1
|
Matsumoto K, Matsumoto Y, Wada J. PARylation-mediated post-transcriptional modifications in cancer immunity and immunotherapy. Front Immunol 2025; 16:1537615. [PMID: 40134437 PMCID: PMC11933034 DOI: 10.3389/fimmu.2025.1537615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Poly-ADP-ribosylation (PARylation) is a post-translational modification in which ADP-ribose is added to substrate proteins. PARylation is mediated by a superfamily of ADP-ribosyl transferases known as PARPs and influences a wide range of cellular functions, including genome integrity maintenance, and the regulation of proliferation and differentiation. We and others have recently reported that PARylation of SH3 domain-binding protein 2 (3BP2) plays a role in bone metabolism, immune system regulation, and cytokine production. Additionally, PARylation has recently gained attention as a target for cancer treatment. In this review, we provide an overview of PARylation, its involvement in several signaling pathways related to cancer immunity, and the potential of combination therapies with PARP inhibitors and immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Yoshinori Matsumoto
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of
Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | |
Collapse
|
2
|
Giri H, Biswas I, Rezaie AR. Thrombomodulin: a multifunctional receptor modulating the endothelial quiescence. J Thromb Haemost 2024; 22:905-914. [PMID: 38266676 PMCID: PMC10960680 DOI: 10.1016/j.jtha.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/01/2024] [Accepted: 01/05/2024] [Indexed: 01/26/2024]
Abstract
Thrombomodulin (TM) is a type 1 receptor best known for its function as an anticoagulant cofactor for thrombin activation of protein C on the surface of vascular endothelial cells. In addition to its anticoagulant cofactor function, TM also regulates fibrinolysis, complement, and inflammatory pathways. TM is a multidomain receptor protein with a lectin-like domain at its N-terminus that has been shown to exhibit direct anti-inflammatory functions. This domain is followed by 6 epidermal growth factor-like domains that support the interaction of TM with thrombin. The interaction inhibits the procoagulant function of thrombin and enables the protease to regulate the anticoagulant and fibrinolytic pathways by activating protein C and thrombin-activatable fibrinolysis inhibitor. TM has a Thr/Ser-rich region immediately above the membrane surface that harbors chondroitin sulfate glycosaminoglycans, and this region is followed by a single-spanning transmembrane and a C-terminal cytoplasmic domain. The structure and physiological function of the extracellular domains of TM have been extensively studied, and numerous excellent review articles have been published. However, the physiological function of the cytoplasmic domain of TM has remained poorly understood. Recent data from our laboratory suggest that intracellular signaling by the cytoplasmic domain of TM plays key roles in maintaining quiescence by modulating phosphatase and tensin homolog signaling in endothelial cells. This article briefly reviews the structure and function of extracellular domains of TM and focuses on the mechanism and possible physiological importance of the cytoplasmic domain of TM in modulating phosphatase and tensin homolog signaling in endothelial cells.
Collapse
Affiliation(s)
- Hemant Giri
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Indranil Biswas
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Alireza R Rezaie
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
3
|
Giri H, Biswas I, Rezaie AR. Thrombomodulin Regulates PTEN/AKT Signaling Axis in Endothelial Cells. Arterioscler Thromb Vasc Biol 2024; 44:352-365. [PMID: 38059351 PMCID: PMC10841639 DOI: 10.1161/atvbaha.123.320000] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND We recently demonstrated that deletion of thrombomodulin gene from endothelial cells results in upregulation of proinflammatory phenotype. In this study, we investigated the molecular basis for the altered phenotype in thrombomodulin-deficient (TM-/-) cells. METHODS Different constructs containing deletions or mutations in the cytoplasmic domain of thrombomodulin were prepared and introduced to TM-/- cells. The phenotype of cells expressing different derivatives of thrombomodulin and tissue samples of thrombomodulin-knockout mice were analyzed for expression of distinct regulatory genes in established signaling assays. RESULTS The phosphatase and tensin homolog were phosphorylated and its recruitment to the plasma membrane was impaired in TM-/- cells, leading to hyperactivation of AKT (protein kinase B) and phosphorylation-dependent nuclear exclusion of the transcription factor, forkhead box O1. The proliferative/migratory properties of TM-/- cells were enhanced, and cells exhibited hypersensitivity to stimulation by angiopoietin 1 and vascular endothelial growth factor. Reexpression of wild-type thrombomodulin in TM-/- cells normalized the cellular phenotype; however, thrombomodulin lacking its cytoplasmic domain failed to restore the normal phenotype in TM-/- cells. Increased basal permeability and loss of VE-cadherin were restored to normal levels by reexpression of wild-type thrombomodulin but not by a thrombomodulin construct lacking its cytoplasmic domain. A thrombomodulin cytoplasmic domain deletion mutant containing 3-membrane-proximal Arg-Lys-Lys residues restored the barrier-permeability function of TM-/- cells. Enhanced phosphatase and tensin homolog phosphorylation and activation of AKT and mTORC1 (mammalian target of rapamycin complex 1) were also observed in the liver of thrombomodulin-KO mice. CONCLUSIONS These results suggest that the cytoplasmic domain of thrombomodulin interacts with the actin cytoskeleton and plays a crucial role in regulation of phosphatase and tensin homolog/AKT signaling in endothelial cells.
Collapse
Affiliation(s)
- Hemant Giri
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation
| | - Indranil Biswas
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation
| | - Alireza R. Rezaie
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
4
|
Schuhwerk H, Brabletz T. Mutual regulation of TGFβ-induced oncogenic EMT, cell cycle progression and the DDR. Semin Cancer Biol 2023; 97:86-103. [PMID: 38029866 DOI: 10.1016/j.semcancer.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/06/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
TGFβ signaling and the DNA damage response (DDR) are two cellular toolboxes with a strong impact on cancer biology. While TGFβ as a pleiotropic cytokine affects essentially all hallmarks of cancer, the multifunctional DDR mostly orchestrates cell cycle progression, DNA repair, chromatin remodeling and cell death. One oncogenic effect of TGFβ is the partial activation of epithelial-to-mesenchymal transition (EMT), conferring invasiveness, cellular plasticity and resistance to various noxae. Several reports show that both individual networks as well as their interface affect chemo-/radiotherapies. However, the underlying mechanisms remain poorly resolved. EMT often correlates with TGFβ-induced slowing of proliferation, yet numerous studies demonstrate that particularly the co-activated EMT transcription factors counteract anti-proliferative signaling in a partially non-redundant manner. Collectively, evidence piled up over decades underscore a multifaceted, reciprocal inter-connection of TGFβ signaling / EMT with the DDR / cell cycle progression, which we will discuss here. Altogether, we conclude that full cell cycle arrest is barely compatible with the propagation of oncogenic EMT traits and further propose that 'EMT-linked DDR plasticity' is a crucial, yet intricate facet of malignancy, decisively affecting metastasis formation and therapy resistance.
Collapse
Affiliation(s)
- Harald Schuhwerk
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
5
|
Zhou Z, Zhong L, Chu X, Wan P, Dan W, Shao X, Chen S, Zhang Z, Lu Y, Liu B. HDAC11 mediates the ubiquitin-dependent degradation of p53 and inhibits the anti-leukemia effect of PD0166285. Med Oncol 2023; 40:325. [PMID: 37805625 DOI: 10.1007/s12032-023-02196-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/12/2023] [Indexed: 10/09/2023]
Abstract
Cytarabine-resistant acute myeloid leukemia (AML) is a common phenomenon, necessitating the search for new chemotherapeutics. WEE1 participates in cell cycle checkpoint signaling and inhibitors targeting WEE1 (WEE1i) constitute a potential novel strategy for AML treatment. HDAC (histone deacetylase) inhibitors have been shown to enhance the anti-tumor effects of WEE1i but molecular mechanisms of HDAC remain poorly characterized. In this study, the WEE1 inhibitor PD0166285 showed a relatively good anti-leukemia effect. Notably, PD0166285 can arise the expression of HDAC11 which was negatively correlated with survival of AML patients. Moreover, HDAC11 can reduced the anti-tumor effect of PD0166285 through an effect on p53 stability and the changes in phosphorylation levels of MAPK pathways. Overall, the cell cycle inhibitor, PD0166285, is a potential chemotherapeutic drug for AML. These fundings contribute to a functional understanding of HDAC11 in AML.
Collapse
Affiliation(s)
- Ziwei Zhou
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Liang Zhong
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xuan Chu
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Peng Wan
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Wenran Dan
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Xin Shao
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Shuyu Chen
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Zhonghui Zhang
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Yang Lu
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Beizhong Liu
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China.
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
6
|
Yang GJ, Liu YJ, Ding LJ, Tao F, Zhu MH, Shi ZY, Wen JM, Niu MY, Li X, Xu ZS, Qin WJ, Fei CJ, Chen J. A state-of-the-art review on LSD1 and its inhibitors in breast cancer: Molecular mechanisms and therapeutic significance. Front Pharmacol 2022; 13:989575. [PMID: 36188536 PMCID: PMC9523086 DOI: 10.3389/fphar.2022.989575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer (BC) is a kind of malignant cancer in women, and it has become the most diagnosed cancer worldwide since 2020. Histone methylation is a common biological epigenetic modification mediating varieties of physiological and pathological processes. Lysine-specific demethylase 1 (LSD1), a first identified histone demethylase, mediates the removal of methyl groups from histones H3K4me1/2 and H3K9me1/2 and plays a crucial role in varieties of cancer progression. It is also specifically amplified in breast cancer and contributes to BC tumorigenesis and drug resistance via both demethylase and non-demethylase manners. This review will provide insight into the overview structure of LSD1, summarize its action mechanisms in BC, describe the therapeutic potential of LSD1 inhibitors in BC, and prospect the current opportunities and challenges of targeting LSD1 for BC therapy.
Collapse
Affiliation(s)
- Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Yan-Jun Liu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Li-Jian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Fan Tao
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Ming-Hui Zhu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhen-Yuan Shi
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Juan-Ming Wen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Meng-Yao Niu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Xiang Li
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhan-Song Xu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Wan-Jia Qin
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Chen-Jie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
7
|
Gobbo MG, de Mendonça Fernandes GM, Fernandes-Ferreira R, Caires LP, Caldas HC, de Campos Zuccari DAP, Bordin-Junior NA, Gonçalves Vidotti GA, Souza DRS. Evaluation of doxorubicin in three-dimensional culture of breast cancer cells and the response in PI3K/AKT/PTEN signaling pathways: a pilot study. Women Health 2022; 62:467-475. [DOI: 10.1080/03630242.2022.2085842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marina Guimarães Gobbo
- Biologia Molecular (NPBIM), Faculdade de Medicina de São Jose do Rio Preto, (FAMERP)Núcleo de Pesquisa em Bioquímica e , São Paulo, Brazil
| | | | - Rafael Fernandes-Ferreira
- Biologia Molecular (NPBIM), Faculdade de Medicina de São Jose do Rio Preto, (FAMERP)Núcleo de Pesquisa em Bioquímica e , São Paulo, Brazil
| | - Lennon Pereira Caires
- Laboratory of Immunology and Experimental Transplantation (LITEX), Faculdade de Medicina de São Jose do Rio Preto, (FAMERP), São Paulo, Brazil
| | - Heloisa Cristina Caldas
- Laboratory of Immunology and Experimental Transplantation (LITEX), Faculdade de Medicina de São Jose do Rio Preto, (FAMERP), São Paulo, Brazil
| | | | - Newton Antonio Bordin-Junior
- Departamento de Ginecologia do Hospital de Base da Faculdade de Medicina de São José do Rio Preto Serviço de mastologia do Hospital de Base da Faculdade de Medicina de São José do Rio Preto, São Paulo, Brazil
| | | | - Doroteia Rossi Silva Souza
- Biologia Molecular (NPBIM), Faculdade de Medicina de São Jose do Rio Preto, (FAMERP)Núcleo de Pesquisa em Bioquímica e , São Paulo, Brazil
| |
Collapse
|
8
|
Mullen M, Wen Tan WL, Rhee JW, Wu JC. Modeling Susceptibility to Cardiotoxicity in Cancer Therapy Using Human iPSC-Derived Cardiac Cells and Systems Biology. Heart Fail Clin 2022; 18:335-347. [PMID: 35718410 PMCID: PMC12001829 DOI: 10.1016/j.hfc.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of human-induced pluripotent stem cell-derived cardiac cell types has created a new paradigm in assessing drug-induced cardiotoxicity. Advances in genomics and epigenomics have also implicated several genomic loci and biological pathways that may contribute to susceptibility to cancer therapies. In this review, we first provide a brief overview of the cardiotoxicity associated with chemotherapy. We then provide a detailed summary of systems biology approaches being applied to elucidate potential molecular mechanisms involved in cardiotoxicity. Finally, we discuss combining systems biology approaches with iPSC technology to help discover molecular mechanisms associated with cardiotoxicity.
Collapse
Affiliation(s)
- McKay Mullen
- Stanford Cardiovascular Institute, Stanford University, 265 Campus Drive G1120B, Stanford, CA 94304, USA
| | - Wilson Lek Wen Tan
- Stanford Cardiovascular Institute, Stanford University, 265 Campus Drive G1120B, Stanford, CA 94304, USA
| | - June-Wha Rhee
- Department of Medicine, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd, Duarte, CA 91010, USA.
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, 265 Campus Drive G1120B, Stanford, CA 94304, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University; Department of Radiology, Stanford University, 265 Campus Drive G1120B, Stanford, CA 94304, USA.
| |
Collapse
|
9
|
Sritharan S, Guha S, Hazarika S, Sivalingam N. Meta analysis of bioactive compounds, miRNA, siRNA and cell death regulators as sensitizers to doxorubicin induced chemoresistance. Apoptosis 2022; 27:622-646. [PMID: 35716277 DOI: 10.1007/s10495-022-01742-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 11/02/2022]
Abstract
Cancer has presented to be the most challenging disease, contributing to one in six mortalities worldwide. The current treatment regimen involves multiple rounds of chemotherapy administration, alone or in combination. The treatment has adverse effects including cardiomyopathy, hepatotoxicity, and nephrotoxicity. In addition, the development of resistance to chemo has been attributed to cancer relapse and low patient overall survivability. Multiple drug resistance development may be through numerous factors such as up-regulation of drug transporters, drug inactivation, alteration of drug targets and drug degradation. Doxorubicin is a widely used first line chemotherapeutic drug for a myriad of cancers. It has multiple intracellular targets, DNA intercalation, adduct formation, topoisomerase inhibition, iron chelation, reactive oxygen species generation and promotes immune mediated clearance of the tumor. Agents that can sensitize the resistant cancer cells to the chemotherapeutic drug are currently the focus to improve the clinical efficiency of cancer therapy. This review summarizes the recent 10-year research on the use of natural phytochemicals, inhibitors of apoptosis and autophagy, miRNAs, siRNAs and nanoformulations being investigated for doxorubicin chemosensitization.
Collapse
Affiliation(s)
- Sruthi Sritharan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Sampurna Guha
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Snoopy Hazarika
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Nageswaran Sivalingam
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
10
|
Ma T, Li A, Guo Y, Li S, Li M, Feng S, Liu H. KDM1A/LSD1 as a promising target in various diseases treatment by regulating autophagy network. Biomed Pharmacother 2022; 148:112762. [PMID: 35240522 DOI: 10.1016/j.biopha.2022.112762] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Epigenetics refers to alterations in gene expressions that are reversible and stable, but do not involve changes in DNA sequences. In recent years, an increasing number of studies have shown that epigenetics plays a critical role in autophagy, which can be schematized as a biological process comprising of the following steps: autophagy signal activation, autophagic vesicle elongation, autophagosome maturation and autophagosome-lysosome fusion. As previously reported, autophagy can maintain intracellular homeostasis and autophagy dysfunction will lead to various diseases. For instance, the abnormal expression of genes involved in autophagy can result in the occurrence of many cancers and atherosclerosis. It is also well known that epigenetic modifications can affect autophagy related genes expressions and modulate other signaling molecular involved in autophagy. As an important epigenetic enzyme, LSD1 (lysine specific demethylase 1) plays an essential role in modulating autophagy. On one hand, LSD1 directly regulates autophagy-related genes expressions, including ATGs, Beclin-1, LC3 and SQSTM1/p62. On the other hand, inhibition of LSD1 can activate autophagy through regulating the activities of some other proteins such as p53, SESN2, mTORC1 and PTEN. Since autophagy activation is tightly related to the occurrence of various diseases and can be induced by LSD1 inhibition, development of LSD1 inhibitors will provide a new direction to treat such diseases. In this review, we described the mechanisms by which LSD1 regulates autophagy in different manners and how autophagic dysfunction leads to diseases occurrence. In addition, some LSD1 inhibitors used to treat diseases through modulating autophagy are also summarized in our review.
Collapse
Affiliation(s)
- Ting Ma
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Anqi Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Yueyang Guo
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Shaotong Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Meng Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Siqi Feng
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
11
|
Li W, Huang BS, Xiong YY, Yang LJ, Wu LX. 4,5-Dimethoxycanthin-6-one is a novel LSD1 inhibitor that inhibits proliferation of glioblastoma cells and induces apoptosis and pyroptosis. Cancer Cell Int 2022; 22:32. [PMID: 35042538 PMCID: PMC8764814 DOI: 10.1186/s12935-021-02434-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/28/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Glioblastoma is one of the most common fatal intracranial malignancies. Lysine-specific demethylase 1 (LSD1) reportedly has therapeutic effects on a variety of tumors. This study explored the therapeutic effect of LSD1 inhibition on glioblastoma cell lines and the possible underlying mechanisms. METHODS The MTT assay was utilized to screen for the sensitivity of U87, U251 and T98G cells to 4, 5-dimethoxycarrageenin-6-one. qRT-PCR and western blot were used to measure the proliferation, apoptosis, and pyroptosis signaling pathway expression to observe the effect of LSD1 inhibition on U251 and T98G cells. Flow cytometry, immunofluorescence, immunohistochemistry, wound scratch, clone formation, and TUNEL assay were used to analyze the effects of 4, 5-dimethoxycanthin-6-one on glioblastoma cells. The effect of 4, 5-dimethoxycanthin-6-one was examined in vivo in BALB/c nude mice injected with U251 cells. HE staining was used to detect the histopathology of the tumor. RESULTS LSD1 specifically catalyzes the demethylation of monomethylated and demethylated histone H3 lysine at position 4 (h3k4me1, h3k4me2, h3k4me3) and lysine at position 9 (h3k9me1). This regulated the transcriptional activity of proliferation, apoptosis, and pyroptosis signaling pathway genes. In vitro, the proliferation of glioblastoma cells was decreased in the 4, 5-dimethoxycanthin-6-one group. The expression of Caspase1 in glioblastoma cells treated with 4, 5-dimethoxycanthin-6-one increased, and the number of apoptotic cells increased. The tumor volume of mice injected with 4, 5-dimethoxycanthin-6-one decreased significantly. CONCLUSION 4, 5-Dimethoxycanthin-6-one could act as a novel inhibitor of LSD1 to regulate glioblastoma, which could inhibit the proliferation of U251 and T98G cells and induce their apoptosis and pyroptosis. It is a potential drug for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Wei Li
- Department of Physiology, School of Basic Medical Sciences, Central South University, 110 Xiangya Road, Changsha City, Hunan Province, China
| | - Bai-Sheng Huang
- Department of Physiology, School of Basic Medical Sciences, Central South University, 110 Xiangya Road, Changsha City, Hunan Province, China
| | - Yuan-Yuan Xiong
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li-Jian Yang
- Department of Neurosurgery, The First Hospital of Changsha, Changsha, China
| | - Li-Xiang Wu
- Department of Physiology, School of Basic Medical Sciences, Central South University, 110 Xiangya Road, Changsha City, Hunan Province, China.
| |
Collapse
|
12
|
Chen L, Xu Y. MicroRNAs as Biomarkers and Therapeutic Targets in Doxorubicin-Induced Cardiomyopathy: A Review. Front Cardiovasc Med 2021; 8:740515. [PMID: 34901206 PMCID: PMC8653425 DOI: 10.3389/fcvm.2021.740515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
Doxorubicin is a broad-spectrum chemotherapy drug applied in antitumor therapy. However, its clinical utility is limited by its fatal cardiotoxicity. Doxorubicin (DOX)-induced cardiomyopathy (DIC) begins with the first DOX dose and is characterized by being cumulative dose-dependent, and its early diagnosis using common detection methods is very difficult. Therefore, it is urgent to determine the underlying mechanism of DIC to construct treatment strategies for the early intervention before irreversible damage to the myocardium occurs. Growing evidence suggests that microRNAs (miRNAs) play regulatory roles in the cardiovascular system. miRNAs may be involved in DIC by acting through multiple pathways to induce cardiomyocyte injury. Recent studies have shown that the dysregulation of miRNA expression can aggravate the pathological process of DIC, including the induction of oxidative stress, apoptosis, ion channel dysfunction and microvascular dysfunction. Current findings on the roles of miRNAs in DIC have led to a wide range of studies exploring candidate miRNAs to be utilized as diagnostic biomarkers and potential therapeutic targets for DIC. In this review, we discuss frontier studies on the roles of miRNAs in DIC to better understand their functions, develop relevant applications in DIC, discuss possible reasons for the limitations of their use and speculate on innovative treatment strategies.
Collapse
Affiliation(s)
- Liuying Chen
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Yizhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Role of the CXCR4-LASP1 Axis in the Stabilization of Snail1 in Triple-Negative Breast Cancer. Cancers (Basel) 2020; 12:cancers12092372. [PMID: 32825729 PMCID: PMC7563118 DOI: 10.3390/cancers12092372] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/08/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
The CXCL12-CXCR4 axis plays a vital role in many steps of breast cancer metastasis, but the molecular mechanisms have not been fully elucidated. We previously reported that activation of CXCR4 by CXCL12 promotes the nuclear localization of LASP1 (LIM and SH3 protein 1). The nuclear LASP1 then interacts with Snail1 in triple-negative breast cancer (TNBC) cell lines. In this study, we report that the nuclear accumulation and retention of Snail1 was dependent on an increase in nuclear LASP1 levels driven by active CXCR4. The CXCR4-LASP1 axis may directly regulate the stabilization of nuclear Snail1, by upregulating nuclear levels of pS473-Akt, pS9-GSK-3β, A20, and LSD1. Furthermore, the activation of CXCR4 induced association of LASP1 with Snail1, A20, GSK-3β, and LSD1 endogenously. Thus, nuclear LASP1 may also regulate protein-protein interactions that facilitate the stability of Snail1. Genetic ablation of LASP1 resulted in the mislocalization of nuclear Snail1, loss of the ability of TNBC cells to invade Matrigel and a dysregulated expression of both epithelial and mesenchymal markers, including an increased expression of ALDH1A1, a marker for epithelial breast cancer stem-like cells. Our findings reveal a novel role for the CXCR4-LASP1 axis in facilitating the stability of nuclear localized Snail1.
Collapse
|
14
|
Shi YX, He YJ, Zhou Y, Li HK, Yang D, Li RY, Deng ZL, Gao YF. LSD1 negatively regulates autophagy in myoblast cells by driving PTEN degradation. Biochem Biophys Res Commun 2020; 522:924-930. [DOI: 10.1016/j.bbrc.2019.11.182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 02/05/2023]
|
15
|
Hou G, Zhao Q, Zhang M, Wang P, Ye H, Wang Y, Ren Y, Zhang J, Lu Z. LSD1 regulates Notch and PI3K/Akt/mTOR pathways through binding the promoter regions of Notch target genes in esophageal squamous cell carcinoma. Onco Targets Ther 2019; 12:5215-5225. [PMID: 31308693 PMCID: PMC6613024 DOI: 10.2147/ott.s207238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/21/2019] [Indexed: 12/19/2022] Open
Abstract
Background: The aberrant activation of Lysine-specific demethylase 1(LSD1), Notch and PI3K/Akt/mTOR signaling pathways were frequently happened in many cancers, including esophageal squamous cell carcinoma (ESCC). However, the regulatory relationship between LSD1 and Notch as well as PI3K/Akt/mTOR pathways is still unclear. Purpose: This study aimed to explore the regulatory effects and mechanisms of LSD1 on Notch and PI3K/Akt/mTOR pathway in ESCC. Results: Firstly, we demonstrated that LSD1 and proteins in Notch and PI3K/Akt/mTOR pathway were expressed in ESCC cells. Secondly, inhibition of LSD1 by tranylcypromine (TCP) or shRNA could decrease the expressions of related proteins in Notch and PI3K/Akt/mTOR signaling pathways in ESCC cells. Finally, we found that LSD1 could bind to the promoter regions of Notch3, Hes1 and CR2, and the combinations between them were reduced by TCP in ESCC. Conclusion: Summarily, this study indicated that LSD1 might positively regulate Notch and PI3K/Akt/mTOR pathways through binding the promoter regions of related genes in Notch pathway in ESCC.
Collapse
Affiliation(s)
- Guiqin Hou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Qi Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Mengying Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Peng Wang
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Hua Ye
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yang Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yandan Ren
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jianying Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China.,Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zhaoming Lu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
16
|
Cong S, Luo H, Li X, Wang F, Hua Y, Zhang L, Zhang Z, Li N, Hou L. Isatin inhibits SH-SY5Y neuroblastoma cell invasion and metastasis through PTEN signaling. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2446-2454. [PMID: 31934071 PMCID: PMC6949577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 04/25/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Isatin has gained attention in recent years owing to its anticancer properties and is thought to offer medical benefits. Isatin is an endogenous oxidized indole with various behavioral and metabolic properties and is commonly found in mammalian tissues and fluids. It has several plausible applications in biomedical research and has also been investigated as a potential anticancer agent. However, its effects on neuroblastoma (NB) cells are unclear. Here, we evaluate the effects of isatin on neuroblastoma cell metastasis and invasion and reveal the underlying mechanism. METHODS NB cell viability was evaluated with the cell counting kit (CCK)-8 assay. NB cell invasion and migration abilities were tested with transwell and wound healing experiments. The relative mRNA expression of associated molecules was detected with real-time polymerase chain reaction (RT-PCR) and quantitative PCR. The expression level of related proteins was detected with western blotting. RESULTS Isatin inhibited the proliferation, invasion, and migration of neuroblastoma cells in a dose-dependent manner. Isatin increased the expression level of H3K4m1 and phosphatase and tensin homolog (PTEN) and decreased the phosphorylation level of PTEN downstream proteins phosphoinositide 3-kinase, protein kinase B, mammalian target of rapamycin, focal adhesion kinase, and SHC. Together, these results support the potential anti-metastatic effects of isatin on NB cells.
Collapse
Affiliation(s)
- Shaobo Cong
- Department of Biochemistry and Molecular Biology, Medical College of Qingdao UniversityQingdao 266021, Shandong, China
| | - Haoyue Luo
- Medical College of Qingdao UniversityQingdao 266071, Shandong, China
| | - Xue Li
- Department of Biochemistry and Molecular Biology, Medical College of Qingdao UniversityQingdao 266021, Shandong, China
| | - Fangling Wang
- Department of Biochemistry and Molecular Biology, Medical College of Qingdao UniversityQingdao 266021, Shandong, China
| | - Yanan Hua
- Department of Biochemistry and Molecular Biology, Medical College of Qingdao UniversityQingdao 266021, Shandong, China
| | - Li Zhang
- Department of Biochemistry and Molecular Biology, Medical College of Qingdao UniversityQingdao 266021, Shandong, China
| | - Zheng Zhang
- Department of Biochemistry and Molecular Biology, Medical College of Qingdao UniversityQingdao 266021, Shandong, China
| | - Ning Li
- Department of Biochemistry and Molecular Biology, Medical College of Qingdao UniversityQingdao 266021, Shandong, China
| | - Lin Hou
- Department of Biochemistry and Molecular Biology, Medical College of Qingdao UniversityQingdao 266021, Shandong, China
| |
Collapse
|
17
|
Lu J, Li J, Hu Y, Guo Z, Sun D, Wang P, Guo K, Duan DD, Gao S, Jiang J, Wang J, Liu P. Chrysophanol protects against doxorubicin-induced cardiotoxicity by suppressing cellular PARylation. Acta Pharm Sin B 2019; 9:782-793. [PMID: 31384538 PMCID: PMC6663922 DOI: 10.1016/j.apsb.2018.10.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/26/2018] [Accepted: 10/09/2018] [Indexed: 01/13/2023] Open
Abstract
The clinical application of doxorubicin (DOX) in cancer chemotherapy is limited by its life-threatening cardiotoxic effects. Chrysophanol (CHR), an anthraquinone compound isolated from the rhizome of Rheum palmatum L., is considered to play a broad role in a variety of biological processes. However, the effects of CHR׳s cardioprotection in DOX-induced cardiomyopathy is poorly understood. In this study, we found that the cardiac apoptosis, mitochondrial injury and cellular PARylation levels were significantly increased in H9C2 cells treated by Dox, while these effects were suppressed by CHR. Similar results were observed when PARP1 activity was suppressed by its inhibitors 3-aminobenzamide (3AB) and ABT888. Ectopic expression of PARP1 effectively blocked this CHR׳s cardioprotection against DOX-induced cardiomyocyte injury in H9C2 cells. Furthermore, pre-administration with both CHR and 3AB relieved DOX-induced cardiac apoptosis, mitochondrial impairment and heart dysfunction in Sprague-Dawley rat model. These results revealed that CHR protects against DOX-induced cardiotoxicity by suppressing cellular PARylation and provided critical evidence that PARylation may be a novel target for DOX-induced cardiomyopathy.
Collapse
Key Words
- 3AB, 3-aminobenzamide
- ADR, adriamycin
- ANOVA, one-way analysis of variance
- Apoptosis
- CHR, chrysophanol
- CMC-Na, sodium carboxymethyl
- CO, cardiac output
- Cardiotoxicity
- Chrysophanol
- Cyt c, Cytochrome c
- DOX, doxorubicin
- Doxorubicin
- EF, ejection fraction
- FBS, fetal bovine serum
- FS, fractional shortening
- HE, hematoxylin-eosin
- HR, heart rate
- IVSd, end-diastolic interventricular septum
- IVSs, end-systolic interventricular septum
- LV, end-systolic volume
- LVEDV, LV end-diastolic volume
- LVIDd, LV end-diastolic internal diameter
- LVIDs, LV end-systolic internal diameter
- LVPWd, LV end-diastolic posterior wall thickness
- LVPWs, LV end-systolic posterior wall thickness
- Mitochondria
- NS, normal saline
- PAR, polymers of ADP-ribose
- PARP1, poly(ADP-ribose) polymerase 1
- PARylated, poly(ADP-ribosyl)ated
- PARylation
- PARylation, poly(ADP-ribosyl)ation
- PBS, phosphate-buffered saline
- RCR, respiratory control ratio
- ROS, reactive oxygen species
- Rh123, rhodamine 123
- SD, Sprague–Dawley
- TUNEL, TdT-mediated dUTP nick end labeling
- VDAC1, voltage dependent anion channel 1
Collapse
|
18
|
Hu K, Wu W, Li Y, Lin L, Chen D, Yan H, Xiao X, Chen H, Chen Z, Zhang Y, Xu S, Guo Y, Koeffler HP, Song E, Yin D. Poly(ADP-ribosyl)ation of BRD7 by PARP1 confers resistance to DNA-damaging chemotherapeutic agents. EMBO Rep 2019; 20:e46166. [PMID: 30940648 PMCID: PMC6500972 DOI: 10.15252/embr.201846166] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 01/25/2019] [Accepted: 03/01/2019] [Indexed: 01/05/2023] Open
Abstract
The bromodomain-containing protein 7 (BRD7) is a tumour suppressor protein with critical roles in cell cycle transition and transcriptional regulation. Whether BRD7 is regulated by post-translational modifications remains poorly understood. Here, we find that chemotherapy-induced DNA damage leads to the rapid degradation of BRD7 in various cancer cell lines. PARP-1 binds and poly(ADP)ribosylates BRD7, which enhances its ubiquitination and degradation through the PAR-binding E3 ubiquitin ligase RNF146. Moreover, the PARP1 inhibitor Olaparib significantly enhances the sensitivity of BRD7-positive cancer cells to chemotherapeutic drugs, while it has little effect on cells with low BRD7 expression. Taken together, our findings show that PARP1 induces the degradation of BRD7 resulting in cancer cell resistance to DNA-damaging agents. BRD7 might thus serve as potential biomarker in clinical trial for the prediction of synergistic effects between chemotherapeutic drugs and PARP inhibitors.
Collapse
Affiliation(s)
- Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenjing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Breast Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yu Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lehang Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dong Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Interventional Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Haiyan Yan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xing Xiao
- Department of Dermatology and Venerology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hengxing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhen Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shuangbing Xu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yabin Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore City, Singapore
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California Los Angeles School of Medicine, Los Angeles, CA, USA
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Breast Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
19
|
Yun EJ, Lin CJ, Dang A, Hernandez E, Guo J, Chen WM, Allison J, Kim N, Kapur P, Brugarolas J, Wu K, He D, Lai CH, Lin H, Saha D, Baek ST, Chen BPC, Hsieh JT. Downregulation of Human DAB2IP Gene Expression in Renal Cell Carcinoma Results in Resistance to Ionizing Radiation. Clin Cancer Res 2019; 25:4542-4551. [PMID: 31000589 DOI: 10.1158/1078-0432.ccr-18-3004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/21/2019] [Accepted: 04/15/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE Renal cell carcinoma (RCC) is known to be highly radioresistant but the mechanisms associated with radioresistance have remained elusive. We found DOC-2/DAB2 interactive protein (DAB2IP) frequently downregulated in RCC, is associated with radioresistance. In this study, we investigated the underlying mechanism regulating radioresistance by DAB2IP and developed appropriate treatment. EXPERIMENTAL DESIGN Several RCC lines with or without DAB2IP expression were irradiated with ionizing radiation (IR) for determining their radiosensitivities based on colony formation assay. To investigate the underlying regulatory mechanism of DAB2IP, immunoprecipitation-mass spectrometry was performed to identify DAB2IP-interactive proteins. PARP-1 expression and enzymatic activity were determined using qRT-PCR, Western blot analysis, and ELISA. In vivo ubiquitination assay was used to test PARP-1 degradation. Furthermore, in vivo mice xenograft model and patient-derived xenograft (PDX) model were used to determine the effect of combination therapy to sensitizing tumors to IR. RESULTS We notice that DAB2IP-deficient RCC cells acquire IR-resistance. Mechanistically, DAB2IP can form a complex with PARP-1 and E3 ligases that is responsible for degrading PARP-1. Indeed, elevated PARP-1 levels are associated with the IR resistance in RCC cells. Furthermore, PARP-1 inhibitor can enhance the IR response of either RCC xenograft model or PDX model. CONCLUSIONS In this study, we unveil that loss of DAB2IP resulted in elevated PARP-1 protein is associated with IR-resistance in RCC. These results provide a new targeting strategy to improve the efficacy of radiotherapy of RCC.
Collapse
Affiliation(s)
- Eun-Jin Yun
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, Republic of Korea
| | - Chun-Jung Lin
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Andrew Dang
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Elizabeth Hernandez
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jiaming Guo
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Wei-Min Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Joyce Allison
- Department of Internal Medicine and Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Nathan Kim
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Payal Kapur
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - James Brugarolas
- Department of Internal Medicine and Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kaijie Wu
- Department of Urology, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Dalin He
- Department of Urology, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Debabrata Saha
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Seung Tae Baek
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, Republic of Korea
| | - Benjamin P C Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas.
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas.
- Graduate Institute of Cancer Biology, China Medical University Hospital, Taichung, Taiwan, Republic of China
| |
Collapse
|
20
|
Yang GJ, Lei PM, Wong SY, Ma DL, Leung CH. Pharmacological Inhibition of LSD1 for Cancer Treatment. Molecules 2018; 23:E3194. [PMID: 30518104 PMCID: PMC6320820 DOI: 10.3390/molecules23123194] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022] Open
Abstract
Lysine-specific demethylase 1A (LSD1, also named KDM1A) is a demethylase that can remove methyl groups from histones H3K4me1/2 and H3K9me1/2. It is aberrantly expressed in many cancers, where it impedes differentiation and contributes to cancer cell proliferation, cell metastasis and invasiveness, and is associated with inferior prognosis. Pharmacological inhibition of LSD1 has been reported to significantly attenuate tumor progression in vitro and in vivo in a range of solid tumors and acute myeloid leukemia. This review will present the structural aspects of LSD1, its role in carcinogenesis, a comparison of currently available approaches for screening LSD1 inhibitors, a classification of LSD1 inhibitors, and its potential as a drug target in cancer therapy.
Collapse
Affiliation(s)
- Guan-Jun Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Pui-Man Lei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Suk-Yu Wong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| |
Collapse
|
21
|
Zaravinos A, Bonavida B, Chatzaki E, Baritaki S. RKIP: A Key Regulator in Tumor Metastasis Initiation and Resistance to Apoptosis: Therapeutic Targeting and Impact. Cancers (Basel) 2018; 10:287. [PMID: 30149591 PMCID: PMC6162400 DOI: 10.3390/cancers10090287] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/12/2018] [Accepted: 08/18/2018] [Indexed: 02/07/2023] Open
Abstract
RAF-kinase inhibitor protein (RKIP) is a well-established tumor suppressor that is frequently downregulated in a plethora of solid and hematological malignancies. RKIP exerts antimetastatic and pro-apoptotic properties in cancer cells, via modulation of signaling pathways and gene products involved in tumor survival and spread. Here we review the contribution of RKIP in the regulation of early metastatic steps such as epithelial⁻mesenchymal transition (EMT), migration, and invasion, as well as in tumor sensitivity to conventional therapeutics and immuno-mediated cytotoxicity. We further provide updated justification for targeting RKIP as a strategy to overcome tumor chemo/immuno-resistance and suppress metastasis, through the use of agents able to modulate RKIP expression in cancer cells.
Collapse
Affiliation(s)
- Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus.
- Centre for Risk and Decision Sciences (CERIDES), Nicosia 2404, Cyprus.
| | - Benjamin Bonavida
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis 68100, Greece.
| | - Stavroula Baritaki
- Division of Surgical Oncology, School of Medicine, University of Crete, Heraklion, Crete 71500, Greece.
| |
Collapse
|
22
|
Chang JH, Cheng CW, Yang YC, Chen WS, Hung WY, Chow JM, Chen PS, Hsiao M, Lee WJ, Chien MH. Downregulating CD26/DPPIV by apigenin modulates the interplay between Akt and Snail/Slug signaling to restrain metastasis of lung cancer with multiple EGFR statuses. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:199. [PMID: 30134935 PMCID: PMC6104010 DOI: 10.1186/s13046-018-0869-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/08/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND Metastasis rather than the primary cancer determines the survival of cancer patients. Activation of Akt plays a critical role in the epithelial-to-mesenchymal transition (EMT), the initial step in lung cancer metastasis. Apigenin (API), a flavonoid with a potent Akt-inhibitory effect, shows oncostatic activities in various cancers. However, the effects of API on metastasis of non-small cell lung cancer (NSCLC) remain unclear. METHODS NSCLC cell lines with different epidermal growth factor receptor (EGFR) statuses and in vivo orthotopic bioluminescent xenograft model were employed to determine antitumor activity of API. Western blot and genetic knockdown by shRNA or genetic overexpression by DNA plasmids were performed to explore the underlying mechanisms. The Cancer Genome Atlas (TCGA) database was used to investigate the prognosis of API-targeted genes. RESULTS API was demonstrated to inhibit the migration/invasion of NSCLC cells harboring different EGFR statuses via suppressing the Snail/Slug-mediated EMT. Mechanistic investigations showed that CD26/dipeptidyl peptidase IV (DPPIV) was downregulated by API following suppressive interplay of Akt and Snail/Slug signaling to modulate the EMT and the invasive ability of NSCLC cells. CD26 expression was positively correlated with the invasive abilities of NSCLC cells and a worse prognosis of lung cancer patients. Furthermore, we observed that patients with CD26high/Akthigh tumors had the shortest recurrence-free survival times. In vivo, API drastically reduced the growth and metastasis of A549 xenografts through targeting CD26. CONCLUSIONS CD26 may be a useful biomarker for predicting NSCLC progression. API effectively suppressed lung cancer progression by targeting the CD26-Akt-Snail/Slug signaling pathway.
Collapse
Affiliation(s)
- Jer-Hwa Chang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chao-Wen Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Yi-Chieh Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wan-Shen Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wen-Yueh Hung
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Jyh-Ming Chow
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Pai-Sheng Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Jiunn Lee
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, 111 Hsing Long Road, Section 3, Taipei, 11696, Taiwan. .,Department of Urology, School of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan. .,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, 111 Hsing Long Road, Section 3, Taipei, 11696, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
23
|
Lin Y, Wang Y, Shi Q, Yu Q, Liu C, Feng J, Deng J, Evers BM, Zhou BP, Wu Y. Stabilization of the transcription factors slug and twist by the deubiquitinase dub3 is a key requirement for tumor metastasis. Oncotarget 2017; 8:75127-75140. [PMID: 29088851 PMCID: PMC5650406 DOI: 10.18632/oncotarget.20561] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/09/2017] [Indexed: 12/31/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) represents a cellular de-differentiation process that provides cells with the increased plasticity required during embryonic development, tissue remodeling, wound healing and metastasis. Slug and Twist are two key EMT transcription factors (EMT-TFs) that are tightly regulated via ubiquitination and degradation. How Slug and Twist escape degradation and become stabilized in cancer cells remains unclear. One plausible mechanism of Slug and Twist stabilization involves removal of ubiquitin by deubiquitinases (DUBs). In this study, we identified Dub3 as a novel DUB for both Slug and Twist. We further found that Dub3 overexpression increased Slug and Twist protein levels in a dose-dependent manner, whereas Dub3-knockdown decreased their protein levels. Of importance, Dub3 interacted with Slug and Twist and prevented them from degradation, thereby promoting migration, invasion, and cancer stem cell (CSC)-like properties of breast cancer cells. Intriguingly, Dub3 was identified as an early response gene that was upregulated after exposure to inflammatory cytokines such as IL-6, which plays a critical role in the growth and metastasis of breast cancer cells, as well as the maintenance of breast CSCs. We found that Dub3 played an essential role in IL-6 induced EMT through stabilization of Slug and Twist. Our study has uncovered an IL-6-Dub3-Slug/Twist signaling axis during EMT and suggests potential approaches that could target Dub3 to prevent metastatic breast tumor.
Collapse
Affiliation(s)
- Yiwei Lin
- Department of Molecular and Cellular Biochemistry, Lexington, KY, USA.,Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Yu Wang
- Department of Pharmacology & Nutritional Sciences, Lexington, KY, USA.,Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Qing Shi
- Department of Molecular and Cellular Biochemistry, Lexington, KY, USA.,Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Qian Yu
- Department of Pharmacology & Nutritional Sciences, Lexington, KY, USA.,Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Cuicui Liu
- Department of Molecular and Cellular Biochemistry, Lexington, KY, USA.,Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY, USA.,Department of Laboratory Medicine & Central Laboratory, Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Jing Feng
- Department of Laboratory Medicine & Central Laboratory, Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Jiong Deng
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - B Mark Evers
- Department of Surgery, Lexington, KY, USA.,Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Binhua P Zhou
- Department of Molecular and Cellular Biochemistry, Lexington, KY, USA.,Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Yadi Wu
- Department of Pharmacology & Nutritional Sciences, Lexington, KY, USA.,Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY, USA
| |
Collapse
|
24
|
Chen C, Wang Y, Wang S, Liu Y, Zhang J, Xu Y, Zhang Z, Bao W, Wu S. LSD1 sustains estrogen-driven endometrial carcinoma cell proliferation through the PI3K/AKT pathway via di-demethylating H3K9 of cyclin D1. Int J Oncol 2017; 50:942-952. [PMID: 28098854 DOI: 10.3892/ijo.2017.3849] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/19/2016] [Indexed: 11/05/2022] Open
Abstract
A recent study reported that histone lysine specific demethylase 1 (LSD1, KDM1A) is overexpressed in endometrioid endometrial carcinoma (EEC) and associated with tumor progression as well as poor prognosis. However, the physiological function and mechanism of LSD1 in endometrial cancer (EC) remains largely unknown. In this study, we demonstrate that β-estradiol (E2) treatment increased LSD1 expression via the GPR30/PI3K/AKT pathway in endometrial cancer cells. Both siGPR30 and the PI3K inhibitor LY294002 block this effect. RNAi-mediated silencing of LSD1 abolished estrogen-driven endometrial cancer cell (ECC) proliferation, and induced G1 cell arrest and apoptosis. Mechanistically, we find that LSD1 silencing results in PI3K/AKT signal inactivation, but without the elevation of PTEN expression as expected. This is because the inhibition of LSD1 induces dimethylation of lysine 9 on histone H3 (H3K9m2) accumulation at the promoter region of cyclin D1. Interfering with cyclin D1 leads to PI3K/AKT signal suppression. Re-overexpression of cyclin D1 in LSD1-knockdown ECCs reverses the LSD1 inhibitory action. Our finding connects estrogen signaling with epigenetic regulation in EEC and provides novel experimental support for LSD1 as a potential target for endometrial cancer therapeutics.
Collapse
Affiliation(s)
- Chunqin Chen
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yanan Wang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Shiyu Wang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yuan Liu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Shanghai Tongji University, Shanghai, P.R. China
| | - Yuyao Xu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Zhenbo Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wei Bao
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Sufang Wu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
25
|
PARP inhibitor ABT-888 affects response of MDA-MB-231 cells to doxorubicin treatment, targeting Snail expression. Oncotarget 2016; 6:15008-21. [PMID: 25938539 PMCID: PMC4558132 DOI: 10.18632/oncotarget.3634] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/23/2015] [Indexed: 12/16/2022] Open
Abstract
To overcome cancer cells resistance to pharmacological therapy, the development of new therapeutic approaches becomes urgent. For this purpose, the use of poly(ADP-ribose) polymerase (PARP) inhibitors in combination with other cytotoxic agents could represent an efficacious strategy. Poly(ADP-ribosyl)ation (PARylation) is a post-translational modification that plays a well characterized role in the cellular decisions of life and death. Recent findings indicate that PARP-1 may control the expression of Snail, the master gene of epithelial-mesenchymal transition (EMT). Snail is highly represented in different resistant tumors, functioning as a factor regulating anti-apoptotic programmes. MDA-MB-231 is a Snail-expressing metastatic breast cancer cell line, which exhibits chemoresistance properties when treated with damaging agents. In this study, we show that the PARP inhibitor ABT-888 was capable to modulate the MDA-MB-231 cell response to doxorubicin, leading to an increase in the rate of apoptosis. Our further results indicate that PARP-1 controlled Snail expression at transcriptional level in cells exposed to doxorubicin. Given the increasing interest in the employment of PARP inhibitors as chemotherapeutic adjuvants, our in vitro results suggest that one of the mechanisms through which PARP inhibition can chemosensitize cancer cells in vivo, is targeting Snail expression thus promoting apoptosis.
Collapse
|
26
|
Pioli PD, Whiteside SK, Weis JJ, Weis JH. Snai2 and Snai3 transcriptionally regulate cellular fitness and functionality of T cell lineages through distinct gene programs. Immunobiology 2016; 221:618-33. [PMID: 26831822 DOI: 10.1016/j.imbio.2016.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 01/31/2023]
Abstract
T lymphocytes are essential contributors to the adaptive immune system and consist of multiple lineages that serve various effector and regulatory roles. As such, precise control of gene expression is essential to the proper development and function of these cells. Previously, we identified Snai2 and Snai3 as being essential regulators of immune tolerance partly due to the impaired function of CD4(+) regulatory T cells in Snai2/3 conditional double knockout mice. Here we extend those previous findings using a bone marrow transplantation model to provide an environmentally unbiased view of the molecular changes imparted onto various T lymphocyte populations once Snai2 and Snai3 are deleted. The data presented here demonstrate that Snai2 and Snai3 transcriptionally regulate the cellular fitness and functionality of not only CD4(+) regulatory T cells but effector CD8(α+) and CD4(+) conventional T cells as well. This is achieved through the modulation of gene sets unique to each cell type and includes transcriptional targets relevant to the survival and function of each T cell lineage. As such, Snai2 and Snai3 are essential regulators of T cell immunobiology.
Collapse
Affiliation(s)
- Peter D Pioli
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, United States.
| | - Sarah K Whiteside
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, United States
| | - Janis J Weis
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, United States
| | - John H Weis
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, United States
| |
Collapse
|
27
|
Burg JM, Link JE, Morgan BS, Heller FJ, Hargrove AE, McCafferty DG. KDM1 class flavin-dependent protein lysine demethylases. Biopolymers 2015; 104:213-46. [PMID: 25787087 PMCID: PMC4747437 DOI: 10.1002/bip.22643] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/02/2015] [Accepted: 03/07/2015] [Indexed: 12/11/2022]
Abstract
Flavin-dependent, lysine-specific protein demethylases (KDM1s) are a subfamily of amine oxidases that catalyze the selective posttranslational oxidative demethylation of methyllysine side chains within protein and peptide substrates. KDM1s participate in the widespread epigenetic regulation of both normal and disease state transcriptional programs. Their activities are central to various cellular functions, such as hematopoietic and neuronal differentiation, cancer proliferation and metastasis, and viral lytic replication and establishment of latency. Interestingly, KDM1s function as catalytic subunits within complexes with coregulatory molecules that modulate enzymatic activity of the demethylases and coordinate their access to specific substrates at distinct sites within the cell and chromatin. Although several classes of KDM1-selective small molecule inhibitors have been recently developed, these pan-active site inhibition strategies lack the ability to selectively discriminate between KDM1 activity in specific, and occasionally opposing, functional contexts within these complexes. Here we review the discovery of this class of demethylases, their structures, chemical mechanisms, and specificity. Additionally, we review inhibition of this class of enzymes as well as emerging interactions with coregulatory molecules that regulate demethylase activity in highly specific functional contexts of biological and potential therapeutic importance.
Collapse
|
28
|
Wu Y, Zhou BP. Epigenetic regulation of LSD1 during mammary carcinogenesis. Mol Cell Oncol 2014; 1:e963426. [PMID: 27308339 PMCID: PMC4904887 DOI: 10.4161/21624011.2014.963426] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/26/2014] [Accepted: 08/01/2014] [Indexed: 11/19/2022]
Abstract
Inheritable epigenetic regulation is integral to the dynamic control of gene expression under different stimuli for cellular homeostasis and disease progression. Histone methylation is a common and important type of chromatin modification. LSD1, the first known histone lysine-specific demethylase, operates as a key component of several corepressor complexes during development and in disease states. In this review, we focus on the regulation of LSD1 in mammary carcinogenesis. LSD1 plays a role in promoting mammary tumor metastasis and proliferation and in maintaining mammary cancer stem cells. Therefore, LSD1 represents a viable therapeutic target for effective treatment of mammary carcinogenesis.
Collapse
Affiliation(s)
- Yadi Wu
- Department of Pharmacology and Nutrition Science; College of Medicine; University of Kentucky; Lexington, KY USA; Markey Cancer Center; College of Medicine; University of Kentucky; Lexington, KY USA
| | - Binhua P Zhou
- Markey Cancer Center; College of Medicine; University of Kentucky; Lexington, KY USA; Department of Molecular and Cellular Biochemistry; College of Medicine; University of Kentucky; Lexington, KY USA
| |
Collapse
|
29
|
Pu H, Horbinski C, Hensley PJ, Matuszak EA, Atkinson T, Kyprianou N. PARP-1 regulates epithelial-mesenchymal transition (EMT) in prostate tumorigenesis. Carcinogenesis 2014; 35:2592-601. [PMID: 25173886 DOI: 10.1093/carcin/bgu183] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) is involved in key cellular processes such as DNA replication and repair, gene transcription, cell proliferation and apoptosis. The role of PARP-1 in prostate cancer development and progression is not fully understood. The present study investigated the function of PARP-1 in prostate growth and tumorigenesis in vivo. Functional inactivation of PARP-1 by gene-targeted deletion led to a significant reduction in the prostate gland size in young PARP-1-/- mice (6 weeks) compared with wild-type (WT) littermates. To determine the effect of PARP-1 functional loss on prostate cancer onset, PARP-1-/- mice were crossed with the transgenic adenocarcinoma of the mouse prostate (TRAMP) mice. Pathological assessment of prostate tumors revealed that TRAMP+/-, PARP-1-/- mice exhibited higher grade prostate tumors compared with TRAMP+/- PARP-1+/+ (16-28 weeks) that was associated with a significantly increased proliferative index and decreased apoptosis among the epithelial cells in TRAMP+/- PARP-1-/- prostate tumors. Furthermore tumors harboring PARP-1 loss, exhibited a downregulation of nuclear androgen receptor. Impairing PARP-1 led to increased levels of transforming growth factor-β (TGF-β) and Smads that correlated with induction of epithelial-mesenchymal transition (EMT), as established by loss of E-cadherin and β-catenin and upregulation of N-cadherin and ZEB-1. Our findings suggest that impaired PARP-1 function promotes prostate tumorigenesis in vivo via TGF-β-induced EMT. Defining the EMT control by PARP-1 during prostate cancer progression is of translational significance for optimizing PARP-1 therapeutic targeting and predicting response in metastatic castration-resistant prostate cancer.
Collapse
Affiliation(s)
| | | | | | - Emily A Matuszak
- Department of Toxicology, University of Kentucky College of Medicine, Lexington, KY 40535, USA
| | | | - Natasha Kyprianou
- Departments of Urology, Pathology, Biochemistry, The Markey Cancer Center and Department of Toxicology, University of Kentucky College of Medicine, Lexington, KY 40535, USA
| |
Collapse
|
30
|
Li D, Bi FF, Chen NN, Cao JM, Sun WP, Zhou YM, Li CY, Yang Q. A novel crosstalk between BRCA1 and poly (ADP-ribose) polymerase 1 in breast cancer. Cell Cycle 2014; 13:3442-3449. [PMID: 25485588 PMCID: PMC4613991 DOI: 10.4161/15384101.2014.956507] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/15/2014] [Accepted: 08/16/2014] [Indexed: 11/19/2022] Open
Abstract
BRCA mutations are the main known hereditary factor for breast cancer. Notably, poly (ADP-ribose) polymerase 1 (PARP1) expression status plays a critical role in breast cancer progression and the clinical development of PARP1 inhibitors to treat BRCA-mutated breast cancer has advanced rapidly. However, dynamic crosstalk between BRCA1 and PARP1 remains largely unknown. Here, we showed that: (i) BRCA1 inactivation events (mutation, promoter methylation, or knockdown) were accompanied by increased PARP1 and nicotinamide adenine dinucleotide (NAD) levels, and a subsequent increase in NAD-dependent PARP1 activity in MDA-MB-231 and primary breast cancer cells; (ii) the overexpression of BRCA1 resulted in decreased PARP1 and NAD levels, and a subsequent impairment in NAD-dependent PARP1 activity in MDA-MB-231 and primary breast cancer cells; and (iii) intracellular NAD levels were largely responsible for regulating PARP1 activity in breast cancer cells, and NAD levels were positively correlated with PARP1 activity in human breast cancer specimens (R = 0.647, P < 0.001). Interestingly, the high efficiency of PARP1 triggered by BRCA1 inactivation may further inhibit BRCA1 transcription by NAD depletion. These results highlight a novel interaction between BRCA1 and PARP1, which may be beneficial for the dynamic balance between BRCA1 and PARP1-related biologic processes, especially for maintaining stable DNA repair ability. All of this may improve our understanding of the basic molecular mechanism underlying BRCA1- and PARP1-related breast cancer progression.
Collapse
Key Words
- BRCA1
- CtBP, C-terminal binding proteins
- DMEM, Dulbecco's Modified Eagles Medium
- DNA repair
- ER, endoplasmic reticulum
- ETS1, protein C-ets-1
- NAD
- NAD, nicotinamide adenine dinucleotide
- Nampt, nicotinamide phosphoribosyltransferase
- PARP1
- PARP1, poly (ADP-ribose) polymerase 1
- PCR, polymerase chain reaction
- SD, standard deviations
- TNBC, triple-negative breast cancer
- breast cancer
- shRNAs, short hairpin RNAs
Collapse
Affiliation(s)
- Da Li
- Department of Obstetrics and Gynecology; Shengjing Hospital of China Medical University; Shenyang, China
| | - Fang-Fang Bi
- Department of Obstetrics and Gynecology; Shengjing Hospital of China Medical University; Shenyang, China
| | - Na-Na Chen
- Department of Molecular Immunology; Graduate School of Medicine; Nagoya University; Nagoya, Japan
| | - Ji-Min Cao
- Department of Physiology and Pathophysiology; Institute of Basic Medical Sciences; Chinese Academy of Medical Sciences; School of Basic Medicine Peking Union Medical College; Beijing, China
| | - Wu-Ping Sun
- Division of Cell Signaling; National Institute for Physiological Sciences; Okazaki, Japan
| | - Yi-Ming Zhou
- Division of Cell Signaling; National Institute for Physiological Sciences; Okazaki, Japan
| | - Chun-Yan Li
- Department of Histology and Embryology; Institute of Basic Medical Sciences; Chinese Academy of Medical Sciences; School of Basic Medicine Peking Union Medical College; Beijing, China
| | - Qing Yang
- Department of Obstetrics and Gynecology; Shengjing Hospital of China Medical University; Shenyang, China
| |
Collapse
|