and thermogenesis, were found in abundance during porcine postovulatory aging. These genes are mainly involved in the regulation of many biological processes, such as oxidative stress, calcium homeostasis, mitochondrial function, and lipid peroxidation, during porcine oocyte postovulatory aging. These results contribute to a more in-depth understanding of the biological changes, key regulatory genes and related biological pathways that are involved in oocyte aging and provide a theoretical basis for improving the efficiency of porcine embryo production in vitro and in vivo.
Collapse
Affiliation(s)
- Wenjie Yu
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Xinyue Peng
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Xiaoshi Cai
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Hong Xu
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Chen Wang
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Fengjiao Liu
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Dan Luo
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Shuhan Tang
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Yue Wang
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Xiaoxue Du
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Yan Gao
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Tian Tian
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China; Center of Reproductive Medicine & Center of Prenatal Diagnosis, First Hospital, Jilin University, Changchun, 130062, Jilin, China
| | - Shuang Liang
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Chengzhen Chen
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Nam-Hyung Kim
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Bao Yuan
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Jiabao Zhang
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Hao Jiang
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China.
| |
Collapse
|
7
|
Paulsen B, Piechota S, Barrachina F, Giovannini A, Kats S, Potts KS, Rockwell G, Marchante M, Estevez SL, Noblett AD, Figueroa AB, Aschenberger C, Kelk DA, Forti M, Marcinyshyn S, Wiemer K, Sanchez M, Belchin P, Lee JA, Buyuk E, Slifkin RE, Smela MP, Fortuna PRJ, Chatterjee P, McCulloh DH, Copperman AB, Ordonez-Perez D, Klein JU, Kramme CC. Rescue in vitro maturation using ovarian support cells of human oocytes from conventional stimulation cycles yields oocytes with improved nuclear maturation and transcriptomic resemblance to in vivo matured oocytes. J Assist Reprod Genet 2024; 41:2021-2036. [PMID: 38814543 PMCID: PMC11339229 DOI: 10.1007/s10815-024-03143-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 05/09/2024] [Indexed: 05/31/2024] Open
Abstract
PURPOSE Determine if the gene expression profiles of ovarian support cells (OSCs) and cumulus-free oocytes are bidirectionally influenced by co-culture during in vitro maturation (IVM). METHODS Fertility patients aged 25 to 45 years old undergoing conventional ovarian stimulation donated denuded immature oocytes for research. Oocytes were randomly allocated to either OSC-IVM culture (intervention) or Media-IVM culture (control) for 24-28 h. The OSC-IVM culture condition was composed of 100,000 OSCs in suspension culture with human chorionic gonadotropin (hCG), recombinant follicle stimulating hormone (rFSH), androstenedione, and doxycycline supplementation. The Media-IVM control lacked OSCs and contained the same supplementation. A limited set of in vivo matured MII oocytes were donated for comparative evaluation. Endpoints consisted of MII formation rate, morphological and spindle quality assessment, and gene expression analysis compared to in vitro and in vivo controls. RESULTS OSC-IVM resulted in a statistically significant improvement in MII formation rate compared to the Media-IVM control, with no apparent effect on morphology or spindle assembly. OSC-IVM MII oocytes displayed a closer transcriptomic maturity signature to IVF-MII controls than Media-IVM control MII oocytes. The gene expression profile of OSCs was modulated in the presence of oocytes, displaying culture- and time-dependent differential gene expression during IVM. CONCLUSION The OSC-IVM platform is a novel tool for rescue maturation of human oocytes, yielding oocytes with improved nuclear maturation and a closer transcriptomic resemblance to in vivo matured oocytes, indicating a potential enhancement in oocyte cytoplasmic maturation. These improvements on oocyte quality after OSC-IVM are possibly occurring through bidirectional crosstalk of cumulus-free oocytes and ovarian support cells.
Collapse
Affiliation(s)
- Bruna Paulsen
- Gameto Inc., 430 E. 29th St Fl 14, New York, NY, 10016, USA
| | | | | | | | - Simone Kats
- Gameto Inc., 430 E. 29th St Fl 14, New York, NY, 10016, USA
| | | | | | | | - Samantha L Estevez
- Obstetrics, Gynecology, and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | | | | | | | | | - Marta Sanchez
- Ruber Juan Bravo University Hospital, Eugin Group, Madrid, Spain
| | - Pedro Belchin
- Ruber Juan Bravo University Hospital, Eugin Group, Madrid, Spain
| | - Joseph A Lee
- Reproductive Medicine Associates of New York, New York, NY, USA
| | - Erkan Buyuk
- Obstetrics, Gynecology, and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Reproductive Medicine Associates of New York, New York, NY, USA
| | - Rick E Slifkin
- Reproductive Medicine Associates of New York, New York, NY, USA
| | - Merrick Pierson Smela
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Patrick R J Fortuna
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Pranam Chatterjee
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Computer Science, Duke University, Durham, NC, USA
| | | | - Alan B Copperman
- Obstetrics, Gynecology, and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Reproductive Medicine Associates of New York, New York, NY, USA
| | | | | | | |
Collapse
|
8
|
Wang X, Zhou S, Yin H, Han J, Hu Y, Wang S, Wang C, Huang J, Zhang J, Ling X, Huo R. The role of SRPK1-mediated phosphorylation of SR proteins in the chromatin configuration transition of mouse germinal vesicle oocytes. J Biomed Res 2024; 39:1-11. [PMID: 38807375 PMCID: PMC11982682 DOI: 10.7555/jbr.38.20240054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024] Open
Abstract
Meiotic resumption in mammalian oocytes involves nucleus and organelle structural changes, notably chromatin configuration transitioning from non-surrounding nucleolus (NSN) to surrounding nucleolus (SN) in germinal vesicle (GV) oocytes. Our study found that nuclear speckles, a subnuclear structure mainly composed of serine-arginine (SR) proteins, changed from a diffuse spotted distribution in mouse NSN oocytes to an aggregation pattern in SN oocytes. We further discovered that SRPK1, an enzyme phosphorylating SR proteins, co-localized with NS at SN stage and NSN oocytes failed to convert into SN oocytes after inhibiting the activity of SRPK1. Furthermore, the typical structure of chromatin ring around the nucleolus in SN oocytes collapsed after inhibitor treatment. To explore the underlying mechanism, phosphorylated SR proteins were confirmed to be associated with chromatin by salt extraction experiment, and in situ DNase I assay showed that the accessibility of chromatin enhanced in SN oocytes with SRPK1 inhibited, accompanied by decreased repressive modification on histone and abnormal recurrence of transcriptional signal. In conclusion, our results indicated that SRPK1-regulated phosphorylation on SR proteins was involved in the NSN to SN transition and played an important role in maintaining the condensation nucleus of SN oocytes via interacting with chromatin.
Collapse
Affiliation(s)
- Xia Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Shuai Zhou
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu 210004, China
| | - Haojie Yin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jian Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yue Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Siqi Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Congjing Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jie Huang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Junqiang Zhang
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu 210004, China
| | - Xiufeng Ling
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu 210004, China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
9
|
Zhang YR, Yin Y, Guo SM, Wang YF, Zhao GN, Ji DM, Zhou LQ. The landscape of transcriptional profiles in human oocytes with different chromatin configurations. J Ovarian Res 2024; 17:99. [PMID: 38730385 PMCID: PMC11088011 DOI: 10.1186/s13048-024-01431-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
With increasingly used assisted reproductive technology (ART), the acquisition of high-quality oocytes and early embryos has become the focus of much attention. Studies in mice have found that the transition of chromatin conformation from non-surrounded nucleolus (NSN) to surrounded nucleolus (SN) is essential for oocyte maturation and early embryo development, and similar chromatin transition also exists in human oocytes. In this study, we collected human NSN and SN oocytes and investigated their transcriptome. The analysis of differentially expressed genes showed that epigenetic functions, cyclin-dependent kinases and transposable elements may play important roles in chromatin transition during human oocyte maturation. Our findings provide new insights into the molecular mechanism of NSN-to-SN transition of human oocyte and obtained new clues for improvement of oocyte in vitro maturation technique.
Collapse
Affiliation(s)
- Yi-Ran Zhang
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Anhui, China
| | - Ying Yin
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shi-Meng Guo
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Fan Wang
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guang-Nian Zhao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Dong-Mei Ji
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Anhui, China.
| | - Li-Quan Zhou
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Anhui, China.
| |
Collapse
|
10
|
Kordowitzki P, Graczyk S, Haghani A, Klutstein M. Oocyte Aging: A Multifactorial Phenomenon in A Unique Cell. Aging Dis 2024; 15:5-21. [PMID: 37307833 PMCID: PMC10796106 DOI: 10.14336/ad.2023.0527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023] Open
Abstract
The oocyte is considered to be the largest cell in mammalian species. Women hoping to become pregnant face a ticking biological clock. This is becoming increasingly challenging as an increase in life expectancy is accompanied by the tendency to conceive at older ages. With advancing maternal age, the fertilized egg will exhibit lower quality and developmental competence, which contributes to increased chances of miscarriage due to several causes such as aneuploidy, oxidative stress, epigenetics, or metabolic disorders. In particular, heterochromatin in oocytes and with it, the DNA methylation landscape undergoes changes. Further, obesity is a well-known and ever-increasing global problem as it is associated with several metabolic disorders. More importantly, both obesity and aging negatively affect female reproduction. However, among women, there is immense variability in age-related decline of oocytes' quantity, developmental competence, or quality. Herein, the relevance of obesity and DNA-methylation will be discussed as these aspects have a tremendous effect on female fertility, and it is a topic of continuous and widespread interest that has yet to be fully addressed for the mammalian oocyte.
Collapse
Affiliation(s)
- Pawel Kordowitzki
- Department of Preclinical and Basic Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, Poland.
| | - Szymon Graczyk
- Department of Preclinical and Basic Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, Poland.
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Altos Labs, San Diego, CA, USA.
| | - Michael Klutstein
- Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
11
|
Ermisch AF, Wood JR. Regulation of Oocyte mRNA Metabolism: A Key Determinant of Oocyte Developmental Competence. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 238:23-46. [PMID: 39030353 DOI: 10.1007/978-3-031-55163-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The regulation of mRNA transcription and translation is uncoupled during oogenesis. The reason for this uncoupling is two-fold. Chromatin is only accessible to the transcriptional machinery during the growth phase as it condenses prior to resumption of meiosis to ensure faithful segregation of chromosomes during meiotic maturation. Thus, transcription rates are high during this time period in order to produce all of the transcripts needed for meiosis, fertilization, and embryo cleavage until the newly formed embryonic genome becomes transcriptionally active. To ensure appropriate timing of key developmental milestones including chromatin condensation, resumption of meiosis, segregation of chromosomes, and polar body extrusion, the translation of protein from transcripts synthesized during oocyte growth must be temporally regulated. This is achieved by the regulation of mRNA interaction with RNA binding proteins and shortening and lengthening of the poly(A) tail. This chapter details the essential factors that regulate the dynamic changes in mRNA synthesis, storage, translation, and degradation during oocyte growth and maturation.
Collapse
Affiliation(s)
- Alison F Ermisch
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jennifer R Wood
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
12
|
Liu K, Dai W, Ju J, Li W, Chen Q, Li J, Liu H. Depletion of TIAR impairs embryogenesis via inhibiting zygote genome transcribe. Reprod Domest Anim 2023; 58:1456-1467. [PMID: 37667420 DOI: 10.1111/rda.14461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 09/06/2023]
Abstract
T cell intracellular antigen 1 related protein (TIAR), an RNA-binding protein (RBP), regulates pre-messenger RNA (pre-mRNA) alternative splicing, has been suggested to affect the maturation of primordial germ cells and early mouse embryo development. However, the underlying mechanism remains elusive. In this study, we revealed that TIAR was primarily located in the nucleus at the 2-cell stage embryo, accompanied by highly active transcription. Using immunofluorescence staining and western blotting, we first described the localization and expression level of TIAR during the whole period of oocyte matured and embryogenesis. Knocked down of TIAR could significantly inhibit transcribed and blocked the early mouse embryo development. Combined with RNAP II inhibitor and pre-RNA splicing inhibitor treatment, we further supposed that TIAR might affect transcription at 2-cell via regulating pre-mRNA splicing, and then regulate early mouse embryo development. Collectively, our results provided a novel and potential understanding of TIAR in embryogenesis, suggesting TIAR is required for transcription and embryonic development.
Collapse
Affiliation(s)
- Ke Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Weilong Dai
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jiaqian Ju
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Weijian Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qianqian Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Juan Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
13
|
Briley SM, Ahmed AA, Steenwinkel TE, Jiang P, Hartig SM, Schindler K, Pangas SA. Global SUMOylation in mouse oocytes maintains oocyte identity and regulates chromatin remodeling and transcriptional silencing at the end of folliculogenesis. Development 2023; 150:dev201535. [PMID: 37676777 PMCID: PMC10499029 DOI: 10.1242/dev.201535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/31/2023] [Indexed: 09/09/2023]
Abstract
Meiotically competent oocytes in mammals undergo cyclic development during folliculogenesis. Oocytes within ovarian follicles are transcriptionally active, producing and storing transcripts required for oocyte growth, somatic cell communication and early embryogenesis. Transcription ceases as oocytes transition from growth to maturation and does not resume until zygotic genome activation. Although SUMOylation, a post-translational modification, plays multifaceted roles in transcriptional regulation, its involvement during oocyte development remains poorly understood. In this study, we generated an oocyte-specific knockout of Ube2i, encoding the SUMO E2 enzyme UBE2I, using Zp3-cre+ to determine how loss of oocyte SUMOylation during folliculogenesis affects oocyte development. Ube2i Zp3-cre+ female knockout mice were sterile, with oocyte defects in meiotic competence, spindle architecture and chromosome alignment, and a premature arrest in metaphase I. Additionally, fully grown Ube2i Zp3-cre+ oocytes exhibited sustained transcriptional activity but downregulated maternal effect genes and prematurely activated genes and retrotransposons typically associated with zygotic genome activation. These findings demonstrate that UBE2I is required for the acquisition of key hallmarks of oocyte development during folliculogenesis, and highlight UBE2I as a previously unreported orchestrator of transcriptional regulation in mouse oocytes.
Collapse
Affiliation(s)
- Shawn M. Briley
- Graduate Program in Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Avery A. Ahmed
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tessa E. Steenwinkel
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peixin Jiang
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sean M. Hartig
- Division of Diabetes, Endocrinology, & Metabolism, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Karen Schindler
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Stephanie A. Pangas
- Graduate Program in Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
14
|
Bogolyubova I, Salimov D, Bogolyubov D. Chromatin Configuration in Diplotene Mouse and Human Oocytes during the Period of Transcriptional Activity Extinction. Int J Mol Sci 2023; 24:11517. [PMID: 37511273 PMCID: PMC10380668 DOI: 10.3390/ijms241411517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
In the oocyte nucleus, called the germinal vesicle (GV) at the prolonged diplotene stage of the meiotic prophase, chromatin undergoes a global rearrangement, which is often accompanied by the cessation of its transcriptional activity. In many mammals, including mice and humans, chromatin condenses around a special nuclear organelle called the atypical nucleolus or formerly nucleolus-like body. Chromatin configuration is an important indicator of the quality of GV oocytes and largely predicts their ability to resume meiosis and successful embryonic development. In mice, GV oocytes are traditionally divided into the NSN (non-surrounded nucleolus) and SN (surrounded nucleolus) based on the specific chromatin configuration. The NSN-SN transition is a key event in mouse oogenesis and the main prerequisite for the normal development of the embryo. As for humans, there is no single nomenclature for the chromatin configuration at the GV stage. This often leads to discrepancies and misunderstandings, the overcoming of which should expand the scope of the application of mouse oocytes as a model for developing new methods for assessing and improving the quality of human oocytes. As a first approximation and with a certain proviso, the mouse NSN/SN classification can be used for the primary characterization of human GV oocytes. The task of this review is to analyze and discuss the existing classifications of chromatin configuration in mouse and human GV oocytes with an emphasis on transcriptional activity extinction at the end of oocyte growth.
Collapse
Affiliation(s)
- Irina Bogolyubova
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Daniil Salimov
- Clinical Institute of Reproductive Medicine, 620014 Yekaterinburg, Russia
| | - Dmitry Bogolyubov
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia
| |
Collapse
|
15
|
Jiang X, Cheng Y, Zhu Y, Xu C, Li Q, Xing X, Li W, Zou J, Meng L, Azhar M, Cao Y, Tong X, Qin W, Zhu X, Bao J. Maternal NAT10 orchestrates oocyte meiotic cell-cycle progression and maturation in mice. Nat Commun 2023; 14:3729. [PMID: 37349316 PMCID: PMC10287700 DOI: 10.1038/s41467-023-39256-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 06/06/2023] [Indexed: 06/24/2023] Open
Abstract
In mammals, the production of mature oocytes necessitates rigorous regulation of the discontinuous meiotic cell-cycle progression at both the transcriptional and post-transcriptional levels. However, the factors underlying this sophisticated but explicit process remain largely unclear. Here we characterize the function of N-acetyltransferase 10 (Nat10), a writer for N4-acetylcytidine (ac4C) on RNA molecules, in mouse oocyte development. We provide genetic evidence that Nat10 is essential for oocyte meiotic prophase I progression, oocyte growth and maturation by sculpting the maternal transcriptome through timely degradation of poly(A) tail mRNAs. This is achieved through the ac4C deposition on the key CCR4-NOT complex transcripts. Importantly, we devise a method for examining the poly(A) tail length (PAT), termed Hairpin Adaptor-poly(A) tail length (HA-PAT), which outperforms conventional methods in terms of cost, sensitivity, and efficiency. In summary, these findings provide genetic evidence that unveils the indispensable role of maternal Nat10 in oocyte development.
Collapse
Affiliation(s)
- Xue Jiang
- Reproductive and Genetic Hospital, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Yu Cheng
- School of Information Science and Technology, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Yuzhang Zhu
- Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Caoling Xu
- Reproductive and Genetic Hospital, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Qiaodan Li
- Laboratory animal center, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Xuemei Xing
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Wenqing Li
- Reproductive and Genetic Hospital, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Jiaqi Zou
- Reproductive and Genetic Hospital, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Lan Meng
- Reproductive and Genetic Hospital, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Muhammad Azhar
- Reproductive and Genetic Hospital, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Yuzhu Cao
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Xianhong Tong
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Weibing Qin
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), 510600, Guangzhou, China.
| | - Xiaoli Zhu
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China.
| | - Jianqiang Bao
- Reproductive and Genetic Hospital, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China.
- Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China.
| |
Collapse
|
16
|
Jiang Y, He Y, Pan X, Wang P, Yuan X, Ma B. Advances in Oocyte Maturation In Vivo and In Vitro in Mammals. Int J Mol Sci 2023; 24:9059. [PMID: 37240406 PMCID: PMC10219173 DOI: 10.3390/ijms24109059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The quality and maturation of an oocyte not only play decisive roles in fertilization and embryo success, but also have long-term impacts on the later growth and development of the fetus. Female fertility declines with age, reflecting a decline in oocyte quantity. However, the meiosis of oocytes involves a complex and orderly regulatory process whose mechanisms have not yet been fully elucidated. This review therefore mainly focuses on the regulation mechanism of oocyte maturation, including folliculogenesis, oogenesis, and the interactions between granulosa cells and oocytes, plus in vitro technology and nuclear/cytoplasm maturation in oocytes. Additionally, we have reviewed advances made in the single-cell mRNA sequencing technology related to oocyte maturation in order to improve our understanding of the mechanism of oocyte maturation and to provide a theoretical basis for subsequent research into oocyte maturation.
Collapse
Affiliation(s)
- Yao Jiang
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yingting He
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiangchun Pan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Penghao Wang
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
| | - Xiaolong Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Bin Ma
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
| |
Collapse
|
17
|
Sun X, Wang D, Li W, Gao Q, Tao J, Liu H. Comprehensive analysis of nonsurrounded nucleolus and surrounded nucleolus oocytes on chromatin accessibility using ATAC-seq. Mol Reprod Dev 2023; 90:87-97. [PMID: 36598871 DOI: 10.1002/mrd.23668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/13/2022] [Accepted: 12/25/2022] [Indexed: 01/05/2023]
Abstract
Mouse germinal vesicle (GV) oocytes are divided into surrounded nucleolus (SN) and nonsurrounded nucleolus (NSN) oocytes based on chromatin morphology. NSN oocytes spontaneously transform into SN oocytes after accumulating enough maternal transcripts. SN oocytes show transcriptional silencing. When oocyte maturation is abnormal or takes place in vitro, NSN oocytes do not go through SN stage before proceeding to MII. Nontransitive oocytes show developmental retardation, a low fertilization rate, and arrest at the two-cell embryo stage in mice. Here, chromatin-binding ribonucleic acid polymerase II (RNAP II) activity, newly synthesized RNA, and chromatin accessibility in GV oocytes were examined. In SN oocytes, RNAP II did not bind to DNA, neo-RNA was not generated in nuclei, and the phosphorylation state of RNAP II did not affect the chromatin-binding activity. The number of accessible genes in SN oocytes was remarkably lower than that in NSN oocytes. The accessibility of different functional genes was also different between the two types of oocytes. Thus, low chromatin accessibility leads to transcriptional silencing in SN oocytes.
Collapse
Affiliation(s)
- Xiaofan Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Dayu Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Weijian Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qian Gao
- Laboratory Animal Center, College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
| | - Jingli Tao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
18
|
Gou M, Li J, Yi L, Li H, Ye X, Wang H, Liu L, Sun B, Zhang S, Zhu Z, Liu J, Liu L. Reprogramming of ovarian aging epigenome by resveratrol. PNAS NEXUS 2023; 2:pgac310. [PMID: 36743471 PMCID: PMC9896145 DOI: 10.1093/pnasnexus/pgac310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022]
Abstract
Resveratrol is an antiaging, antioxidant, and anti-inflammatory natural polyphenolic compound. Growing evidence indicates that resveratrol has potential therapeutic effects for improving aging ovarian function. However, the mechanisms underlying prolonged reproductive longevity remain elusive. We found that resveratrol ameliorates ovarian aging transcriptome, some of which are associated with specific changes in methylome. In addition to known aging transcriptome of oocytes and granulosa cells such as decline in oxidoreductase activity, metabolism and mitochondria function, and elevated DNA damage and apoptosis, actin cytoskeleton are notably downregulated with age, and these defects are mostly rescued by resveratrol. Moreover, the aging-associated hypermethylation of actin cytoskeleton is decreased by resveratrol. In contrast, deletion of Tet2, involved in DNA demethylation, abrogates resveratrol-reprogrammed ovarian aging transcriptome. Consistently, Tet2 deficiency results in additional altered pathways as shown by increased mTOR and Wnt signaling, as well as reduced DNA repair and actin cytoskeleton with mouse age. Moreover, genes associated with oxidoreductase activity and oxidation-reduction process were hypermethylated in Tet2-deficient oocytes from middle-age mice treated with resveratrol, indicating that loss of Tet2 abolishes the antioxidant effect of resveratrol. Taking together, our finding provides a comprehensive landscape of transcriptome and epigenetic changes associated with ovarian aging that can be reprogrammed by resveratrol administration, and suggests that aberrantly increased DNA methylation by Tet2 deficiency promotes additional aging epigenome that cannot be effectively restored to younger state by resveratrol.
Collapse
Affiliation(s)
- Mo Gou
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China
| | - Jie Li
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China
| | - Lizhi Yi
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101 Beijing, China
| | - Huiyu Li
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China
| | - Xiaoying Ye
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China
| | - Huasong Wang
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China
| | - Linlin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China
| | - Baofa Sun
- Department of Zoology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Song Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China
| | - Jiang Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101 Beijing, China
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China
- Institute of Translational Medicine, Nankai Union Medical Center, Nankai University, Tianjin 300000, China
| |
Collapse
|
19
|
scm 6A-seq reveals single-cell landscapes of the dynamic m 6A during oocyte maturation and early embryonic development. Nat Commun 2023; 14:315. [PMID: 36658155 PMCID: PMC9852475 DOI: 10.1038/s41467-023-35958-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
N6-methyladenosine (m6A) has been demonstrated to regulate RNA metabolism and various biological processes, including gametogenesis and embryogenesis. However, the landscape and function of m6A at single cell resolution have not been extensively studied in mammalian oocytes or during pre-implantation. In this study, we developed a single-cell m6A sequencing (scm6A-seq) method to simultaneously profile the m6A methylome and transcriptome in single oocytes/blastomeres of cleavage-stage embryos. We found that m6A deficiency leads to aberrant RNA clearance and consequent low quality of Mettl3Gdf9 conditional knockout (cKO) oocytes. We further revealed that m6A regulates the translation and stability of modified RNAs in metaphase II (MII) oocytes and during oocyte-to-embryo transition, respectively. Moreover, we observed m6A-dependent asymmetries in the epi-transcriptome between the blastomeres of two-cell embryo. scm6A-seq thus allows in-depth investigation into m6A characteristics and functions, and the findings provide invaluable single-cell resolution resources for delineating the underlying mechanism for gametogenesis and early embryonic development.
Collapse
|
20
|
Zhang S, Tao W, Han JDJ. 3D chromatin structure changes during spermatogenesis and oogenesis. Comput Struct Biotechnol J 2022; 20:2434-2441. [PMID: 35664233 PMCID: PMC9136186 DOI: 10.1016/j.csbj.2022.05.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 01/19/2023] Open
|
21
|
Wu D. Mouse Oocytes, A Complex Single Cell Transcriptome. Front Cell Dev Biol 2022; 10:827937. [PMID: 35321242 PMCID: PMC8935041 DOI: 10.3389/fcell.2022.827937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Germinal vesicle (GV) stage is a critical transition point from growth to maturation in mammalian oocyte development. During the following meiotic maturation, active RNA degradation and absence of transcription significantly reprofile the oocyte transcriptome to determine oocyte quality. Oocyte RNA-seq has revealed transcriptome differences between two defined phases of GV stage, namely non-surrounded nucleolus (NSN) and surrounded nucleolus (SN) phases. In addition, oocyte RNA-seq has identified a variety of dysregulated genes upon genetic mutation or environmental perturbation. Historically, due to the low amount of RNA per oocyte, a few (20–200) oocytes were needed for a regular library construction in bulk RNA-seq. In recent years, development of single cell sequencing allows detailing the transcriptome of individual oocytes. Here in this study, different RNA-seq datasets from single and bulk of mouse oocytes are compared, and single oocyte RNA-seq (soRNA-seq) shows higher reproducibility. In addition, soRNA-seq better illustrates developmental progression of GV oocytes, revealing more complex gene changes than traditional views. Specially, an elevated level of ribosomal RNA 5′-ETS (5′ external transcribed spacer) has been shown to highly correlate with SN property. This study further demonstrates that UMI (unique molecular identifiers) based and other deduplication methods are limited in their ability to improve the precision of the soRNA-seq datasets. Finally, this study proposes that external spike-in molecules are useful for normalizing samples of different transcriptome sizes. A list of stable genes has been identified during oocyte maturation that are comparable to external spike-in molecules. These findings highlight the advantage of soRNA-seq, and have established ways for better clustering and cross-stage normalization, which can provide more insight into the biological features of oocyte maturation.
Collapse
|
22
|
Smith R, Susor A, Ming H, Tait J, Conti M, Jiang Z, Lin CJ. The H3.3 chaperone Hira complex orchestrates oocyte developmental competence. Development 2022; 149:dev200044. [PMID: 35112132 PMCID: PMC8959146 DOI: 10.1242/dev.200044] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/16/2022] [Indexed: 11/20/2022]
Abstract
Successful reproduction requires an oocyte competent to sustain early embryo development. By the end of oogenesis, the oocyte has entered a transcriptionally silenced state, the mechanisms and significance of which remain poorly understood. Histone H3.3, a histone H3 variant, has unique cell cycle-independent functions in chromatin structure and gene expression. Here, we have characterised the H3.3 chaperone Hira/Cabin1/Ubn1 complex, showing that loss of function of any of these subunits causes early embryogenesis failure in mouse. Transcriptome and nascent RNA analyses revealed that transcription is aberrantly silenced in mutant oocytes. Histone marks, including H3K4me3 and H3K9me3, are reduced and chromatin accessibility is impaired in Hira/Cabin1 mutants. Misregulated genes in mutant oocytes include Zscan4d, a two-cell specific gene involved in zygote genome activation. Overexpression of Zscan4 in the oocyte partially recapitulates the phenotypes of Hira mutants and Zscan4 knockdown in Cabin1 mutant oocytes partially restored their developmental potential, illustrating that temporal and spatial expression of Zscan4 is fine-tuned at the oocyte-to-embryo transition. Thus, the H3.3 chaperone Hira complex has a maternal effect function in oocyte developmental competence and embryogenesis, through modulating chromatin condensation and transcriptional quiescence.
Collapse
Affiliation(s)
- Rowena Smith
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Andrej Susor
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, CAS, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Hao Ming
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Janet Tait
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Marco Conti
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Zongliang Jiang
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Chih-Jen Lin
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
23
|
Sirard MA. The two-step process of ovarian follicular growth and maturation in mammals can be compared to a fruit ripening where quality depends on the second step. Biol Reprod 2021; 106:230-234. [PMID: 34939644 DOI: 10.1093/biolre/ioab236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/26/2021] [Accepted: 12/20/2021] [Indexed: 11/12/2022] Open
Abstract
In human IVF, the main uncertainty factor impacting on success is oocyte quality, which largely depends on the follicular status at the time of collection. Decades of debate ensued to find the perfect stimulation protocol demonstrated the complexity of the ovarian response to exogenous gonadotropins and the dynamic nature of late folliculogenesis. Although several follicular markers, proteins, RNA from granulosa cells or microRNA and follicular fluid metabolites have been associated with outcome, the possibility to influence them during stimulation remains elusive. The heterogeneity of the follicle's maturity following control ovarian stimulation is also an important factor to explain average poor oocyte quality still observed today. In this review, the analogy between the apple ripening on the tree and follicular development is presented to focus the attention on a biphasic process: growth and differentiation. The molecular analysis of the progressive follicular differentiation indicates 2 competing phenomena: growth and differentiation where a delicate balance must operate from one to the other to ensure proper maturity at ovulation. As long as FSH stimulates growth, follicles remain green, and it is only when FSH is replaced by LH that the ripening process begins, and "apples" become red. Both fruits, follicles and apples, depend on a perfect timing of events to generate offspring.
Collapse
Affiliation(s)
- Marc-André Sirard
- Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI).,Département des Sciences Animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Canada
| |
Collapse
|
24
|
Yueh WT, Singh VP, Gerton JL. Maternal Smc3 protects the integrity of the zygotic genome through DNA replication and mitosis. Development 2021; 148:dev199800. [PMID: 34935904 PMCID: PMC8722392 DOI: 10.1242/dev.199800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/22/2021] [Indexed: 01/10/2023]
Abstract
Aneuploidy is frequently observed in oocytes and early embryos, begging the question of how genome integrity is monitored and preserved during this crucial period. SMC3 is a subunit of the cohesin complex that supports genome integrity, but its role in maintaining the genome during this window of mammalian development is unknown. We discovered that, although depletion of Smc3 following meiotic S phase in mouse oocytes allowed accurate meiotic chromosome segregation, adult females were infertile. We provide evidence that DNA lesions accumulated following S phase in SMC3-deficient zygotes, followed by mitosis with lagging chromosomes, elongated spindles, micronuclei, and arrest at the two-cell stage. Remarkably, although centromeric cohesion was defective, the dosage of SMC3 was sufficient to enable embryogenesis in juvenile mutant females. Our findings suggest that, despite previous reports of aneuploidy in early embryos, chromosome missegregation in zygotes halts embryogenesis at the two-cell stage. Smc3 is a maternal gene with essential functions in the repair of spontaneous damage associated with DNA replication and subsequent chromosome segregation in zygotes, making cohesin a key protector of the zygotic genome.
Collapse
Affiliation(s)
- Wei-Ting Yueh
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Jennifer L. Gerton
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
25
|
Aboelenain M, Schindler K. Aurora kinase B inhibits aurora kinase A to control maternal mRNA translation in mouse oocytes. Development 2021; 148:272443. [PMID: 34636397 DOI: 10.1242/dev.199560] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 10/04/2021] [Indexed: 12/31/2022]
Abstract
Mammalian oocytes are transcriptionally quiescent, and meiosis and early embryonic divisions rely on translation of stored maternal mRNAs. Activation of these mRNAs is mediated by polyadenylation. Cytoplasmic polyadenylation binding element 1 (CPEB1) regulates mRNA polyadenylation. One message is aurora kinase C (Aurkc), encoding a protein that regulates chromosome segregation. We previously demonstrated that AURKC levels are upregulated in oocytes lacking aurora kinase B (AURKB), and this upregulation caused increased aneuploidy rates, a role we investigate here. Using genetic and pharmacologic approaches, we found that AURKB negatively regulates CPEB1-dependent translation of many messages. To determine why translation is increased, we evaluated aurora kinase A (AURKA), a kinase that activates CPEB1 in other organisms. We find that AURKA activity is increased in Aurkb knockout mouse oocytes and demonstrate that this increase drives the excess translation. Importantly, removal of one copy of Aurka from the Aurkb knockout strain background reduces aneuploidy rates. This study demonstrates that AURKA is required for CPEB1-dependent translation, and it describes a new AURKB requirement to maintain translation levels through AURKA, a function crucial to generating euploid eggs.
Collapse
Affiliation(s)
- Mansour Aboelenain
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA.,Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Karen Schindler
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
26
|
Wołodko K, Castillo-Fernandez J, Kelsey G, Galvão A. Revisiting the Impact of Local Leptin Signaling in Folliculogenesis and Oocyte Maturation in Obese Mothers. Int J Mol Sci 2021; 22:4270. [PMID: 33924072 PMCID: PMC8074257 DOI: 10.3390/ijms22084270] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/28/2022] Open
Abstract
The complex nature of folliculogenesis regulation accounts for its susceptibility to maternal physiological fitness. In obese mothers, progressive expansion of adipose tissue culminates with severe hyperestrogenism and hyperleptinemia with detrimental effects for ovarian performance. Indeed, maternal obesity is associated with the establishment of ovarian leptin resistance. This review summarizes current knowledge on potential effects of impaired leptin signaling throughout folliculogenesis and oocyte developmental competence in mice and women.
Collapse
Affiliation(s)
- Karolina Wołodko
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of PAS, Tuwima 10, 10-748 Olsztyn, Poland;
| | | | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; (J.C.-F.); (G.K.)
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - António Galvão
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of PAS, Tuwima 10, 10-748 Olsztyn, Poland;
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; (J.C.-F.); (G.K.)
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
27
|
Wang T, Na J. Fibrillarin-GFP Facilitates the Identification of Meiotic Competent Oocytes. Front Cell Dev Biol 2021; 9:648331. [PMID: 33937243 PMCID: PMC8082495 DOI: 10.3389/fcell.2021.648331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/12/2021] [Indexed: 12/11/2022] Open
Abstract
The nucleolus undergoes significant functional changes and plays important roles during mammalian oocyte meiotic maturation. Fibrillarin (FBL) is the component of nucleolar small nuclear ribonucleoprotein (snRNP) particle and localizes to the dense fibrillar component (DFC) of the nucleolus. We found that FBL-GFP displays an uneven and cloudy localization in the nucleolus of non-surrounded nucleolus (NSN) oocytes, while it distributes evenly and to a few bright dots in the surrounded nucleolus (SN) oocytes. Accordingly, NSN oocytes showed active nascent RNA transcription, while the SN group was transcriptionally quiescent. NSN geminal vesicles also contained more DNA damage marker γH2AX foci. Based on different FBL-GFP patterns in live oocytes, the ones with superior meiotic maturation potential can be identified. Global transcriptome profiling revealed a significant difference in single SN and NSN oocytes. Thus, FBL-GFP can serve as a marker for nucleolus activity, which also correlates with transcription activity and the quality of oocytes.
Collapse
Affiliation(s)
- Ting Wang
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Jie Na
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
28
|
He M, Zhang T, Yang Y, Wang C. Mechanisms of Oocyte Maturation and Related Epigenetic Regulation. Front Cell Dev Biol 2021; 9:654028. [PMID: 33842483 PMCID: PMC8025927 DOI: 10.3389/fcell.2021.654028] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
Meiosis is the basis of sexual reproduction. In female mammals, meiosis of oocytes starts before birth and sustains at the dictyate stage of meiotic prophase I before gonadotropins-induced ovulation happens. Once meiosis gets started, the oocytes undergo the leptotene, zygotene, and pachytene stages, and then arrest at the dictyate stage. During each estrus cycle in mammals, or menstrual cycle in humans, a small portion of oocytes within preovulatory follicles may resume meiosis. It is crucial for females to supply high quality mature oocytes for sustaining fertility, which is generally achieved by fine-tuning oocyte meiotic arrest and resumption progression. Anything that disturbs the process may result in failure of oogenesis and seriously affect both the fertility and the health of females. Therefore, uncovering the regulatory network of oocyte meiosis progression illuminates not only how the foundations of mammalian reproduction are laid, but how mis-regulation of these steps result in infertility. In order to provide an overview of the recently uncovered cellular and molecular mechanism during oocyte maturation, especially epigenetic modification, the progress of the regulatory network of oocyte meiosis progression including meiosis arrest and meiosis resumption induced by gonadotropins is summarized. Then, advances in the epigenetic aspects, such as histone acetylation, phosphorylation, methylation, glycosylation, ubiquitination, and SUMOylation related to the quality of oocyte maturation are reviewed.
Collapse
Affiliation(s)
- Meina He
- Department of Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, China
| | - Tuo Zhang
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, China
| | - Yi Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, China
| |
Collapse
|
29
|
Yu H, Yong W, Gao T, Na M, Zhang Y, Kuguminkiriza IH, Kenechukwu AA, Guo Q, Zhang G, Deng X. Hormesis of low-dose inhibition of pAkt1 (Ser473) followed by a great increase of proline-rich inositol polyphosphate 5-phosphatase (PIPP) level in oocytes. In Vitro Cell Dev Biol Anim 2021; 57:342-349. [PMID: 33537929 DOI: 10.1007/s11626-021-00546-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
Hormesis describes a biphasic dose-response relationship generally characterized by a low-dose excitement and a high-dose inhibition. This phenomenon has been observed in the regulation of cell, organ, and organismic level. However, hormesis has not reported in oocytes. In this study, we observed, for the first time, hormetic responses of PIPP levels in oocytes by inhibitor of Akt1 or PKCδ. The expression of PIPP was detected by qPCR, immunofluorescent (IF), and Western Blot (WB). To observe the changes of PIPP levels, we used the inhibitors against pAkt1 (Ser473) or PKCδ, SH-6 or sotrastaurin with low and/or high-dose, treated GV oocytes and cultured for 4 h, respectively. The results showed that PIPP expression was significantly enhanced when oocytes were treated with SH-6 or sotrastaurin 10 μM, but decreased with SH-6 or sotrastaurin 100 μM. We also examined the changes of PIPP levels when GV oocytes were treated with exogenous PtdIns(3,4,5)P3 or LY294002 for 4 h. Our results showed that PIPP level was enhanced much higher under the treatment of 0.1 μM PtdIns(3,4,5)P3 than that of 1 μM PtdIns(3,4,5)P3, which is consistent with the changes of PIPP when oocytes were treated with inhibitors of pAkt1 (Ser473) or PKCδ. In addition, with PIPP siRNA, we detected that down-regulated PIPP may affect distributions of Akt, Cdc25, and pCdc2 (Tyr15). Taken together, these results show that the relationships between PIPP and Akt may follow the principle of hormesis and play a key role during release of diplotene arrest in mouse oocytes.
Collapse
Affiliation(s)
- Hang Yu
- Department of Physics and Biophysics, School of Fundamental Sciences, China Medical University (CMU), Shenyang, 110122, People's Republic of China
| | - Wei Yong
- Center Laboratory of the Fourth Affiliated Hospital, China Medical University (CMU), Shenyang, 110032, People's Republic of China
| | - Teng Gao
- Center Laboratory of the Fourth Affiliated Hospital, China Medical University (CMU), Shenyang, 110032, People's Republic of China
| | - Man Na
- Center Laboratory of the Fourth Affiliated Hospital, China Medical University (CMU), Shenyang, 110032, People's Republic of China
| | - Ye Zhang
- Center Laboratory of the Fourth Affiliated Hospital, China Medical University (CMU), Shenyang, 110032, People's Republic of China
| | | | | | - Qingguo Guo
- Department of Biochemistry and Molecular Biology, CMU, Shenyang, China
| | - Guoli Zhang
- Institute of Veterinary Medicine, The Academy of Military Medical Sciences of PLA, Changchun, 130122, Jilin, People's Republic of China
| | - Xin Deng
- Center Laboratory of the Fourth Affiliated Hospital, China Medical University (CMU), Shenyang, 110032, People's Republic of China.
| |
Collapse
|
30
|
Enukashvily NI, Dobrynin MA, Chubar AV. RNA-seeded membraneless bodies: Role of tandemly repeated RNA. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 126:151-193. [PMID: 34090614 DOI: 10.1016/bs.apcsb.2020.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
Membraneless organelles (bodies, granules, etc.) are spatially distinct sub-nuclear and cytoplasmic foci involved in all the processes in a living cell, such as development, cell death, carcinogenesis, proliferation, and differentiation. Today the list of the membraneless organelles includes a wide spectrum of intranuclear and cytoplasmic bodies. Proteins with intrinsically disordered regions are the key players in the membraneless body assembly. However, recent data assume an important role of RNA molecules in the process of the liquid-liquid phase separation. High-level expression of RNA above a critical concentration threshold is mandatory to nucleate interactions with specific proteins and for seeding membraneless organelles. RNA components are considered by many authors as the principal determinants of organelle identity. Tandemly repeated (TR) DNA of big satellites (a TR family that includes centromeric and pericentromeric DNA sequences) was believed to be transcriptionally silent for a long period. Now we know about the TR transcription upregulation during gameto- and embryogenesis, carcinogenesis, stress response. In the review, we summarize the recent data about the involvement of TR RNA in the formation of nuclear membraneless granules, bodies, etc., with different functions being in some cases an initiator of the structures assembly. These RNP structures sequestrate and inactivate different proteins and transcripts. The TR induced sequestration is one of the key principles of nuclear architecture and genome functioning. Studying the role of the TR-based membraneless organelles in stress and disease will bring some new ideas for translational medicine.
Collapse
Affiliation(s)
- Natella I Enukashvily
- Institute of Cytology RAS, St. Petersburg, Russia; North-Western Medical State University named after I.I. Mechnikov, St. Petersburg, Russia.
| | | | | |
Collapse
|
31
|
Castillo‐Fernandez J, Herrera‐Puerta E, Demond H, Clark SJ, Hanna CW, Hemberger M, Kelsey G. Increased transcriptome variation and localised DNA methylation changes in oocytes from aged mice revealed by parallel single-cell analysis. Aging Cell 2020; 19:e13278. [PMID: 33201571 PMCID: PMC7744954 DOI: 10.1111/acel.13278] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/27/2020] [Accepted: 10/18/2020] [Indexed: 01/08/2023] Open
Abstract
Advancing maternal age causes a progressive reduction in fertility. The decline in developmental competence of the oocyte with age is likely to be a consequence of multiple contributory factors. Loss of epigenetic quality of the oocyte could impair early developmental events or programme adverse outcomes in offspring that manifest only later in life. Here, we undertake joint profiling of the transcriptome and DNA methylome of individual oocytes from reproductively young and old mice undergoing natural ovulation. We find reduced complexity as well as increased variance in the transcriptome of oocytes from aged females. This transcriptome heterogeneity is reflected in the identification of discrete sub-populations. Oocytes with a transcriptome characteristic of immature chromatin configuration (NSN) clustered into two groups: one with reduced developmental competence, as indicated by lower expression of maternal effect genes, and one with a young-like transcriptome. Oocytes from older females had on average reduced CpG methylation, but the characteristic bimodal methylation landscape of the oocyte was preserved. Germline differentially methylated regions of imprinted genes were appropriately methylated irrespective of age. For the majority of differentially expressed transcripts, the absence of correlated methylation changes suggests a post-transcriptional basis for most age-related effects on the transcriptome. However, we did find differences in gene body methylation at which there were corresponding changes in gene expression, indicating age-related effects on transcription that translate into methylation differences. Interestingly, oocytes varied in expression and methylation of these genes, which could contribute to variable competence of oocytes or penetrance of maternal age-related phenotypes in offspring.
Collapse
Affiliation(s)
| | - Erika Herrera‐Puerta
- Epigenetics ProgrammeBabraham InstituteCambridgeUK
- Science and Biotechnology Faculty, Biology ProgramCES UniversityMedellinColombia
| | | | | | - Courtney W. Hanna
- Epigenetics ProgrammeBabraham InstituteCambridgeUK
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
| | - Myriam Hemberger
- Epigenetics ProgrammeBabraham InstituteCambridgeUK
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
- Departments of Biochemistry & Molecular Biology and Medical GeneticsCumming School of MedicineUniversity of CalgaryCalgaryALCanada
- Alberta Children’s Hospital Research InstituteUniversity of CalgaryCalgaryALCanada
| | - Gavin Kelsey
- Epigenetics ProgrammeBabraham InstituteCambridgeUK
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
| |
Collapse
|
32
|
Dobrynin MA, Korchagina NM, Prjibelski AD, Shafranskaya D, Ostromyshenskii DI, Shunkina K, Stepanova I, Kotova AV, Podgornaya OI, Enukashvily NI. Human pericentromeric tandemly repeated DNA is transcribed at the end of oocyte maturation and is associated with membraneless mitochondria-associated structures. Sci Rep 2020; 10:19634. [PMID: 33184340 PMCID: PMC7665179 DOI: 10.1038/s41598-020-76628-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/29/2020] [Indexed: 01/25/2023] Open
Abstract
Most of the human genome is non-coding. However, some of the non-coding part is transcriptionally active. In humans, the tandemly repeated (TR) pericentromeric non-coding DNA-human satellites 2 and 3 (HS2, HS3)-are transcribed in somatic cells. These transcripts are also found in pre- and post-implantation embryos. The aim of this study was to analyze HS2/HS3 transcription and cellular localization of transcripts in human maturating oocytes. The maternal HS2/HS3 TR transcripts transcribed from both strands were accumulated in the ooplasm in GV-MI oocytes as shown by DNA-RNA FISH (fluorescence in-situ hybridization). The transcripts' content was higher in GV oocytes than in somatic cumulus cells according to real-time PCR. Using bioinformatics analysis, we demonstrated the presence of polyadenylated HS2 and HS3 RNAs in datasets of GV and MII oocyte transcriptomes. The transcripts shared a high degree of homology with HS2, HS3 transcripts previously observed in cancer cells. The HS2/HS3 transcripts were revealed by a combination of FISH and immunocytochemical staining within membraneless RNP structures that contained DEAD-box helicases DDX5 and DDX4. The RNP structures were closely associated with mitochondria, and are therefore similar to membraneless bodies described previously only in oogonia. These membraneless structures may be a site for spatial sequestration of RNAs and proteins in both maturating oocytes and cancer cells.
Collapse
Affiliation(s)
- M A Dobrynin
- Institute of Cytology RAS, Saint Petersburg, Russia
| | - N M Korchagina
- Ava-Peter - Scandinavia Assisted Reproductive Technology Clinic, Saint Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, Saint Petersburg, Russia
| | - A D Prjibelski
- Center for Algorithmic Biotechnology, St. Petersburg State University, Saint Petersburg, Russia
| | - D Shafranskaya
- Center for Algorithmic Biotechnology, St. Petersburg State University, Saint Petersburg, Russia
| | | | - K Shunkina
- Ava-Peter - Scandinavia Assisted Reproductive Technology Clinic, Saint Petersburg, Russia
| | - I Stepanova
- Institute of Cytology RAS, Saint Petersburg, Russia
| | - A V Kotova
- Institute of Cytology RAS, Saint Petersburg, Russia
- North-Western State Medical University Named After I.I. Mechnikov, Saint Petersburg, Russia
| | - O I Podgornaya
- Institute of Cytology RAS, Saint Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, Saint Petersburg, Russia
| | - N I Enukashvily
- Institute of Cytology RAS, Saint Petersburg, Russia.
- North-Western State Medical University Named After I.I. Mechnikov, Saint Petersburg, Russia.
| |
Collapse
|
33
|
Sha QQ, Zhang J, Fan HY. Function and Regulation of Histone H3 Lysine-4 Methylation During Oocyte Meiosis and Maternal-to-Zygotic Transition. Front Cell Dev Biol 2020; 8:597498. [PMID: 33163498 PMCID: PMC7581939 DOI: 10.3389/fcell.2020.597498] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
During oogenesis and fertilization, histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs) tightly regulate the methylation of histone H3 on lysine-4 (H3K4me) by adding and removing methyl groups, respectively. Female germline-specific conditional knockout approaches that abolish the maternal store of target mRNAs and proteins are used to examine the functions of H3K4 KMTs and KDMs during oogenesis and early embryogenesis. In this review, we discuss the recent advances in information regarding the deposition and removal of histone H3K4 methylations, as well as their functional roles in sculpting and poising the oocytic and zygotic genomes. We start by describing the role of KMTs in establishing H3K4 methylation patterns in oocytes and the impact of H3K4 methylation on oocyte maturation and competence to undergo MZT. We then introduce the latest information regarding H3K4 demethylases that account for the dynamic changes in H3K4 modification levels during development and finish the review by specifying important unanswered questions in this research field along with promising future directions for H3K4-related epigenetic studies.
Collapse
Affiliation(s)
- Qian-Qian Sha
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jue Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
34
|
Identification of transcriptome differences in goat ovaries at the follicular phase and the luteal phase using an RNA-Seq method. Theriogenology 2020; 158:239-249. [PMID: 32987289 DOI: 10.1016/j.theriogenology.2020.06.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 01/01/2023]
Abstract
The ovaries, the main female reproductive organs, directly mediate ovulation and reproductive hormone secretion. These complex physiological processes are regulated by multiple genes and pathways. However, there is a lack of research on goat ovaries, and the molecular mechanisms underlying the signaling pathways remain unclear. In this study, Illumina HiSeq 4000 sequencing was used to sequence the transcriptomes of goat ovaries. The expression patterns of differentially expressed mRNAs in goat ovaries at both the follicular and luteal phases were determined by bioinformatics analysis. A total of 1,122, 014, 112 clean reads were obtained, and 3770 differentially expressed mRNAs were identified for further analysis. There were 1727 and 2043 upregulated mRNAs in the luteal phase and follicular phase, respectively. According to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, some mRNAs that were highly expressed in ovaries during the luteal phase, such as HSD17B7, 3BHSD, and SRD5A2, may be related to the synthesis of progesterone. In addition, some mRNAs that were highly expressed in ovaries during the follicular phase, such as RPL12, RPS13 and RPL10, are related to the growth and maturation of oocytes. Taken together, the findings of this study provide genome-wide mRNA expression profiles for goat ovaries at the follicular and luteal phases and identify mRNAs associated with goat hormone secretion and follicular development. In addition, this study provides a theoretical basis for further investigation of goat reproductive regulation.
Collapse
|
35
|
Wu D, Dean J. EXOSC10 sculpts the transcriptome during the growth-to-maturation transition in mouse oocytes. Nucleic Acids Res 2020; 48:5349-5365. [PMID: 32313933 DOI: 10.1093/nar/gkaa249] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 12/21/2022] Open
Abstract
Growing mammalian oocytes accumulate substantial amounts of RNA, most of which is degraded during subsequent meiotic maturation. The growth-to-maturation transition begins with germinal vesicle or nuclear envelope breakdown (GVBD) and is critical for oocyte quality and early development. The molecular machinery responsible for the oocyte transcriptome transition remains unclear. Here, we report that an exosome-associated RNase, EXOSC10, sculpts the transcriptome to facilitate the growth-to-maturation transition of mouse oocytes. We establish an oocyte-specific conditional knockout of Exosc10 in mice using CRISPR/Cas9 which results in female subfertility due to delayed GVBD. By performing multiple single oocyte RNA-seq, we document dysregulation of several types of RNA, and the mRNAs that encode proteins important for endomembrane trafficking and meiotic cell cycle. As expected, EXOSC10-depleted oocytes have impaired endomembrane components including endosomes, lysosomes, endoplasmic reticulum and Golgi. In addition, CDK1 fails to activate, possibly due to persistent WEE1 activity, which blocks lamina phosphorylation and disassembly. Moreover, we identified rRNA processing defects that cause higher percentage of developmentally incompetent oocytes after EXOSC10 depletion. Collectively, we propose that EXOSC10 promotes normal growth-to-maturation transition in mouse oocytes by sculpting the transcriptome to degrade RNAs encoding growth-phase factors and, thus, support the maturation phase of oogenesis.
Collapse
Affiliation(s)
- Di Wu
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jurrien Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
36
|
Konno S, Wakayama S, Ito D, Kazama K, Hirose N, Ooga M, Wakayama T. Removal of remodeling/reprogramming factors from oocytes and the impact on the full-term development of cloned embryos. Development 2020; 147:dev.190777. [PMID: 32665239 DOI: 10.1242/dev.190777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/25/2020] [Indexed: 12/19/2022]
Abstract
The reason for the poor development of cloned embryos is not yet clear. Several reports have suggested that some nuclear remodeling/reprogramming factors (RRFs) are removed from oocytes at the time of enucleation, which might cause the low success rate of animal cloning. However, there is currently no method to manipulate the amount of RRFs in oocytes. Here, we describe techniques we have developed to gradually reduce RRFs in mouse oocytes by injecting somatic cell nuclei into oocytes. These injected nuclei were remodeled and reprogrammed using RRFs, and then RRFs were removed by subsequent deletion of somatic nuclei from oocytes. The size of the metaphase II spindle reduced immediately, but did recover when transferred into fresh oocytes. Though affected, the full-term developmental potential of these RRF-reduced oocytes with MII-spindle shrinkage was not lost after fertilization. When somatic cell nuclear transfer was performed, the successful generation of cloned mice was somewhat improved and abnormalities were reduced when oocytes with slightly reduced RRF levels were used. These results suggest that a change in RRFs in oocytes, as achieved by the method described in this paper or by enucleation, is important but not the main reason for the incomplete reprogramming of somatic cell nuclei.
Collapse
Affiliation(s)
- Shunsuke Konno
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Daiyu Ito
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Kousuke Kazama
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Naoki Hirose
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Masatoshi Ooga
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Teruhiko Wakayama
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan .,Advanced Biotechnology Center, University of Yamanashi, Yamanashi, 400-8510, Japan
| |
Collapse
|
37
|
Bogolyubova I, Bogolyubov D. Heterochromatin Morphodynamics in Late Oogenesis and Early Embryogenesis of Mammals. Cells 2020; 9:cells9061497. [PMID: 32575486 PMCID: PMC7348780 DOI: 10.3390/cells9061497] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022] Open
Abstract
During the period of oocyte growth, chromatin undergoes global rearrangements at both morphological and molecular levels. An intriguing feature of oogenesis in some mammalian species is the formation of a heterochromatin ring-shaped structure, called the karyosphere or surrounded "nucleolus", which is associated with the periphery of the nucleolus-like bodies (NLBs). Morphologically similar heterochromatin structures also form around the nucleolus-precursor bodies (NPBs) in zygotes and persist for several first cleavage divisions in blastomeres. Despite recent progress in our understanding the regulation of gene silencing/expression during early mammalian development, as well as the molecular mechanisms that underlie chromatin condensation and heterochromatin structure, the biological significance of the karyosphere and its counterparts in early embryos is still elusive. We pay attention to both the changes of heterochromatin morphology and to the molecular mechanisms that can affect the configuration and functional activity of chromatin. We briefly discuss how DNA methylation, post-translational histone modifications, alternative histone variants, and some chromatin-associated non-histone proteins may be involved in the formation of peculiar heterochromatin structures intimately associated with NLBs and NPBs, the unique nuclear bodies of oocytes and early embryos.
Collapse
|
38
|
Histone H3K9 Methyltransferase G9a in Oocytes Is Essential for Preimplantation Development but Dispensable for CG Methylation Protection. Cell Rep 2020; 27:282-293.e4. [PMID: 30943408 DOI: 10.1016/j.celrep.2019.03.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 01/07/2019] [Accepted: 02/27/2019] [Indexed: 01/02/2023] Open
Abstract
Mammalian histone methyltransferase G9a (also called EHMT2) deposits H3K9me2 on chromatin and is essential for postimplantation development. However, its role in oogenesis and preimplantation development remains poorly understood. We show that H3K9me2-enriched chromatin domains in mouse oocytes are generally depleted of CG methylation, contrasting with their association in embryonic stem and somatic cells. Oocyte-specific disruption of G9a results in reduced H3K9me2 enrichment and impaired reorganization of heterochromatin in oocytes, but only a modest reduction in CG methylation is detected. Furthermore, in both oocytes and 2-cell embryos, G9a depletion has limited impact on the expression of genes and retrotransposons. Although their CG methylation is minimally affected, preimplantation embryos derived from such oocytes show abnormal chromosome segregation and frequent developmental arrest. Our findings illuminate the functional importance of G9a independent of CG methylation in preimplantation development and call into question the proposed role for H3K9me2 in CG methylation protection in zygotes.
Collapse
|
39
|
Peters AE, Mihalas BP, Bromfield EG, Roman SD, Nixon B, Sutherland JM. Autophagy in Female Fertility: A Role in Oxidative Stress and Aging. Antioxid Redox Signal 2020; 32:550-568. [PMID: 31892284 DOI: 10.1089/ars.2019.7986] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: The precipitous age-related decline in female fertility is intimately associated with a reduction in both the quantity and quality of the germline (oocytes). Although complex etiologies undoubtedly contribute to the deterioration of oocyte quality, increasing attention has focused on the pervasive impact of oxidative stress. Indeed, the prolonged lifespan of the meiotically arrested oocyte places this cell at heightened risk of oxidative lesions, which commonly manifest in dysregulation of protein homeostasis (proteostasis). Although oocytes are able to mitigate this threat via the mobilization of a sophisticated network of surveillance, repair, and proteolytic pathways, these defenses are themselves prone to age-related defects, reducing their capacity to eliminate oxidatively damaged proteins. Recent Advances: Here, we give consideration to the quality control mechanisms identified within the ovary that afford protection to the female germline. Our primary focus is to review recent advances in our understanding of the autophagy pathway and its contribution to promoting oocyte longevity and modulating pathophysiological responses to oxidative stress. In addition, we explore the therapeutic potential of emerging strategies to fortify autophagic activity. Critical Issues: The complex interplay of oxidative stress and autophagy has yet to be fully elucidated within the context of the aging oocyte and surrounding ovarian environment. Future Directions: Emerging evidence provides a strong impetus to resolve the causal link between autophagy and oxidative stress-driven pathologies in the aging oocyte. Such research may ultimately inform novel therapeutic strategies to combat the age-related loss of female fertility via fortification of intrinsic autophagic activity.
Collapse
Affiliation(s)
- Alexandra E Peters
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Bettina P Mihalas
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Shaun D Roman
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia.,Priority Research Centre for Drug Development, University of Newcastle, Callaghan, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Jessie M Sutherland
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia
| |
Collapse
|
40
|
Oocyte competence is maintained by m 6A methyltransferase KIAA1429-mediated RNA metabolism during mouse follicular development. Cell Death Differ 2020; 27:2468-2483. [PMID: 32094512 DOI: 10.1038/s41418-020-0516-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
KIAA1429 (also known as vir-like m6A methyltransferase-associated protein (VIRMA)), a newly identified component of the RNA m6A methyltransferase complex, plays critical roles in guiding region-selective m6A deposition. However, in mammals, whether KIAA1429 mediates RNA m6A regulatory pathway functions in vivo remains unknown. Here, we show that the Kiaa1429-specific deficiency in oocytes resulted in female infertility with defective follicular development and fully grown germinal vesicle (GV) oocytes failing to undergo germinal vesicle breakdown (GVBD) and consequently losing the ability to resume meiosis. The oocyte growth is accompanied by the accumulation of abundant RNAs and posttranscriptional regulation. We found that the loss of Kiaa1429 could also lead to abnormal RNA metabolism in GV oocytes. RNA-seq profiling revealed that Kiaa1429 deletion altered the expression pattern of the oocyte-derived factors essential for follicular development. In addition, our data show that the conditional depletion of Kiaa1429 decreased the m6A levels in oocytes and mainly affected the alternative splicing of genes associated with oogenesis. In summary, the m6A methyltransferase KIAA1429-mediated RNA metabolism plays critical roles in folliculogenesis and the maintenance of oocyte competence.
Collapse
|
41
|
Identifying the Translatome of Mouse NEBD-Stage Oocytes via SSP-Profiling; A Novel Polysome Fractionation Method. Int J Mol Sci 2020; 21:ijms21041254. [PMID: 32070012 PMCID: PMC7072993 DOI: 10.3390/ijms21041254] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
Meiotic maturation of oocyte relies on pre-synthesised maternal mRNA, the translation of which is highly coordinated in space and time. Here, we provide a detailed polysome profiling protocol that demonstrates a combination of the sucrose gradient ultracentrifugation in small SW55Ti tubes with the qRT-PCR-based quantification of 18S and 28S rRNAs in fractionated polysome profile. This newly optimised method, named Scarce Sample Polysome Profiling (SSP-profiling), is suitable for both scarce and conventional sample sizes and is compatible with downstream RNA-seq to identify polysome associated transcripts. Utilising SSP-profiling we have assayed the translatome of mouse oocytes at the onset of nuclear envelope breakdown (NEBD)—a developmental point, the study of which is important for furthering our understanding of the molecular mechanisms leading to oocyte aneuploidy. Our analyses identified 1847 transcripts with moderate to strong polysome occupancy, including abundantly represented mRNAs encoding mitochondrial and ribosomal proteins, proteasomal components, glycolytic and amino acids synthetic enzymes, proteins involved in cytoskeleton organization plus RNA-binding and translation initiation factors. In addition to transcripts encoding known players of meiotic progression, we also identified several mRNAs encoding proteins of unknown function. Polysome profiles generated using SSP-profiling were more than comparable to those developed using existing conventional approaches, being demonstrably superior in their resolution, reproducibility, versatility, speed of derivation and downstream protocol applicability.
Collapse
|
42
|
Gad A, Nemcova L, Murin M, Kinterova V, Kanka J, Laurincik J, Benc M, Pendovski L, Prochazka R. Global transcriptome analysis of porcine oocytes in correlation with follicle size. Mol Reprod Dev 2019; 87:102-114. [PMID: 31736195 DOI: 10.1002/mrd.23294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/30/2019] [Indexed: 11/09/2022]
Abstract
Although our knowledge regarding oocyte quality and development has improved significantly, the molecular mechanisms that regulate and determine oocyte developmental competence are still unclear. Therefore, the objective of this study was to identify and analyze the transcriptome profiles of porcine oocytes derived from large or small follicles using RNA high-throughput sequencing technology. RNA libraries were constructed from oocytes of large (LO; 3-6 mm) or small (SO; 1.5-1.9 mm) ovarian follicles and then sequenced in an Illumina HiSeq4000. Transcriptome analysis showed a total of 14,557 genes were commonly detected in both oocyte groups. Genes related to the cell cycle, oocyte meiosis, and quality were among the top highly expressed genes in both groups. Differential expression analysis revealed 60 up- and 262 downregulated genes in the LO compared with the SO group. BRCA2, GPLD1, ZP3, ND3, and ND4L were among the highly abundant and highly significant differentially expressed genes (DEGs). The ontological classification of DEGs indicated that protein processing in endoplasmic reticulum was the top enriched pathway. In addition, biological processes related to cell growth and signaling, gene expression regulations, cytoskeleton, and extracellular matrix organization were among the highly enriched processes. In conclusion, this study provides new insights into the global transcriptome changes and the abundance of specific transcripts in porcine oocytes in correlation with follicle size.
Collapse
Affiliation(s)
- Ahmed Gad
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic.,Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Lucie Nemcova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
| | - Matej Murin
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
| | - Veronika Kinterova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
| | - Jiri Kanka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
| | - Jozef Laurincik
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic.,Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, Slovak Republic
| | - Michal Benc
- Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, Slovak Republic.,Biology of Reproduction Department, Institute of Animal Science, Prague, Uhrineves, Czech Republic
| | - Lazo Pendovski
- Department of Functional Morphology, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, Republic of Macedonia
| | - Radek Prochazka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
| |
Collapse
|
43
|
Dai XX, Jiang JC, Sha QQ, Jiang Y, Ou XH, Fan HY. A combinatorial code for mRNA 3'-UTR-mediated translational control in the mouse oocyte. Nucleic Acids Res 2019; 47:328-340. [PMID: 30335155 PMCID: PMC6326793 DOI: 10.1093/nar/gky971] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/06/2018] [Indexed: 12/16/2022] Open
Abstract
Meiotic maturation of mammalian oocytes depends on the temporally and spatially regulated cytoplasmic polyadenylation and translational activation of maternal mRNAs. Cytoplasmic polyadenylation is controlled by cis-elements in the 3′-UTRs of mRNAs including the polyadenylation signal (PAS), which is bound by the cleavage and polyadenylation specificity factor (CPSF) and the cytoplasmic polyadenylation element (CPE), which recruits CPE binding proteins. Using the 3′-UTRs of mouse Cpeb1, Btg4 and Cnot6l mRNAs, we deciphered the combinatorial code that controls developmental stage-specific translation during meiotic maturation: (i) translation of a maternal transcript at the germinal vesicle (GV) stage requires one or more PASs that locate far away from CPEs; (ii) PASs distal and proximal to the 3′-end of the transcripts are equally effective in mediating translation at the GV stage, as long as they are not close to the CPEs; (iii) Both translational repression at the GV stage and activation after germinal vesicle breakdown require at least one CPE adjacent to the PAS; (iv) The numbers and positions of CPEs in relation to PASs within the 3′-UTR of a given transcript determines its repression efficiency in GV oocytes. This study reveals a previously unrecognized non-canonical mechanism by which the proximal PASs mediate 3′-terminal polyadenylation and translation of maternal transcripts.
Collapse
Affiliation(s)
- Xing-Xing Dai
- MOEKey Laboratory for Biosystems Homeostasis & Protection and InnovationCenter for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jun-Chao Jiang
- MOEKey Laboratory for Biosystems Homeostasis & Protection and InnovationCenter for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Qian-Qian Sha
- MOEKey Laboratory for Biosystems Homeostasis & Protection and InnovationCenter for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yu Jiang
- MOEKey Laboratory for Biosystems Homeostasis & Protection and InnovationCenter for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiang-Hong Ou
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Heng-Yu Fan
- MOEKey Laboratory for Biosystems Homeostasis & Protection and InnovationCenter for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
44
|
Effects of 2,3',4,4'5-pentachlorobiphenyl exposure during pregnancy on epigenetic imprinting and maturation of offspring's oocytes in mice. Arch Toxicol 2019; 93:2575-2592. [PMID: 31388691 DOI: 10.1007/s00204-019-02529-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022]
Abstract
Polychlorinated biphenyls (PCBs) are a class of organic pollutants that have been widely found in the environment. The chemical 2,3',4,4'5-pentachlorobiphenyl (PCB118) is an important dioxin-like PCB compound with strong toxicity. PCB118 can accumulate in adipose tissue, serum and milk in mammals, and it is highly enriched in the follicular fluid. In this study, pregnant mice were exposed to 0, 20 and 100 μg/kg/day of PCB118 during pregnancy at the fetal primordial germ cell migration stage. The methylation patterns of the imprinted genes H19, Snrpn, Peg3 and Igf2r as well as the expression levels of Dnmt1, 3a, 3b and 3l, Uhrf1, Tet2 and Tet3 in fully grown germinal vesicle oocytes were measured in offspring. The rates of in vitro maturation, in vitro fertilization, oocyte spindle and chromosomal abnormalities were also calculated. The results showed that prenatal exposure to PCB118 altered the DNA methylation status of differentially methylated regions in some imprinted genes, and the expression levels of Dnmt1, 3a, and 3l, Uhrf1 and Tet3 were also changed. In addition, PCB118 disturbed the maturation process of progeny mouse oocytes in a dose-dependent manner. Therefore, attention should be paid to the potential impacts of PCB118-contaminated dietary intake during pregnancy on the offspring's reproductive health.
Collapse
|
45
|
Schultz RM, Stein P, Svoboda P. The oocyte-to-embryo transition in mouse: past, present, and future. Biol Reprod 2019; 99:160-174. [PMID: 29462259 DOI: 10.1093/biolre/ioy013] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/03/2018] [Indexed: 02/06/2023] Open
Abstract
The oocyte-to-embryo transition (OET) arguably initiates with formation of a primordial follicle and culminates with reprogramming of gene expression during the course of zygotic genome activation. This transition results in converting a highly differentiated cell, i.e. oocyte, to undifferentiated cells, i.e. initial blastomeres of a preimplantation embryo. A plethora of changes occur during the OET and include, but are not limited to, changes in transcription, chromatin structure, and protein synthesis; accumulation of macromolecules and organelles that will comprise the oocyte's maternal contribution to the early embryo; sequential acquisition of meiotic and developmental competence to name but a few. This review will focus on transcriptional and post-transcriptional changes that occur during OET in mouse because such changes are likely the major driving force for OET. We often take a historical and personal perspective, and highlight how advances in experimental methods often catalyzed conceptual advances in understanding the molecular bases for OET. We also point out questions that remain open and therefore represent topics of interest for future investigation.
Collapse
Affiliation(s)
- Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Anatomy, Physiology, Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Paula Stein
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Petr Svoboda
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
46
|
Hu B, Zheng L, Long C, Song M, Li T, Yang L, Zuo Y. EmExplorer: a database for exploring time activation of gene expression in mammalian embryos. Open Biol 2019; 9:190054. [PMID: 31164042 PMCID: PMC6597754 DOI: 10.1098/rsob.190054] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Understanding early development offers a striking opportunity to investigate genetic disease, stem cell and assisted reproductive technology. Recent advances in high-throughput sequencing technology have led to the rising influx of omics data, which have rapidly boosted our understanding of mammalian developmental mechanisms. Here, we review the database EmExplorer (a database for exploring time activation of gene expression in mammalian embryos), which systematically organizes the genes from development-related pathways, and which we have already established and continue to update it. The current version of EmExplorer incorporates over 26 000 genes obtained from 306 functional pathways in five species. The function annotations of development-related genes were also integrated into EmExplorer. To facilitate data extraction, the database also contains the following information. (i) The dynamic expression values for each development stage are matched to the corresponding genes. (ii) A two-layer search tool which supports multi-option searching, such as by official symbol, pathway name and function annotation. The returned entries can directly link to the analysis results for the corresponding gene or pathway in the analysis module. (iii) The analysis module provides different gene comparisons at the multi-species level and functional pathway level, which shows the species specificity and stage specificity at the gene or pathway level. (iv) The analysis based on the hypergeometric distribution test reveals the enrichment of gene functions at a particular stage of one organism's pathway. (v) The browser is designed for users with ambiguous searching goals and greatly helps new users to get a general idea of the contents of the database. (vi) The experimentally validated pathways are manually curated and shown on the home page. EmExplorer will be helpful for elucidating early developmental mechanisms and exploring time activation genes. EmExplorer is freely available at http://bioinfor.imu.edu.cn/emexplorer.
Collapse
Affiliation(s)
- Bosu Hu
- 1 State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University , Hohhot 010070 , People's Republic of China
| | - Lei Zheng
- 1 State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University , Hohhot 010070 , People's Republic of China
| | - Chunshen Long
- 1 State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University , Hohhot 010070 , People's Republic of China
| | - Mingmin Song
- 1 State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University , Hohhot 010070 , People's Republic of China
| | - Tao Li
- 2 College of Life Sciences, Inner Mongolia Agricultural University , Hohhot 010018 , People's Republic of China
| | - Lei Yang
- 3 College of Bioinformatics Science and Technology, Harbin Medical University , Harbin 150081 , People's Republic of China
| | - Yongchun Zuo
- 1 State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University , Hohhot 010070 , People's Republic of China
| |
Collapse
|
47
|
Fluks M, Szczepanska K, Ishikawa T, Ajduk A. Transcriptional status of mouse oocytes corresponds with their ability to generate Ca2+ release. Reproduction 2019; 157:465-474. [PMID: 30817322 DOI: 10.1530/rep-18-0625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/26/2019] [Indexed: 01/03/2023]
Abstract
In fully grown ovarian follicles both transcriptionally active (NSN) and inactive (SN) oocytes are present. NSN oocytes have been shown to display lower developmental potential. It is possible that oocytes that have not completed transcription before meiosis resumption accumulate less RNA and proteins required for their further development, including those responsible for regulation of Ca2+ homeostasis. Oscillations of the cytoplasmic concentration of free Ca2+ ions ([Ca2+]i) are triggered in oocytes by a fertilizing spermatozoon and are crucial for inducing and regulating further embryonic development. We showed that NSN-derived oocytes express less inositol 1,4,5-triphosphate receptor type 1 (IP3R1), store less Ca2+ ions and generate weaker spontaneous [Ca2+]i oscillations during maturation than SN oocytes. Consequently, NSN oocytes display aberrant [Ca2+]i oscillations at fertilization. We speculate that this defective regulation of Ca2+ homeostasis might be one of the factors responsible for the lower developmental potential of NSN oocytes.
Collapse
Affiliation(s)
- Monika Fluks
- Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Takao Ishikawa
- Department of Molecular Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Anna Ajduk
- Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
48
|
Gad A, Nemcova L, Murin M, Kanka J, Laurincik J, Benc M, Pendovski L, Prochazka R. microRNA expression profile in porcine oocytes with different developmental competence derived from large or small follicles. Mol Reprod Dev 2019; 86:426-439. [PMID: 30756429 DOI: 10.1002/mrd.23121] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/10/2019] [Accepted: 01/29/2019] [Indexed: 12/16/2022]
Abstract
Oocyte developmental competence is acquired during folliculogenesis and regulated by complex molecular mechanisms. Several molecules are involved in these mechanisms, including microRNAs (miRNAs) that are essential for oocyte-specific processes throughout the development. The objective of this study was to identify the expression profile of miRNAs in porcine oocytes derived from follicles of different sizes using RNA deep sequencing. Oocytes were aspirated from large (LO; 3-6 mm) or small (SO; 1.5-1.9 mm) follicles and tested for developmental competence and chromatin configurations. Small RNA libraries were constructed from both groups and then sequenced in an Illumina NextSeq. 500. Oocytes from the LO group exhibited higher developmental competence and different chromatin configuration compared with oocytes from the SO group. In total, 167 and 162 known miRNAs were detected in the LO and SO groups, respectively. MiR-205, miR-16, miR-148a-3p, and miR-125b were among the top 10 highly expressed miRNAs in both groups. Eight miRNAs were differentially expressed (DE) between both groups. Target gene prediction and pathway analysis revealed 46 pathways that were enriched with miRNA-target genes. The oocyte meiosis pathway and signaling pathways including FoxO, PI3K-Akt, and cAMP were predictably targeted by DE miRNAs. These results give more insights into the potential role of miRNAs in regulating the oocyte development.
Collapse
Affiliation(s)
- Ahmed Gad
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic.,Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Lucie Nemcova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
| | - Matej Murin
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
| | - Jiri Kanka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
| | - Jozef Laurincik
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic.,Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, Slovak Republic
| | - Michal Benc
- Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, Slovak Republic.,Biology of Reproduction Department, Institute of Animal Science, Prague, Uhrineves, Czech Republic
| | - Lazo Pendovski
- Department of Functional Morphology, Ss. Cyril and Methodius University in Skopje, Faculty of Veterinary Medicine, Republic of Macedonia
| | - Radek Prochazka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
| |
Collapse
|
49
|
Zhang J, Zhang YL, Zhao LW, Guo JX, Yu JL, Ji SY, Cao LR, Zhang SY, Shen L, Ou XH, Fan HY. Mammalian nucleolar protein DCAF13 is essential for ovarian follicle maintenance and oocyte growth by mediating rRNA processing. Cell Death Differ 2018; 26:1251-1266. [PMID: 30283081 DOI: 10.1038/s41418-018-0203-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/22/2018] [Accepted: 09/05/2018] [Indexed: 01/23/2023] Open
Abstract
During mammalian oocyte growth, chromatin configuration transition from the nonsurrounded nucleolus (NSN) to surrounded nucleolus (SN) type plays a key role in the regulation of gene expression and acquisition of meiotic and developmental competence by the oocyte. Nonetheless, the mechanism underlying chromatin configuration maturation in oocytes is poorly understood. Here we show that nucleolar protein DCAF13 is an important component of the ribosomal RNA (rRNA)-processing complex and is essential for oocyte NSN-SN transition in mice. A conditional knockout of Dcaf13 in oocytes led to the arrest of oocyte development in the NSN configuration, follicular atresia, premature ovarian failure, and female sterility. The DCAF13 deficiency resulted in pre-rRNA accumulation in oocytes, whereas the total mRNA level was not altered. Further exploration showed that DCAF13 participated in the 18S rRNA processing in growing oocytes. The lack of 18S rRNA because of DCAF13 deletion caused a ribosome assembly disorder and then reduced global protein synthesis. DCAF13 interacted with a protein of the core box C/D ribonucleoprotein, fibrillarin, i.e., a factor of early pre-rRNA processing. When fibrillarin was knocked down in the oocytes from primary follicles, follicle development was inhibited as well, indicating that an rRNA processing defect in the oocyte indeed stunts chromatin configuration transition and follicle development. Taken together, these results elucidated the in vivo function of novel nucleolar protein DCAF13 in maintaining mammalian oogenesis.
Collapse
Affiliation(s)
- Jue Zhang
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Yin-Li Zhang
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, China
| | - Long-Wen Zhao
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Jing-Xin Guo
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Jia-Li Yu
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Shu-Yan Ji
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Lan-Rui Cao
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Song-Ying Zhang
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, China
| | - Li Shen
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Xiang-Hong Ou
- Assisted Reproduction Unit, Second Hospital of Guangdong Province, China Southern Medical University, Guangzhou, China
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China. .,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, China.
| |
Collapse
|
50
|
Conti M, Franciosi F. Acquisition of oocyte competence to develop as an embryo: integrated nuclear and cytoplasmic events. Hum Reprod Update 2018; 24:245-266. [PMID: 29432538 PMCID: PMC5907346 DOI: 10.1093/humupd/dmx040] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/01/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022] Open
Abstract
Infertility affects ~7% of couples of reproductive age with little change in incidence in the last two decades. ART, as well as other interventions, have made major strides in correcting this condition. However, and in spite of advancements in the field, the age of the female partner remains a main factor for a successful outcome. A better understanding of the final stages of gamete maturation yielding an egg that can sustain embryo development and a pregnancy to term remains a major area for improvement in the field. This review will summarize the major cellular and molecular events unfolding at the oocyte-to-embryo transition. We will provide an update on the most important processes/pathways currently understood as the basis of developmental competence, including the molecular processes involved in mRNA storage, its recruitment to the translational machinery, and its degradation. We will discuss the hypothesis that the translational programme of maternal mRNAs plays a key role in establishing developmental competence. These regulations are essential to assemble the machinery that is used to establish a totipotent zygote. This hypothesis further supports the view that embryogenesis begins during oogenesis. A better understanding of the events required for developmental competence will guide the development of novel strategies to monitor and improve the success rate of IVF. Using this information, it will be possible to develop new biomarkers that may be used to better predict oocyte quality and in selection of the best egg for IVF.
Collapse
Affiliation(s)
- Marco Conti
- Department of OBGYN-RS, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0556, USA
| | - Federica Franciosi
- Department of OBGYN-RS, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0556, USA
| |
Collapse
|