1
|
Cromer L, Tiscareno-Andrade M, Lefranc S, Chambon A, Hurel A, Brogniez M, Guérin J, Le Masson I, Adam G, Charif D, Andrey P, Grelon M. Rapid meiotic prophase chromosome movements in Arabidopsis thaliana are linked to essential reorganization at the nuclear envelope. Nat Commun 2024; 15:5964. [PMID: 39013853 PMCID: PMC11252379 DOI: 10.1038/s41467-024-50169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/02/2024] [Indexed: 07/18/2024] Open
Abstract
Meiotic rapid prophase chromosome movements (RPMs) require connections between the chromosomes and the cytoskeleton, involving SUN (Sad1/UNC-84)-domain-containing proteins at the inner nuclear envelope (NE). RPMs remain significantly understudied in plants, with respect to their importance in the regulation of meiosis. Here, we demonstrate that Arabidopsis thaliana meiotic centromeres undergo rapid (up to 500 nm/s) and uncoordinated movements during the zygotene and pachytene stages. These centromere movements are not affected by altered chromosome organization and recombination but are abolished in the double mutant sun1 sun2. We also document the changes in chromosome dynamics and nucleus organization during the transition from leptotene to zygotene, including telomere attachment to SUN-enriched NE domains, bouquet formation, and nucleolus displacement, all of which were defective in sun1 sun2. These results establish A. thaliana as a model species for studying the functional implications of meiotic RPMs and demonstrate the mechanistic conservation of telomere-led RPMs in plants.
Collapse
Affiliation(s)
- Laurence Cromer
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Mariana Tiscareno-Andrade
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Sandrine Lefranc
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Aurélie Chambon
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Aurélie Hurel
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Manon Brogniez
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Julie Guérin
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Ivan Le Masson
- Université Paris-Saclay, AgroParisTech, INRAE, UMR Agronomie, 91120, Palaiseau, France
| | - Gabriele Adam
- Université Paris-Saclay, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
- Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
| | - Delphine Charif
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Philippe Andrey
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Mathilde Grelon
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France.
| |
Collapse
|
2
|
Ishiguro KI. Mechanisms of meiosis initiation and meiotic prophase progression during spermatogenesis. Mol Aspects Med 2024; 97:101282. [PMID: 38797021 DOI: 10.1016/j.mam.2024.101282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/16/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Meiosis is a critical step for spermatogenesis and oogenesis. Meiosis commences with pre-meiotic S phase that is subsequently followed by meiotic prophase. The meiotic prophase is characterized by the meiosis-specific chromosomal events such as chromosome recombination and homolog synapsis. Meiosis initiator (MEIOSIN) and stimulated by retinoic acid gene 8 (STRA8) initiate meiosis by activating the meiotic genes by installing the meiotic prophase program at pre-meiotic S phase. This review highlights the mechanisms of meiotic initiation and meiotic prophase progression from the point of the gene expression program and its relevance to infertility. Furthermore, upstream pathways that regulate meiotic initiation will be discussed in the context of spermatogenic development, indicating the sexual differences in the mode of meiotic entry.
Collapse
Affiliation(s)
- Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan.
| |
Collapse
|
3
|
Zhang J, Ruiz M, Bergh PO, Henricsson M, Stojanović N, Devkota R, Henn M, Bohlooly-Y M, Hernández-Hernández A, Alsheimer M, Borén J, Pilon M, Shibuya H. Regulation of meiotic telomere dynamics through membrane fluidity promoted by AdipoR2-ELOVL2. Nat Commun 2024; 15:2315. [PMID: 38485951 PMCID: PMC10940294 DOI: 10.1038/s41467-024-46718-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
The cellular membrane in male meiotic germ cells contains a unique class of phospholipids and sphingolipids that is required for male reproduction. Here, we show that a conserved membrane fluidity sensor, AdipoR2, regulates the meiosis-specific lipidome in mouse testes by promoting the synthesis of sphingolipids containing very-long-chain polyunsaturated fatty acids (VLC-PUFAs). AdipoR2 upregulates the expression of a fatty acid elongase, ELOVL2, both transcriptionally and post-transcriptionally, to synthesize VLC-PUFA. The depletion of VLC-PUFAs and subsequent accumulation of palmitic acid in AdipoR2 knockout testes stiffens the cellular membrane and causes the invagination of the nuclear envelope. This condition impairs the nuclear peripheral distribution of meiotic telomeres, leading to errors in homologous synapsis and recombination. Further, the stiffened membrane impairs the formation of intercellular bridges and the germ cell syncytium, which disrupts the orderly arrangement of cell types within the seminiferous tubules. According to our findings we propose a framework in which the highly-fluid membrane microenvironment shaped by AdipoR2-ELOVL2 underpins meiosis-specific chromosome dynamics in testes.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Mario Ruiz
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Per-Olof Bergh
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, 41467, Gothenburg, Sweden
| | - Marcus Henricsson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, 41467, Gothenburg, Sweden
| | - Nena Stojanović
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Ranjan Devkota
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Marius Henn
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | | | - Abrahan Hernández-Hernández
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- National Genomics Infrastructure, Science for Life Laboratory, Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Manfred Alsheimer
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, 41467, Gothenburg, Sweden
| | - Marc Pilon
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden.
| | - Hiroki Shibuya
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden.
- Laboratory for Gametogenesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
| |
Collapse
|
4
|
Pennarun G, Picotto J, Bertrand P. Close Ties between the Nuclear Envelope and Mammalian Telomeres: Give Me Shelter. Genes (Basel) 2023; 14:genes14040775. [PMID: 37107534 PMCID: PMC10137478 DOI: 10.3390/genes14040775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
The nuclear envelope (NE) in eukaryotic cells is essential to provide a protective compartment for the genome. Beside its role in connecting the nucleus with the cytoplasm, the NE has numerous important functions including chromatin organization, DNA replication and repair. NE alterations have been linked to different human diseases, such as laminopathies, and are a hallmark of cancer cells. Telomeres, the ends of eukaryotic chromosomes, are crucial for preserving genome stability. Their maintenance involves specific telomeric proteins, repair proteins and several additional factors, including NE proteins. Links between telomere maintenance and the NE have been well established in yeast, in which telomere tethering to the NE is critical for their preservation and beyond. For a long time, in mammalian cells, except during meiosis, telomeres were thought to be randomly localized throughout the nucleus, but recent advances have uncovered close ties between mammalian telomeres and the NE that play important roles for maintaining genome integrity. In this review, we will summarize these connections, with a special focus on telomere dynamics and the nuclear lamina, one of the main NE components, and discuss the evolutionary conservation of these mechanisms.
Collapse
Affiliation(s)
- Gaëlle Pennarun
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
| | - Julien Picotto
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
| | - Pascale Bertrand
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
| |
Collapse
|
5
|
Palacios-Blanco I, Martín-Castellanos C. Cyclins and CDKs in the regulation of meiosis-specific events. Front Cell Dev Biol 2022; 10:1069064. [PMID: 36523509 PMCID: PMC9745066 DOI: 10.3389/fcell.2022.1069064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/14/2022] [Indexed: 07/13/2024] Open
Abstract
How eukaryotic cells control their duplication is a fascinating example of how a biological system self-organizes specific activities to temporally order cellular events. During cell cycle progression, the cellular level of CDK (Cyclin-Dependent Kinase) activity temporally orders the different cell cycle phases, ensuring that DNA replication occurs prior to segregation into two daughter cells. CDK activity requires the binding of a regulatory subunit (cyclin) to the core kinase, and both CDKs and cyclins are well conserved throughout evolution from yeast to humans. As key regulators, they coordinate cell cycle progression with metabolism, DNA damage, and cell differentiation. In meiosis, the special cell division that ensures the transmission of genetic information from one generation to the next, cyclins and CDKs have acquired novel functions to coordinate meiosis-specific events such as chromosome architecture, recombination, and synapsis. Interestingly, meiosis-specific cyclins and CDKs are common in evolution, some cyclins seem to have evolved to acquire CDK-independent functions, and even some CDKs associate with a non-cyclin partner. We will review the functions of these key regulators in meiosis where variation has specially flourished.
Collapse
|
6
|
Zhang Q, Tao C, Gao S, Li S, Xu B, Ke H, Wang Y, Zhang F, Qin Y, Zhang L, Guo T. Homozygous Variant in KASH5 Causes Premature Ovarian Insufficiency by Disordered Meiotic Homologous Pairing. J Clin Endocrinol Metab 2022; 107:2589-2597. [PMID: 35708642 DOI: 10.1210/clinem/dgac368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Premature ovarian insufficiency (POI) affects 1% to 3.7% of women at reproductive age, and its etiology is heterogeneous. The linker of nucleoskeleton and cytoskeleton (LINC) complex, consisting of KASH5 and SUN1, plays an indispensable role in meiotic homolog pairing, determining the ovarian reserve. However, their roles in the pathogenesis of POI are unknown. OBJECTIVE To investigate the role of KASH5 variation in the pathogenesis of POI. DESIGN Whole-exome sequencing was performed in a pedigree with 2 POI patients. The pathogenicity of identified variant was illustrated by in vitro functional studies, and its effect on ovarian function and meiosis was confirmed by histological analysis and oocyte spreads with Kash5 C-terminal deleted mice model. RESULTS A homozygous splicing site variant in KASH5 (c.747G > A) was identified. In vitro studies found the variant disturbed the nuclear membrane localization of KASH5 and its binding with SUN1. Moreover, the Kash5 C-terminal deleted mice revealed defective meiotic homolog pairing and accelerated depletion of oocytes. CONCLUSIONS The splicing site variant in KASH5 is responsible for POI due to defective meiotic homolog pairing and accelerated depletion of oocytes. Our study is the first to report disorganized LINC complex participating in POI pathogenesis, potentially suggesting the essential roles of meiotic telomere attachment and dynein-driven proteins for chromosome movement in ovarian function maintenance.
Collapse
Affiliation(s)
- Qian Zhang
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Chengqiu Tao
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Shuchang Gao
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Shan Li
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Bingying Xu
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Hanni Ke
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Yiyang Wang
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Feng Zhang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Institute of Reproduction and Development, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yingying Qin
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Ling Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Institute of Reproduction and Development, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Ting Guo
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| |
Collapse
|
7
|
Yang C, Lin X, Ji Z, Huang Y, Zhang L, Luo J, Chen H, Li P, Tian R, Zhi E, Hong Y, Zhou Z, Zhang F, Li Z, Yao C. Novel bi-allelic variants in KASH5 are associated with meiotic arrest and non-obstructive azoospermia. Mol Hum Reprod 2022; 28:gaac021. [PMID: 35674372 DOI: 10.1093/molehr/gaac021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/11/2022] [Indexed: 11/12/2022] Open
Abstract
KASH5 is an essential component of the LINC (linker of the nucleoskeleton and cytoskeleton) complex that regulates chromosome movements and nuclear envelope (NE) remodeling in mouse spermatocytes during meiosis prophase I, but its expression and function in human cells, as well as its association with male infertility are largely unknown. In this study, a novel heterozygous copy number variation (CNV) (seq [GRCh37] del(19) (19q13.33) chr19: g.49894043-49903011del) and a heterozygous loss of function variant (NM_144688: c.979_980del: p.R327Sfs*21) in human KASH5 were identified in a non-obstructive azoospermia (NOA)-affected patient and in his infertile sister by whole-exome sequencing and CNV array. Spermatogenesis in the proband was arrested at zygotene-like stage with a deficiency in homolog pairing and synapsis. KASH5 protein expression in human spermatocytes was evaluated and reported first in this study. Single-cell RNA sequencing demonstrated that the LINC complex and associated genes in human and mouse shared a similar expression pattern, indicating a conserved mechanism in the regulation of chromosome movements and NE remodeling. Kash5 knockout mouse displayed similar phenotypes, including a meiotic arrest at a zygotene-like stage and impaired pairing and synapsis. Collectively, we have identified novel rare variants within human KASH5 in patients with NOA and meiosis arrest. Our study expands the knowledge of KASH5 and associated proteins in regulating human meiosis prophase I progress and provides new insight into the genetic etiology of NOA.
Collapse
Affiliation(s)
- Chao Yang
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaoqi Lin
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), State Key Laboratory of Genetic Engineering, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Zhiyong Ji
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhua Huang
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Zhang
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Jiaqiang Luo
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huixing Chen
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Li
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruhui Tian
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Erlei Zhi
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Hong
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi Zhou
- School of Life Sciences and Technology, Shanghai Tech University, Shanghai, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), State Key Laboratory of Genetic Engineering, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Zheng Li
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chencheng Yao
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Agrawal R, Gillies JP, Zang JL, Zhang J, Garrott SR, Shibuya H, Nandakumar J, DeSantis ME. The KASH5 protein involved in meiotic chromosomal movements is a novel dynein activating adaptor. eLife 2022; 11:e78201. [PMID: 35703493 PMCID: PMC9242646 DOI: 10.7554/elife.78201] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
Dynein harnesses ATP hydrolysis to move cargo on microtubules in multiple biological contexts. Dynein meets a unique challenge in meiosis by moving chromosomes tethered to the nuclear envelope to facilitate homolog pairing essential for gametogenesis. Though processive dynein motility requires binding to an activating adaptor, the identity of the activating adaptor required for dynein to move meiotic chromosomes is unknown. We show that the meiosis-specific nuclear-envelope protein KASH5 is a dynein activating adaptor: KASH5 directly binds dynein using a mechanism conserved among activating adaptors and converts dynein into a processive motor. We map the dynein-binding surface of KASH5, identifying mutations that abrogate dynein binding in vitro and disrupt recruitment of the dynein machinery to the nuclear envelope in cultured cells and mouse spermatocytes in vivo. Our study identifies KASH5 as the first transmembrane dynein activating adaptor and provides molecular insights into how it activates dynein during meiosis.
Collapse
Affiliation(s)
- Ritvija Agrawal
- Department of Molecular, Cellular and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - John P Gillies
- Department of Molecular, Cellular and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Juliana L Zang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Jingjing Zhang
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Sharon R Garrott
- Department of Molecular, Cellular and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
- Biological Chemistry, University of MichiganAnn ArborUnited States
| | - Hiroki Shibuya
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Morgan E DeSantis
- Department of Molecular, Cellular and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
- Biological Chemistry, University of MichiganAnn ArborUnited States
| |
Collapse
|
9
|
Abstract
Meiosis is critical for germ cell development in multicellular organisms. Initiation of meiosis coincides with pre-meiotic S phase, which is followed by meiotic prophase, a prolonged G2 phase that ensures numerous meiosis-specific chromosome events. Meiotic prophase is accompanied by robust alterations of gene expression. In mouse germ cells, MEIOSIN and STRA8 direct cell cycle switch from mitosis to meiosis. MEIOSIN and STRA8 coordinate meiotic initiation with cell cycle, by activating the meiotic genes to have meiotic prophase program installed at S phase. This review mainly focuses on the mechanism of meiotic initiation in mouse germ cells from the viewpoint of the transcription of meiotic genes. Furthermore, signaling pathways that regulate meiotic initiation will be discussed in the context of germ cell development, pointing out the sexual differences in the mode of meiotic initiation.
Collapse
Affiliation(s)
- Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
10
|
Zhang K, Tarczykowska A, Gupta DK, Pendlebury DF, Zuckerman C, Nandakumar J, Shibuya H. The TERB1 MYB domain suppresses telomere erosion in meiotic prophase I. Cell Rep 2022; 38:110289. [PMID: 35081355 PMCID: PMC8867601 DOI: 10.1016/j.celrep.2021.110289] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/08/2021] [Accepted: 12/29/2021] [Indexed: 11/24/2022] Open
Abstract
The meiosis-specific telomere-binding protein TERB1 anchors telomeres to the nuclear envelope and drives chromosome movements for the pairing of homologous chromosomes. TERB1 has an MYB-like DNA-binding (MYB) domain, which is a hallmark of telomeric DNA-binding proteins. Here, we demonstrate that the TERB1 MYB domain has lost its canonical DNA-binding activity. The analysis of Terb1 point mutant mice expressing TERB1 lacking its MYB domain showed that the MYB domain is dispensable for telomere localization of TERB1 and the downstream TERB2-MAJIN complex, the promotion of homologous pairing, and even fertility. Instead, the TERB1 MYB domain regulates the enrichment of cohesin and promotes the remodeling of axial elements in the early-to-late pachytene transition, which suppresses telomere erosion. Considering its conservation across metazoan phyla, the TERB1 MYB domain is likely to be important for the maintenance of telomeric DNA and thus for genomic integrity by suppressing meiotic telomere erosion over long evolutionary timescales.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-41390, Sweden
| | - Agata Tarczykowska
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-41390, Sweden
| | - Deepesh Kumar Gupta
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-41390, Sweden
| | - Devon F Pendlebury
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cassandra Zuckerman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hiroki Shibuya
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-41390, Sweden.
| |
Collapse
|
11
|
Ishiguro KI, Shimada R. MEIOSIN directs initiation of meiosis and subsequent meiotic prophase program during spermatogenesis. Genes Genet Syst 2021; 97:27-39. [PMID: 34955498 DOI: 10.1266/ggs.21-00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Meiosis is a crucial process for spermatogenesis and oogenesis. Initiation of meiosis coincides with spermatocyte differentiation and is followed by meiotic prophase, a prolonged G2 phase that ensures the completion of numerous meiosis-specific chromosome events. During meiotic prophase, chromosomes are organized into axis-loop structures, which underlie meiosis-specific events such as meiotic recombination and homolog synapsis. In spermatocytes, meiotic prophase is accompanied by robust alterations of gene expression programs and chromatin status for subsequent sperm production. The mechanisms regulating meiotic initiation and subsequent meiotic prophase programs are enigmatic. Recently, we discovered MEIOSIN (Meiosis initiator), a DNA-binding protein that directs the switch from mitosis to meiosis. This review mainly focuses on how MEIOSIN is involved in meiotic initiation and the meiotic prophase program during spermatogenesis. Further, we discuss the downstream genes activated by MEIOSIN, which are crucial for meiotic prophase-specific events, from the viewpoint of chromosome dynamics and the gene expression program.
Collapse
Affiliation(s)
- Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University
| | - Ryuki Shimada
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University
| |
Collapse
|
12
|
Pennarun G, Picotto J, Etourneaud L, Redavid AR, Certain A, Gauthier LR, Fontanilla-Ramirez P, Busso D, Chabance-Okumura C, Thézé B, Boussin FD, Bertrand P. Increase in lamin B1 promotes telomere instability by disrupting the shelterin complex in human cells. Nucleic Acids Res 2021; 49:9886-9905. [PMID: 34469544 PMCID: PMC8464066 DOI: 10.1093/nar/gkab761] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 08/04/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022] Open
Abstract
Telomere maintenance is essential to preserve genomic stability and involves telomere-specific proteins, DNA replication and repair proteins. Lamins are key components of the nuclear envelope and play numerous roles, including maintenance of the nuclear integrity, regulation of transcription, and DNA replication. Elevated levels of lamin B1, one of the major lamins, have been observed in some human pathologies and several cancers. Yet, the effect of lamin B1 dysregulation on telomere maintenance remains unknown. Here, we unveil that lamin B1 overexpression drives telomere instability through the disruption of the shelterin complex. Indeed, lamin B1 dysregulation leads to an increase in telomere dysfunction-induced foci, telomeric fusions and telomere losses in human cells. Telomere aberrations were preceded by mislocalizations of TRF2 and its binding partner RAP1. Interestingly, we identified new interactions between lamin B1 and these shelterin proteins, which are strongly enhanced at the nuclear periphery upon lamin B1 overexpression. Importantly, chromosomal fusions induced by lamin B1 in excess were rescued by TRF2 overexpression. These data indicated that lamin B1 overexpression triggers telomere instability through a mislocalization of TRF2. Altogether our results point to lamin B1 as a new interacting partner of TRF2, that is involved in telomere stability.
Collapse
Affiliation(s)
- Gaëlle Pennarun
- Université de Paris and Université Paris-Saclay, INSERM, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- “DNA Repair and Ageing” Team, iRCM/IBFJ, DRF, CEA, Fontenay-aux-Roses, France
| | - Julien Picotto
- Université de Paris and Université Paris-Saclay, INSERM, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- “DNA Repair and Ageing” Team, iRCM/IBFJ, DRF, CEA, Fontenay-aux-Roses, France
| | - Laure Etourneaud
- Université de Paris and Université Paris-Saclay, INSERM, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- “DNA Repair and Ageing” Team, iRCM/IBFJ, DRF, CEA, Fontenay-aux-Roses, France
| | - Anna-Rita Redavid
- Université de Paris and Université Paris-Saclay, INSERM, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- “DNA Repair and Ageing” Team, iRCM/IBFJ, DRF, CEA, Fontenay-aux-Roses, France
| | - Anaïs Certain
- Université de Paris and Université Paris-Saclay, INSERM, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- “DNA Repair and Ageing” Team, iRCM/IBFJ, DRF, CEA, Fontenay-aux-Roses, France
| | - Laurent R Gauthier
- Université de Paris and Université Paris-Saclay, INSERM, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- “Radiopathology” Team, iRCM/IBFJ, DRF, CEA, Fontenay-aux-Roses, France
| | - Paula Fontanilla-Ramirez
- Université de Paris and Université Paris-Saclay, INSERM, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- “DNA Repair and Ageing” Team, iRCM/IBFJ, DRF, CEA, Fontenay-aux-Roses, France
| | - Didier Busso
- Université de Paris and Université Paris-Saclay, INSERM, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- Genetic Engineering and Expression Platform (CIGEX), iRCM, DRF, CEA, Fontenay-aux-Roses, France
| | - Caroline Chabance-Okumura
- Université de Paris and Université Paris-Saclay, INSERM, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- “DNA Repair and Ageing” Team, iRCM/IBFJ, DRF, CEA, Fontenay-aux-Roses, France
| | - Benoît Thézé
- Université de Paris and Université Paris-Saclay, INSERM, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- “DNA Repair and Ageing” Team, iRCM/IBFJ, DRF, CEA, Fontenay-aux-Roses, France
| | - François D Boussin
- Université de Paris and Université Paris-Saclay, INSERM, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- “Radiopathology” Team, iRCM/IBFJ, DRF, CEA, Fontenay-aux-Roses, France
| | - Pascale Bertrand
- Université de Paris and Université Paris-Saclay, INSERM, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- “DNA Repair and Ageing” Team, iRCM/IBFJ, DRF, CEA, Fontenay-aux-Roses, France
| |
Collapse
|
13
|
Chadourne M, Poumerol E, Jouneau L, Passet B, Castille J, Sellem E, Pailhoux E, Mandon-Pépin B. Structural and Functional Characterization of a Testicular Long Non-coding RNA (4930463O16Rik) Identified in the Meiotic Arrest of the Mouse Topaz1 -/- Testes. Front Cell Dev Biol 2021; 9:700290. [PMID: 34277642 PMCID: PMC8281061 DOI: 10.3389/fcell.2021.700290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/14/2021] [Indexed: 12/23/2022] Open
Abstract
Spermatogenesis involves coordinated processes, including meiosis, to produce functional gametes. We previously reported Topaz1 as a germ cell-specific gene highly conserved in vertebrates. Topaz1 knockout males are sterile with testes that lack haploid germ cells because of meiotic arrest after prophase I. To better characterize Topaz1–/– testes, we used RNA-sequencing analyses at two different developmental stages (P16 and P18). The absence of TOPAZ1 disturbed the expression of genes involved in microtubule and/or cilium mobility, biological processes required for spermatogenesis. Moreover, a quarter of P18 dysregulated genes are long non-coding RNAs (lncRNAs), and three of them are testis-specific and located in spermatocytes, their expression starting between P11 and P15. The suppression of one of them, 4939463O16Rik, did not alter fertility although sperm parameters were disturbed and sperm concentration fell. The transcriptome of P18-4939463O16Rik–/– testes was altered and the molecular pathways affected included microtubule-based processes, the regulation of cilium movement and spermatogenesis. The absence of TOPAZ1 protein or 4930463O16Rik produced the same enrichment clusters in mutant testes despite a contrasted phenotype on male fertility. In conclusion, although Topaz1 is essential for the meiosis in male germ cells and regulate the expression of numerous lncRNAs, these studies have identified a Topaz1 regulated lncRNA (4930463O16Rik) that is key for both sperm production and motility.
Collapse
Affiliation(s)
- Manon Chadourne
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France
| | - Elodie Poumerol
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France
| | - Luc Jouneau
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France
| | - Bruno Passet
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | - Johan Castille
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Eric Pailhoux
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France
| | | |
Collapse
|
14
|
Willaume S, Rass E, Fontanilla-Ramirez P, Moussa A, Wanschoor P, Bertrand P. A Link between Replicative Stress, Lamin Proteins, and Inflammation. Genes (Basel) 2021; 12:genes12040552. [PMID: 33918867 PMCID: PMC8070205 DOI: 10.3390/genes12040552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Double-stranded breaks (DSB), the most toxic DNA lesions, are either a consequence of cellular metabolism, programmed as in during V(D)J recombination, or induced by anti-tumoral therapies or accidental genotoxic exposure. One origin of DSB sources is replicative stress, a major source of genome instability, especially when the integrity of the replication forks is not properly guaranteed. To complete stalled replication, restarting the fork requires complex molecular mechanisms, such as protection, remodeling, and processing. Recently, a link has been made between DNA damage accumulation and inflammation. Indeed, defects in DNA repair or in replication can lead to the release of DNA fragments in the cytosol. The recognition of this self-DNA by DNA sensors leads to the production of inflammatory factors. This beneficial response activating an innate immune response and destruction of cells bearing DNA damage may be considered as a novel part of DNA damage response. However, upon accumulation of DNA damage, a chronic inflammatory cellular microenvironment may lead to inflammatory pathologies, aging, and progression of tumor cells. Progress in understanding the molecular mechanisms of DNA damage repair, replication stress, and cytosolic DNA production would allow to propose new therapeutical strategies against cancer or inflammatory diseases associated with aging. In this review, we describe the mechanisms involved in DSB repair, the replicative stress management, and its consequences. We also focus on new emerging links between key components of the nuclear envelope, the lamins, and DNA repair, management of replicative stress, and inflammation.
Collapse
|
15
|
Kazemi P, Taketo T. Two telomeric ends of acrocentric chromosome play distinct roles in homologous chromosome synapsis in the fetal mouse oocyte. Chromosoma 2021; 130:41-52. [PMID: 33492414 DOI: 10.1007/s00412-021-00752-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/16/2022]
Abstract
In mammalian oocytes, proper chromosome segregation at the first meiotic division is dictated by the presence and site of homologous chromosome recombination, which takes place in fetal life. Our current understanding of how homologous chromosomes find each other and initiate synapsis, which is prerequisite for homologous recombination, is limited. It is known that chromosome telomeres are anchored into the nuclear envelope (NE) at the early meiotic prophase I (MPI) and move along NE to facilitate homologous chromosome search and pairing. However, the mouse (Mus musculus) carries all acrocentric chromosomes with one telomeric end close to the centromere (subcentromeric telomere; C-telomere) and the other far away from the centromere (distal telomere; D-telomere), and how C- and D-telomeres participate in chromosome pairing and synapsis during the MPI progression is not well understood. Here, we found in the mouse oocyte that C- and D-telomeres transiently clustered in one area, but D-telomeres soon separated together from C-telomeres and then dispersed to preferentially initiate synapsis, while C-telomeres remained in clusters and synapsed at the last. In the Spo11 null oocyte, which is deficient in SPO11-dependent DSBs formation and homologous synapsis, the pattern of C- and D-telomere clustering and resolution was not affected, but synapsis was more frequently initiated at C-telomeres. These results suggest that SPO11 suppresses the early synapsis between C-telomeres in clusters.
Collapse
Affiliation(s)
- Parinaz Kazemi
- Department of Biology, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Teruko Taketo
- Department of Biology, McGill University, Montreal, QC, H3A 1B1, Canada. .,Department of Surgery, McGill University, RI-MUHC, Montreal, QC, H4A 3J1, Canada. .,Department of Obstetrics/Gynecology, McGill University, RI-MUHC, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
16
|
Viera A, Berenguer I, Ruiz-Torres M, Gómez R, Guajardo A, Barbero JL, Losada A, Suja JA. PDS5 proteins regulate the length of axial elements and telomere integrity during male mouse meiosis. EMBO Rep 2020; 21:e49273. [PMID: 32285610 DOI: 10.15252/embr.201949273] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Cohesin cofactors regulate the loading, maintenance, and release of cohesin complexes from chromosomes during mitosis but little is known on their role during vertebrate meiosis. One such cofactor is PDS5, which exists as two paralogs in somatic and germline cells, PDS5A and PDS5B, with unclear functions. Here, we have analyzed their distribution and functions in mouse spermatocytes. We show that simultaneous excision of Pds5A and Pds5B results in severe defects during early prophase I while their individual depletion does not, suggesting their functional redundancy. Shortened axial/lateral elements and a reduction of early recombination nodules are observed after the strong depletion of PDS5A/B proteins. Moreover, telomere integrity and their association to the nuclear envelope are severely compromised. As these defects occur without detectable reduction in chromosome-bound cohesin, we propose that the dynamic behavior of the complex, mediated by PDS5 proteins, is key for successful completion of meiotic prophase I.
Collapse
Affiliation(s)
- Alberto Viera
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Inés Berenguer
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel Ruiz-Torres
- Chromosome Dynamics Group, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Rocío Gómez
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Andrea Guajardo
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - José Luis Barbero
- Departamento de Biología Celular y Molecular, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - José A Suja
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
17
|
Palmer N, Talib SZA, Kaldis P. Diverse roles for CDK-associated activity during spermatogenesis. FEBS Lett 2019; 593:2925-2949. [PMID: 31566717 PMCID: PMC6900092 DOI: 10.1002/1873-3468.13627] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/20/2019] [Accepted: 09/26/2019] [Indexed: 12/22/2022]
Abstract
The primary function of cyclin-dependent kinases (CDKs) in complex with their activating cyclin partners is to promote mitotic division in somatic cells. This canonical cell cycle-associated activity is also crucial for fertility as it allows the proliferation and differentiation of stem cells within the reproductive organs to generate meiotically competent cells. Intriguingly, several CDKs exhibit meiosis-specific functions and are essential for the completion of the two reductional meiotic divisions required to generate haploid gametes. These meiosis-specific functions are mediated by both known CDK/cyclin complexes and meiosis-specific CDK-regulators and are important for a variety of processes during meiotic prophase. The majority of meiotic defects observed upon deletion of these proteins occur during the extended prophase I of the first meiotic division. Importantly a lack of redundancy is seen within the meiotic arrest phenotypes described for many of these proteins, suggesting intricate layers of cell cycle control are required for normal meiotic progression. Using the process of male germ cell development (spermatogenesis) as a reference, this review seeks to highlight the diverse roles of selected CDKs their activators, and their regulators during gametogenesis.
Collapse
Affiliation(s)
- Nathan Palmer
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biochemistry, National University of Singapore (NUS), Singapore, Singapore
| | - S Zakiah A Talib
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biochemistry, National University of Singapore (NUS), Singapore, Singapore.,Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Malmö, Sweden
| |
Collapse
|
18
|
Link J, Jantsch V. Meiotic chromosomes in motion: a perspective from Mus musculus and Caenorhabditis elegans. Chromosoma 2019; 128:317-330. [PMID: 30877366 PMCID: PMC6823321 DOI: 10.1007/s00412-019-00698-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 01/25/2023]
Abstract
Vigorous chromosome movement during the extended prophase of the first meiotic division is conserved in most eukaryotes. The movement is crucial for the faithful segregation of homologous chromosomes into daughter cells, and thus for fertility. A prerequisite for meiotic chromosome movement is the stable and functional attachment of telomeres or chromosome ends to the nuclear envelope and their cytoplasmic coupling to the cytoskeletal forces responsible for generating movement. Important advances in understanding the components, mechanisms, and regulation of chromosome end attachment and movement have recently been made. This review focuses on insights gained from experiments into two major metazoan model organisms: the mouse, Mus musculus, and the nematode, Caenorhabditis elegans.
Collapse
Affiliation(s)
- Jana Link
- Department of Chromosome Biology, Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, 1030, Vienna, Austria.
| | - Verena Jantsch
- Department of Chromosome Biology, Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, 1030, Vienna, Austria.
| |
Collapse
|
19
|
Ishiguro K. The cohesin complex in mammalian meiosis. Genes Cells 2019; 24:6-30. [PMID: 30479058 PMCID: PMC7379579 DOI: 10.1111/gtc.12652] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022]
Abstract
Cohesin is an evolutionary conserved multi-protein complex that plays a pivotal role in chromosome dynamics. It plays a role both in sister chromatid cohesion and in establishing higher order chromosome architecture, in somatic and germ cells. Notably, the cohesin complex in meiosis differs from that in mitosis. In mammalian meiosis, distinct types of cohesin complexes are produced by altering the combination of meiosis-specific subunits. The meiosis-specific subunits endow the cohesin complex with specific functions for numerous meiosis-associated chromosomal events, such as chromosome axis formation, homologue association, meiotic recombination and centromeric cohesion for sister kinetochore geometry. This review mainly focuses on the cohesin complex in mammalian meiosis, pointing out the differences in its roles from those in mitosis. Further, common and divergent aspects of the meiosis-specific cohesin complex between mammals and other organisms are discussed.
Collapse
Affiliation(s)
- Kei‐ichiro Ishiguro
- Institute of Molecular Embryology and GeneticsKumamoto UniversityKumamotoJapan
| |
Collapse
|
20
|
Sad1 Spatiotemporally Regulates Kinetochore Clustering To Ensure High-Fidelity Chromosome Segregation in the Human Fungal Pathogen Cryptococcus neoformans. mSphere 2018; 3:3/4/e00190-18. [PMID: 29976642 PMCID: PMC6034078 DOI: 10.1128/msphere.00190-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex is present in fungi, animals, and plants. It performs diverse functions in animals, and its role(s) have recently been explored in plants. In ascomycetous yeast species, the role of the LINC complex in spindle pole body function and telomere clustering during meiosis has been determined. However, nothing is known about the LINC complex in the fungal phylum of Basidiomycota. In this study, we identified the role of the LINC complex in kinetochore dynamics as well as in nuclear migration in a basidiomycetous yeast, Cryptococcus neoformans, a human pathogen. Unlike most other yeast species, kinetochores remain unclustered during interphase but gradually cluster during mitosis in C. neoformans. We report that the LINC complex is required for timely onset of kinetochore clustering and high-fidelity chromosome segregation in C. neoformans. Thus, our study identifies a novel factor required for kinetochore clustering during mitosis in yeast species. Kinetochore clustering, frequently observed in yeasts, plays a key role in genome organization and chromosome segregation. In the absence of the metaphase plate arrangement, kinetochore clustering in yeast species is believed to facilitate timely kinetochore-microtubule interactions to achieve bivalent attachments of chromosomes during metaphase. The factors determining the dynamics of kinetochore clustering remain largely unknown. We previously reported that kinetochores oscillate between an unclustered and a clustered state during the mitotic cell cycle in the basidiomycetous yeast Cryptococcus neoformans. Based on tubulin localization patterns, while kinetochore clustering appears to be microtubule dependent, an indirect interaction of microtubules with kinetochores is expected in C. neoformans. In this study, we sought to examine possible roles of the SUN-KASH protein complex, known to form a bridge across the nuclear envelope, in regulating kinetochore clustering in C. neoformans. We show that the SUN domain protein Sad1 localizes close to kinetochores in interphase as well as in mitotic cells. Sad1 is nonessential for viability in C. neoformans but is required for proper growth and high-fidelity chromosome segregation. Further, we demonstrate that the onset of kinetochore clustering is significantly delayed in cells lacking Sad1 compared to wild-type cells. Taken together, this study identifies a novel role of the SUN domain protein Sad1 in spatiotemporal regulation of kinetochore clustering during the mitotic cell cycle in C. neoformans. IMPORTANCE The linker of nucleoskeleton and cytoskeleton (LINC) complex is present in fungi, animals, and plants. It performs diverse functions in animals, and its role(s) have recently been explored in plants. In ascomycetous yeast species, the role of the LINC complex in spindle pole body function and telomere clustering during meiosis has been determined. However, nothing is known about the LINC complex in the fungal phylum of Basidiomycota. In this study, we identified the role of the LINC complex in kinetochore dynamics as well as in nuclear migration in a basidiomycetous yeast, Cryptococcus neoformans, a human pathogen. Unlike most other yeast species, kinetochores remain unclustered during interphase but gradually cluster during mitosis in C. neoformans. We report that the LINC complex is required for timely onset of kinetochore clustering and high-fidelity chromosome segregation in C. neoformans. Thus, our study identifies a novel factor required for kinetochore clustering during mitosis in yeast species.
Collapse
|
21
|
Ahmed EA, Rosemann M, Scherthan H. NHEJ Contributes to the Fast Repair of Radiation-induced DNA Double-strand Breaks at Late Prophase I Telomeres. HEALTH PHYSICS 2018; 115:102-107. [PMID: 29787435 DOI: 10.1097/hp.0000000000000852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Exposure of cells to ionizing radiation induces DNA double-strand breaks. To repair double-strand breaks correctly, cells must distinguish between the ends of chromosomes (telomeres) and DNA double-strand breaks within chromosomes. Double-strand breaks in telomeric DNA may lead to telomere shortening and mutagenesis. Eukaryotic cells repair double-strand breaks primarily by two mechanisms: error-free homologous recombination and error-prone nonhomologous end joining, of which homologous recombination is used in early meiotic prophase I to create recombined haploid gametes by two meiotic cell divisions lacking an intervening S-phase. Genotoxic exposures put meiosis at risk to transmit mutations, and ionizing radiation is known to induce large double-strand break-marking phospho (gamma)-H2AX foci along the cores and ends of mouse meiotic chromosomes. However, it remained unclear through which repair pathway the ionizing radiation-induced telomeric double-strand breaks are repaired in late prophase I spermatocytes. Using male wild-type and nonhomologous end joining-deficient (severe combined immunodeficient) mice, this study investigated the kinetics of in vivo double-strand break formation and repair at telomeres of late prophase I chromosomes up to 12 h after 0.5 Gy of whole-body gamma irradiation. Late pachytene and diplotene spermatocytes revealed overlapping gamma-H2AX and telomere repeat signal foci, indicating telomeric DNA damage. The comparison of double-strand break repair rates at telomeres and internal prophase chromosome sites revealed a more rapid double-strand break repair at wild-type telomeres during the first hour after irradiation. Increased double-strand break foci numbers at nonhomologous end joining-deficient telomeres and chromosomes and a slowed repair rate in this DNA-dependent protein kinase catalytic subunit mutant suggest that the fast repair of double-strand breaks in telomeric DNA repeats during late prophase I is largely mediated by canonical nonhomologous end joining.
Collapse
Affiliation(s)
- Emad A Ahmed
- Lab of Immunology and Molecular Physiology, Zoology Department, Assiut University, 71515 Assiut, Egypt
- Bundeswehr Institute of Radiobiology, affiliated to the University of Ulm, Neuherbergstr. 11, 80937 Munich, Germany
| | - Michael Rosemann
- Institute of Radiation Biology, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Harry Scherthan
- Bundeswehr Institute of Radiobiology, affiliated to the University of Ulm, Neuherbergstr. 11, 80937 Munich, Germany
| |
Collapse
|
22
|
Tardat M, Déjardin J. Telomere chromatin establishment and its maintenance during mammalian development. Chromosoma 2017; 127:3-18. [PMID: 29250704 PMCID: PMC5818603 DOI: 10.1007/s00412-017-0656-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022]
Abstract
Telomeres are specialized structures that evolved to protect the end of linear chromosomes from the action of the cell DNA damage machinery. They are composed of tandem arrays of repeated DNA sequences with a specific heterochromatic organization. The length of telomeric repeats is dynamically regulated and can be affected by changes in the telomere chromatin structure. When telomeres are not properly controlled, the resulting chromosomal alterations can induce genomic instability and ultimately the development of human diseases, such as cancer. Therefore, proper establishment, regulation, and maintenance of the telomere chromatin structure are required for cell homeostasis. Here, we review the current knowledge on telomeric chromatin dynamics during cell division and early development in mammals, and how its proper regulation safeguards genome stability.
Collapse
Affiliation(s)
- Mathieu Tardat
- Institute of Human Genetics, CNRS UMR 9002, 141 rue de la Cardonille, 34396, Montpellier, France.
| | - Jérôme Déjardin
- Institute of Human Genetics, CNRS UMR 9002, 141 rue de la Cardonille, 34396, Montpellier, France.
| |
Collapse
|
23
|
Zhang J, Tu Z, Watanabe Y, Shibuya H. Distinct TERB1 Domains Regulate Different Protein Interactions in Meiotic Telomere Movement. Cell Rep 2017; 21:1715-1726. [PMID: 29141207 DOI: 10.1016/j.celrep.2017.10.061] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/07/2017] [Accepted: 10/16/2017] [Indexed: 11/18/2022] Open
Abstract
Meiotic telomeres attach to the nuclear envelope (NE) and drive the chromosome movement required for the pairing of homologous chromosomes. The meiosis-specific telomere proteins TERB1, TERB2, and MAJIN are required to regulate these events, but their assembly processes are largely unknown. Here, we developed a germ-cell-specific knockout mouse of the canonical telomere-binding protein TRF1 and revealed an essential role for TRF1 in directing the assembly of TERB1-TERB2-MAJIN. Further, we identified a TERB2 binding (T2B) domain in TERB1 that is dispensable for the TRF1-TERB1 interaction but is essential for the subsequent TERB1-TERB2 interaction and therefore for telomere attachment to the NE. Meanwhile, cohesin recruitment at telomeres, which is required for efficient telomere movement, is mediated by the MYB-like domain of TERB1, but not by TERB2-MAJIN. Our results reveal distinct protein interactions through various domains of TERB1, which enable the sequential assembly of the meiotic telomere complex for their movements.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Zhaowei Tu
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Yoshinori Watanabe
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Tokyo 113-0032, Japan
| | - Hiroki Shibuya
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden.
| |
Collapse
|
24
|
The telomere bouquet facilitates meiotic prophase progression and exit in fission yeast. Cell Discov 2017; 3:17041. [PMID: 29123917 PMCID: PMC5674143 DOI: 10.1038/celldisc.2017.41] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 09/28/2017] [Indexed: 12/03/2022] Open
Abstract
During meiotic prophase, chromosome arrangement and oscillation promote the pairing of homologous chromosomes for meiotic recombination. This dramatic movement involves clustering of telomeres at the nuclear membrane to form the so-called telomere bouquet. In fission yeast, the telomere bouquet is formed near the spindle pole body (SPB), which is the microtubule organising centre, functionally equivalent to the metazoan centrosome. Disruption of bouquet configuration impedes homologous chromosome pairing, meiotic recombination and spindle formation. Here, we demonstrate that the bouquet is maintained throughout meiotic prophase and promotes timely prophase exit in fission yeast. Persistent DNA damages, induced during meiotic recombination, activate the Rad3 and Chk1 DNA damage checkpoint kinases and extend the bouquet stage beyond the chromosome oscillation period. The auxin-inducible degron system demonstrated that premature termination of the bouquet stage leads to severe extension of prophase and consequently spindle formation defects. However, this delayed exit from meiotic prophase was not caused by residual DNA damage. Rather, loss of chromosome contact with the SPB caused delayed accumulation of CDK1-cyclin B at the SPB, which correlated with impaired SPB separation. In the absence of the bouquet, CDK1-cyclin B localised near the telomeres but not at the SPB at the later stage of meiotic prophase. Thus, bouquet configuration is maintained throughout meiotic prophase, by which this spatial organisation may facilitate local and timely activation of CDK1 near the SPB. Our findings illustrate that chromosome contact with the nuclear membrane synchronises meiotic progression of the nucleoplasmic chromosomes with that of the cytoplasmic SPB.
Collapse
|
25
|
Dissecting the telomere-inner nuclear membrane interface formed in meiosis. Nat Struct Mol Biol 2017; 24:1064-1072. [PMID: 29083414 PMCID: PMC5755706 DOI: 10.1038/nsmb.3493] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/22/2017] [Indexed: 12/12/2022]
Abstract
Tethering telomeres to the inner nuclear membrane (INM) allows for homologous chromosome pairing during meiosis. A meiosis-specific protein TERB1 binds the telomeric protein TRF1 to establish telomere-INM connectivity and is essential for mouse fertility. Here we solve the structure of the human TRF1-TERB1 interface to reveal the structural basis for telomere-INM linkage. Disruption of this interface abrogates binding and compromises telomere-INM attachment in mice. An embedded CDK-phosphorylation site within the TRF1-binding region of TERB1 provides a mechanism for cap exchange, a late-pachytene phenomenon involving the dissociation of the TRF1-TERB1 complex. Indeed, further strengthening this interaction interferes with cap exchange. Finally, our biochemical analysis implicates distinct complexes for telomere-INM tethering and chromosome end protection during meiosis. Our studies unravel the structure, stoichiometry, and physiological implications underlying telomere-INM tethering, thereby providing unprecedented insights into the unique function of telomeres in meiosis.
Collapse
|
26
|
Capalbo A, Hoffmann ER, Cimadomo D, Maria Ubaldi F, Rienzi L. Human female meiosis revised: new insights into the mechanisms of chromosome segregation and aneuploidies from advanced genomics and time-lapse imaging. Hum Reprod Update 2017; 23:706-722. [DOI: 10.1093/humupd/dmx026] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 08/11/2017] [Indexed: 12/14/2022] Open
|
27
|
Matsuda A, Asakawa H, Haraguchi T, Hiraoka Y. Spatial organization of the Schizosaccharomyces pombe genome within the nucleus. Yeast 2016; 34:55-66. [PMID: 27766670 DOI: 10.1002/yea.3217] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/06/2016] [Accepted: 10/13/2016] [Indexed: 12/14/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe is a useful experimental system for studying the organization of chromosomes within the cell nucleus. S. pombe has a small genome that is organized into three chromosomes. The small size of the genome and the small number of chromosomes are advantageous for cytological and genome-wide studies of chromosomes; however, the small size of the nucleus impedes microscopic observations owing to limits in spatial resolution during imaging. Recent advances in microscopy, such as super-resolution microscopy, have greatly expanded the use of S. pombe as a model organism in a wide range of studies. In addition, biochemical studies, such as chromatin immunoprecipitation and chromosome conformation capture, have provided complementary approaches. Here, we review the spatial organization of the S. pombe genome as determined by a combination of cytological and biochemical studies. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Atsushi Matsuda
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| | - Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| |
Collapse
|
28
|
Abstract
Comparisons among a variety of eukaryotes have revealed considerable variability in the structures and processes involved in their meiosis. Nevertheless, conventional forms of meiosis occur in all major groups of eukaryotes, including early-branching protists. This finding confirms that meiosis originated in the common ancestor of all eukaryotes and suggests that primordial meiosis may have had many characteristics in common with conventional extant meiosis. However, it is possible that the synaptonemal complex and the delicate crossover control related to its presence were later acquisitions. Later still, modifications to meiotic processes occurred within different groups of eukaryotes. Better knowledge on the spectrum of derived and uncommon forms of meiosis will improve our understanding of many still mysterious aspects of the meiotic process and help to explain the evolutionary basis of functional adaptations to the meiotic program.
Collapse
Affiliation(s)
- Josef Loidl
- Department of Chromosome Biology and Vienna Biocenter, University of Vienna, A-1030 Vienna, Austria;
| |
Collapse
|
29
|
Ward A, Hopkins J, Mckay M, Murray S, Jordan PW. Genetic Interactions Between the Meiosis-Specific Cohesin Components, STAG3, REC8, and RAD21L. G3 (BETHESDA, MD.) 2016; 6:1713-24. [PMID: 27172213 PMCID: PMC4889667 DOI: 10.1534/g3.116.029462] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/05/2016] [Indexed: 11/21/2022]
Abstract
Cohesin is an essential structural component of chromosomes that ensures accurate chromosome segregation during mitosis and meiosis. Previous studies have shown that there are cohesin complexes specific to meiosis, required to mediate homologous chromosome pairing, synapsis, recombination, and segregation. Meiosis-specific cohesin complexes consist of two structural maintenance of chromosomes proteins (SMC1α/SMC1β and SMC3), an α-kleisin protein (RAD21, RAD21L, or REC8), and a stromal antigen protein (STAG1, 2, or 3). STAG3 is exclusively expressed during meiosis, and is the predominant STAG protein component of cohesin complexes in primary spermatocytes from mouse, interacting directly with each α-kleisin subunit. REC8 and RAD21L are also meiosis-specific cohesin components. Stag3 mutant spermatocytes arrest in early prophase ("zygotene-like" stage), displaying failed homolog synapsis and persistent DNA damage, as a result of unstable loading of cohesin onto the chromosome axes. Interestingly, Rec8, Rad21L double mutants resulted in an earlier "leptotene-like" arrest, accompanied by complete absence of STAG3 loading. To assess genetic interactions between STAG3 and α-kleisin subunits RAD21L and REC8, our lab generated Stag3, Rad21L, and Stag3, Rec8 double knockout mice, and compared them to the Rec8, Rad21L double mutant. These double mutants are phenotypically distinct from one another, and more severe than each single knockout mutant with regards to chromosome axis formation, cohesin loading, and sister chromatid cohesion. The Stag3, Rad21L, and Stag3, Rec8 double mutants both progress further into prophase I than the Rec8, Rad21L double mutant. Our genetic analysis demonstrates that cohesins containing STAG3 and REC8 are the main complex required for centromeric cohesion, and RAD21L cohesins are required for normal clustering of pericentromeric heterochromatin. Furthermore, the STAG3/REC8 and STAG3/RAD21L cohesins are the primary cohesins required for axis formation.
Collapse
Affiliation(s)
- Ayobami Ward
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Jessica Hopkins
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | | | | | - Philip W Jordan
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| |
Collapse
|
30
|
Lottersberger F, Karssemeijer RA, Dimitrova N, de Lange T. 53BP1 and the LINC Complex Promote Microtubule-Dependent DSB Mobility and DNA Repair. Cell 2016; 163:880-93. [PMID: 26544937 DOI: 10.1016/j.cell.2015.09.057] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/14/2015] [Accepted: 09/28/2015] [Indexed: 01/13/2023]
Abstract
Increased mobility of chromatin surrounding double-strand breaks (DSBs) has been noted in yeast and mammalian cells but the underlying mechanism and its contribution to DSB repair remain unclear. Here, we use a telomere-based system to track DNA damage foci with high resolution in living cells. We find that the greater mobility of damaged chromatin requires 53BP1, SUN1/2 in the linker of the nucleoskeleton, and cytoskeleton (LINC) complex and dynamic microtubules. The data further demonstrate that the excursions promote non-homologous end joining of dysfunctional telomeres and implicated Nesprin-4 and kinesins in telomere fusion. 53BP1/LINC/microtubule-dependent mobility is also evident at irradiation-induced DSBs and contributes to the mis-rejoining of drug-induced DSBs in BRCA1-deficient cells showing that DSB mobility can be detrimental in cells with numerous DSBs. In contrast, under physiological conditions where cells have only one or a few lesions, DSB mobility is proposed to prevent errors in DNA repair.
Collapse
Affiliation(s)
- Francisca Lottersberger
- Laboratory for Cell Biology and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Roos Anna Karssemeijer
- Laboratory for Cell Biology and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Nadya Dimitrova
- Laboratory for Cell Biology and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
31
|
Abby E, Tourpin S, Ribeiro J, Daniel K, Messiaen S, Moison D, Guerquin J, Gaillard JC, Armengaud J, Langa F, Toth A, Martini E, Livera G. Implementation of meiosis prophase I programme requires a conserved retinoid-independent stabilizer of meiotic transcripts. Nat Commun 2016; 7:10324. [PMID: 26742488 PMCID: PMC4729902 DOI: 10.1038/ncomms10324] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 11/27/2015] [Indexed: 12/28/2022] Open
Abstract
Sexual reproduction is crucially dependent on meiosis, a conserved, specialized cell division programme that is essential for the production of haploid gametes. Here we demonstrate that fertility and the implementation of the meiotic programme require a previously uncharacterized meiosis-specific protein, MEIOC. Meioc invalidation in mice induces early and pleiotropic meiotic defects in males and females. MEIOC prevents meiotic transcript degradation and interacts with an RNA helicase that binds numerous meiotic mRNAs. Our results indicate that proper engagement into meiosis necessitates the specific stabilization of meiotic transcripts, a previously little-appreciated feature in mammals. Remarkably, the upregulation of MEIOC at the onset of meiosis does not require retinoic acid and STRA8 signalling. Thus, we propose that the complete induction of the meiotic programme requires both retinoic acid-dependent and -independent mechanisms. The latter process involving post-transcriptional regulation likely represents an ancestral mechanism, given that MEIOC homologues are conserved throughout multicellular animals. Meiosis is a cell division program that produces haploid gametes and is initiated by a retinoic acid-dependent process. Here the authors report that a meiosis-specific protein, MEIOC, is upregulated in a retinoic acid-independent manner and is required to stabilise meiosis-specific transcripts.
Collapse
Affiliation(s)
- Emilie Abby
- Université Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, UMR-967, BP 6, Fontenay-aux-Roses 92265, France.,CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses 92265, France.,INSERM, Unité 967, Fontenay-aux-Roses F-92265, France.,Université Paris-Sud, UMR-967, Fontenay-aux-Roses F-92265, France
| | - Sophie Tourpin
- Université Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, UMR-967, BP 6, Fontenay-aux-Roses 92265, France.,CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses 92265, France.,INSERM, Unité 967, Fontenay-aux-Roses F-92265, France.,Université Paris-Sud, UMR-967, Fontenay-aux-Roses F-92265, France
| | - Jonathan Ribeiro
- Université Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, UMR-967, BP 6, Fontenay-aux-Roses 92265, France.,CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses 92265, France.,INSERM, Unité 967, Fontenay-aux-Roses F-92265, France.,Université Paris-Sud, UMR-967, Fontenay-aux-Roses F-92265, France
| | - Katrin Daniel
- Molecular Cell Biology Group/Experimental Center, Institute of Physiological Chemistry, Medical School, MTZ, Dresden University of Technology, Fiedlerstrasse 42, Dresden 01307, Germany
| | - Sébastien Messiaen
- Université Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, UMR-967, BP 6, Fontenay-aux-Roses 92265, France.,CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses 92265, France.,INSERM, Unité 967, Fontenay-aux-Roses F-92265, France.,Université Paris-Sud, UMR-967, Fontenay-aux-Roses F-92265, France
| | - Delphine Moison
- Université Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, UMR-967, BP 6, Fontenay-aux-Roses 92265, France.,CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses 92265, France.,INSERM, Unité 967, Fontenay-aux-Roses F-92265, France.,Université Paris-Sud, UMR-967, Fontenay-aux-Roses F-92265, France
| | - Justine Guerquin
- Université Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, UMR-967, BP 6, Fontenay-aux-Roses 92265, France.,CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses 92265, France.,INSERM, Unité 967, Fontenay-aux-Roses F-92265, France.,Université Paris-Sud, UMR-967, Fontenay-aux-Roses F-92265, France
| | - Jean-Charles Gaillard
- CEA, DSV/IBITEC-S/SPI/Li2D, Laboratory 'Innovative Technologies for Detection and Diagnostic', CEA-Marcoule, BP 17171, Bagnols-sur-Cèze F-30200, France
| | - Jean Armengaud
- CEA, DSV/IBITEC-S/SPI/Li2D, Laboratory 'Innovative Technologies for Detection and Diagnostic', CEA-Marcoule, BP 17171, Bagnols-sur-Cèze F-30200, France
| | - Francina Langa
- Centre d'Ingénierie Génétique Murine, Institut Pasteur, Paris 75015, France
| | - Attila Toth
- Molecular Cell Biology Group/Experimental Center, Institute of Physiological Chemistry, Medical School, MTZ, Dresden University of Technology, Fiedlerstrasse 42, Dresden 01307, Germany
| | - Emmanuelle Martini
- Université Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, UMR-967, BP 6, Fontenay-aux-Roses 92265, France.,CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses 92265, France.,INSERM, Unité 967, Fontenay-aux-Roses F-92265, France.,Université Paris-Sud, UMR-967, Fontenay-aux-Roses F-92265, France
| | - Gabriel Livera
- Université Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, UMR-967, BP 6, Fontenay-aux-Roses 92265, France.,CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses 92265, France.,INSERM, Unité 967, Fontenay-aux-Roses F-92265, France.,Université Paris-Sud, UMR-967, Fontenay-aux-Roses F-92265, France
| |
Collapse
|
32
|
E-type cyclins modulate telomere integrity in mammalian male meiosis. Chromosoma 2015; 125:253-64. [PMID: 26712234 DOI: 10.1007/s00412-015-0564-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 01/20/2023]
Abstract
We have shown that E-type cyclins are key regulators of mammalian male meiosis. Depletion of cyclin E2 reduced fertility in male mice due to meiotic defects, involving abnormal pairing and synapsis, unrepaired DNA, and loss of telomere structure. These defects were exacerbated by additional loss of cyclin E1, and complete absence of both E-type cyclins produces a meiotic catastrophe. Here, we investigated the involvement of E-type cyclins in maintaining telomere integrity in male meiosis. Spermatocytes lacking cyclin E2 and one E1 allele (E1+/-E2-/-) displayed a high rate of telomere abnormalities but can progress to pachytene and diplotene stages. We show that their telomeres exhibited an aberrant DNA damage repair response during pachynema and that the shelterin complex proteins TRF2 and RAP2 were significantly decreased in the proximal telomeres. Moreover, the insufficient level of these proteins correlated with an increase of γ-H2AX foci in the affected telomeres and resulted in telomere associations involving TRF1 and telomere detachment in later prophase-I stages. These results suggest that E-type cyclins are key modulators of telomere integrity during meiosis by, at least in part, maintaining the balance of shelterin complex proteins, and uncover a novel role of E-type cyclins in regulating chromosome structure during male meiosis.
Collapse
|
33
|
Shibuya H, Hernández-Hernández A, Morimoto A, Negishi L, Höög C, Watanabe Y. MAJIN Links Telomeric DNA to the Nuclear Membrane by Exchanging Telomere Cap. Cell 2015; 163:1252-1266. [PMID: 26548954 DOI: 10.1016/j.cell.2015.10.030] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/16/2015] [Accepted: 09/24/2015] [Indexed: 12/11/2022]
Abstract
In meiosis, telomeres attach to the inner nuclear membrane (INM) and drive the chromosome movement required for homolog pairing and recombination. Here, we address the question of how telomeres are structurally adapted for the meiotic task. We identify a multi-subunit meiotic telomere-complex, TERB1/2-MAJIN, which takes over telomeric DNA from the shelterin complex in mouse germ cells. TERB1/2-MAJIN initially assembles on the INM sequestered by its putative transmembrane subunit MAJIN. In early meiosis, telomere attachment is achieved by the formation of a chimeric complex of TERB1/2-MAJIN and shelterin. The chimeric complex matures during prophase into DNA-bound TERB1/2-MAJIN by releasing shelterin, forming a direct link between telomeric DNA and the INM. These hierarchical processes, termed "telomere cap exchange," are regulated by CDK-dependent phosphorylation and the DNA-binding activity of MAJIN. Further, we uncover a positive feedback between telomere attachment and chromosome movement, revealing a comprehensive regulatory network underlying meiosis-specific telomere function in mammals.
Collapse
Affiliation(s)
- Hiroki Shibuya
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1Yayoi, Tokyo 113-0032, Japan
| | | | - Akihiro Morimoto
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1Yayoi, Tokyo 113-0032, Japan
| | - Lumi Negishi
- Laboratory of Protein Expression and Production, Center for Structural Biology of Challenging Proteins, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Tokyo 113-0032, Japan
| | - Christer Höög
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm 171 77, Sweden
| | - Yoshinori Watanabe
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1Yayoi, Tokyo 113-0032, Japan.
| |
Collapse
|
34
|
Telomere homeostasis in mammalian germ cells: a review. Chromosoma 2015; 125:337-51. [DOI: 10.1007/s00412-015-0555-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 02/03/2023]
|
35
|
Lee CY, Horn HF, Stewart CL, Burke B, Bolcun-Filas E, Schimenti JC, Dresser ME, Pezza RJ. Mechanism and regulation of rapid telomere prophase movements in mouse meiotic chromosomes. Cell Rep 2015; 11:551-63. [PMID: 25892231 DOI: 10.1016/j.celrep.2015.03.045] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 02/21/2015] [Accepted: 03/23/2015] [Indexed: 01/08/2023] Open
Abstract
Telomere-led rapid prophase movements (RPMs) in meiotic prophase have been observed in diverse eukaryote species. A shared feature of RPMs is that the force that drives the chromosomal movements is transmitted from the cytoskeleton, through the nuclear envelope, to the telomeres. Studies in mice suggested that dynein movement along microtubules is transmitted to telomeres through SUN1/KASH5 nuclear envelope bridges to generate RPMs. We monitored RPMs in mouse seminiferous tubules using 4D fluorescence imaging and quantitative motion analysis to characterize patterns of movement in the RPM process. We find that RPMs reflect a combination of nuclear rotation and individual chromosome movements. The telomeres move along microtubule tracks that are apparently continuous with the cytoskeletal network and exhibit characteristic arrangements at different stages of prophase. Quantitative measurements confirmed that SUN1/KASH5, microtubules, and dynein, but not actin, were necessary for RPMs and that defects in meiotic recombination and synapsis resulted in altered RPMs.
Collapse
Affiliation(s)
- Chih-Ying Lee
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Henning F Horn
- Laboratory of Developmental and Regenerative Biology, Institute of Medical Biology, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Colin L Stewart
- Laboratory of Developmental and Regenerative Biology, Institute of Medical Biology, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Brian Burke
- Laborotory of Nuclear Dynamics and Architecture, Institute of Medical Biology, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | | | - John C Schimenti
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Michael E Dresser
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Roberto J Pezza
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
36
|
Gay S, Foiani M. Nuclear envelope and chromatin, lock and key of genome integrity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:267-330. [PMID: 26008788 DOI: 10.1016/bs.ircmb.2015.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
More than as an inert separation between the inside and outside of the nucleus, the nuclear envelope (NE) constitutes an active toll, which controls the import and export of molecules, and also a hub for a diversity of genomic processes, such as transcription, DNA repair, and chromatin dynamics. Proteins localized at the inner surface of the NE (such as lamins, nuclear pore proteins, lamin-associated proteins) interact with chromatin in a dynamic manner, contributing to the establishment of topological domains. In this review, we address the complex interplay between chromatin and NE. We discuss the divergence of this cross talk during evolution and comment both on the current established models and the most recent findings. In particular, we focus our attention on how the NE cooperates with chromatin in protecting the genome integrity.
Collapse
Affiliation(s)
- Sophie Gay
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Marco Foiani
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy; Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
37
|
Chang W, Worman HJ, Gundersen GG. Accessorizing and anchoring the LINC complex for multifunctionality. ACTA ACUST UNITED AC 2015; 208:11-22. [PMID: 25559183 PMCID: PMC4284225 DOI: 10.1083/jcb.201409047] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex, composed of outer and inner nuclear membrane Klarsicht, ANC-1, and Syne homology (KASH) and Sad1 and UNC-84 (SUN) proteins, respectively, connects the nucleus to cytoskeletal filaments and performs diverse functions including nuclear positioning, mechanotransduction, and meiotic chromosome movements. Recent studies have shed light on the source of this diversity by identifying factors associated with the complex that endow specific functions as well as those that differentially anchor the complex within the nucleus. Additional diversity may be provided by accessory factors that reorganize the complex into higher-ordered arrays. As core components of the LINC complex are associated with several diseases, understanding the role of accessory and anchoring proteins could provide insights into pathogenic mechanisms.
Collapse
Affiliation(s)
- Wakam Chang
- Department of Pathology and Cell Biology and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Howard J Worman
- Department of Pathology and Cell Biology and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032 Department of Pathology and Cell Biology and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
38
|
The dissection of meiotic chromosome movement in mice using an in vivo electroporation technique. PLoS Genet 2014; 10:e1004821. [PMID: 25502938 PMCID: PMC4263375 DOI: 10.1371/journal.pgen.1004821] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/14/2014] [Indexed: 12/31/2022] Open
Abstract
During meiosis, the rapid movement of telomeres along the nuclear envelope (NE) facilitates pairing/synapsis of homologous chromosomes. In mammals, the mechanical properties of chromosome movement and the cytoskeletal structures responsible for it remain poorly understood. Here, applying an in vivo electroporation (EP) technique in live mouse testis, we achieved the quick visualization of telomere, chromosome axis and microtubule organizing center (MTOC) movements. For the first time, we defined prophase sub-stages of live spermatocytes morphologically according to GFP-TRF1 and GFP-SCP3 signals. We show that rapid telomere movement and subsequent nuclear rotation persist from leptotene/zygotene to pachytene, and then decline in diplotene stage concomitant with the liberation of SUN1 from telomeres. Further, during bouquet stage, telomeres are constrained near the MTOC, resulting in the transient suppression of telomere mobility and nuclear rotation. MTs are responsible for these movements by forming cable-like structures on the NE, and, probably, by facilitating the rail-tacking movements of telomeres on the MT cables. In contrast, actin regulates the oscillatory changes in nuclear shape. Our data provide the mechanical scheme for meiotic chromosome movement throughout prophase I in mammals. Meiosis is a special type of cell division for gametogenesis, errors in which cause several genetic disorders such as infertility and Down syndrome. In meiotic prophase I, chromosomes are tethered to the nuclear envelope (NE) through telomeres, and move rapidly along the NE to get homologs aligned and juxtaposed. Following homologous recombination and synapsis, the bivalent chromosome structure is established, which promotes genetic varieties, and also ensures accurate chromosome segregation in following anaphase I. Although there have been extensive studies addressing meiotic chromosome dynamics in yeast and worms, the same in mammalian meiosis remains largely elusive. Here, we utilized an in vivo electroporation (EP) technique to visualize chromosome movement in live mouse spermatocytes. We, for the first time, define the meiotic sub-stages in live cells based on telomeres and chromosome axis morphologies, and reveal chromosome movements regulated in a stage-specific manner. Putting the live-observations together with our cytological observations in fixed cells, we propose that meiotic chromosome movements in mammals are mediated by the rail-tracking movement of telomeres along the MT cables surrounding the meiotic nucleus.
Collapse
|