1
|
Mikutis S, Bernardes GJL. Technologies for Targeted RNA Degradation and Induced RNA Decay. Chem Rev 2024; 124:13301-13330. [PMID: 39499674 PMCID: PMC11638902 DOI: 10.1021/acs.chemrev.4c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/03/2024] [Accepted: 10/29/2024] [Indexed: 11/07/2024]
Abstract
The vast majority of the human genome codes for RNA, but RNA-targeting therapeutics account for a small fraction of approved drugs. As such, there is great incentive to improve old and develop new approaches to RNA targeting. For many RNA targeting modalities, just binding is not sufficient to exert a therapeutic effect; thus, targeted RNA degradation and induced decay emerged as powerful approaches with a pronounced biological effect. This review covers the origins and advanced use cases of targeted RNA degrader technologies grouped by the nature of the targeting modality as well as by the mode of degradation. It covers both well-established methods and clinically successful platforms such as RNA interference, as well as emerging approaches such as recruitment of RNA quality control machinery, CRISPR, and direct targeted RNA degradation. We also share our thoughts on the biggest hurdles in this field, as well as possible ways to overcome them.
Collapse
Affiliation(s)
- Sigitas Mikutis
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Gonçalo J. L. Bernardes
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
2
|
Leckie J, Zia A, Yokota T. An Updated Analysis of Exon-Skipping Applicability for Duchenne Muscular Dystrophy Using the UMD-DMD Database. Genes (Basel) 2024; 15:1489. [PMID: 39596689 PMCID: PMC11593839 DOI: 10.3390/genes15111489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Antisense oligonucleotide (ASO)-mediated exon-skipping is an effective approach to restore the disrupted reading frame of the dystrophin gene for the treatment of Duchenne muscular dystrophy (DMD). Currently, four FDA-approved ASOs can target three different exons, but these therapies are mutation-specific and only benefit a subset of patients. Understanding the broad applicability of exon-skipping approaches is essential for prioritizing the development of additional therapies with the greatest potential impact on the DMD population. This review offers an updated analysis of all theoretical exon-skipping strategies and their applicability across the patient population, with a specific focus on DMD-associated mutations documented in the UMD-DMD database. Unlike previous studies, this approach leverages the inclusion of phenotypic data for each mutation, providing a more comprehensive and clinically relevant perspective. METHODS The theoretical applicability of all single and double exon-skipping strategies, along with multi exon-skipping strategies targeting exons 3-9 and 45-55, was evaluated for all DMD mutations reported in the UMD-DMD database. RESULTS Single and double exon-skipping approaches were applicable for 92.8% of large deletions, 93.7% of small lesions, 72.4% of duplications, and 90.3% of all mutations analyzed. Exon 51 was the most relevant target and was applicable for 10.6% of all mutations and 17.2% of large deletions. Additionally, two multi-exon-skipping approaches, targeting exons 45-55 and 3-9, were relevant for 70.6% of large deletions and 19.2% of small lesions. CONCLUSIONS Current FDA-approved ASOs were applicable to 27% of the UMD-DMD population analyzed, leaving a significant portion of patients without access to exon-skipping therapies. The clinical translation of alternative approaches is critical to expanding the accessibility of these therapies for the DMD population.
Collapse
Affiliation(s)
- Jamie Leckie
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada (A.Z.)
| | - Abdullah Zia
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada (A.Z.)
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada (A.Z.)
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Sciences Research, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
3
|
Pallan PS, Lybrand TP, Rozners E, Abramov M, Schepers G, Eremeeva E, Herdewijn P, Egli M. Conformational Morphing by a DNA Analogue Featuring 7-Deazapurines and 5-Halogenpyrimidines and the Origins of Adenine-Tract Geometry. Biochemistry 2023; 62:2854-2867. [PMID: 37694722 PMCID: PMC11062489 DOI: 10.1021/acs.biochem.3c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Several efforts are currently directed at the creation and cellular implementation of alternative genetic systems composed of pairing components that are orthogonal to the natural dA/dT and dG/dC base pairs. In an alternative approach, Watson-Crick-type pairing is conserved, but one or all of the four letters of the A, C, G, and T alphabet are substituted by modified components. Thus, all four nucleobases were altered to create halogenated deazanucleic acid (DZA): dA was replaced by 7-deaza-2'-deoxyadenosine (dzA), dG by 7-deaza-2'-deoxyguanosine (dzG), dC by 5-fluoro-2'-deoxycytidine (FdC), and dT by 5-chloro-2'-deoxyuridine (CldU). This base-pairing system was previously shown to retain function in Escherichia coli. Here, we analyze the stability, hydration, structure, and dynamics of a DZA Dickerson-Drew Dodecamer (DDD) of sequence 5'-FdC-dzG-FdC-dzG-dzA-dzA-CldU-CldU-FdC-dzG-FdC-dzG-3'. Contrary to similar stabilities of DDD and DZA-DDD, osmotic stressing revealed a dramatic loss of hydration for the DZA-DDD relative to that for the DDD. The parent DDD 5'-d(CGCGAATTCGCG)-3' features an A-tract, a run of adenosines uninterrupted by a TpA step, and exhibits a hallmark narrow minor groove. Crystal structures─in the presence of RNase H─and MD simulations show increased conformational plasticity ("morphing") of DZA-DDD relative to that of the DDD. The narrow dzA-tract minor groove in one structure widens to resemble that in canonical B-DNA in a second structure. These changes reflect an indirect consequence of altered DZA major groove electrostatics (less negatively polarized compared to that in DNA) and hydration (reduced compared to that in DNA). Therefore, chemical modifications outside the minor groove that lead to collapse of major groove electrostatics and hydration can modulate A-tract geometry.
Collapse
Affiliation(s)
- Pradeep S Pallan
- School of Medicine, Department of Biochemistry, and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Terry P Lybrand
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Mikhail Abramov
- Laboratory of Medicinal Chemistry, KU Leuven, Rega Institute for Medical Research, Minderbroedersstraat 10, Leuven 3000, Belgium
| | - Guy Schepers
- Laboratory of Medicinal Chemistry, KU Leuven, Rega Institute for Medical Research, Minderbroedersstraat 10, Leuven 3000, Belgium
| | - Elena Eremeeva
- Laboratory of Medicinal Chemistry, KU Leuven, Rega Institute for Medical Research, Minderbroedersstraat 10, Leuven 3000, Belgium
| | - Piet Herdewijn
- Laboratory of Medicinal Chemistry, KU Leuven, Rega Institute for Medical Research, Minderbroedersstraat 10, Leuven 3000, Belgium
| | - Martin Egli
- School of Medicine, Department of Biochemistry, and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
4
|
Kellum AH, Pallan PS, Nilforoushan A, Sturla SJ, Stone MP, Egli M. Conformation and Pairing Properties of an O6-Methyl-2'-deoxyguanosine-Directed Benzimidazole Nucleoside Analog in Duplex DNA. Chem Res Toxicol 2022; 35:1903-1913. [PMID: 35973057 PMCID: PMC9988402 DOI: 10.1021/acs.chemrestox.2c00165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
O6-Methyl-2'-deoxyguanosine (O6-MeG) is one of the most common DNA lesions and arises as a consequence of both xenobiotic carcinogens and endogenous methylation by S-adenosylmethionine. O6-MeG frequently causes G-to-A mutations during DNA replication due to the misincorporation of dTTP and continued DNA synthesis. Efforts to detect DNA adducts such as O6-MeG, and to understand their impacts on DNA structure and function, have motivated the creation of nucleoside analogs with altered base moieties to afford a more favorable interaction with the adduct as compared to the unmodified nucleotide. Such analogs directed at O6-MeG include benzimidazolinone and benzimidazole nucleotides, as well as their extended π surface analogs naphthimidazolinone and napthimidazole derivatives. These analogs form a more stable pair with O6-MeG than with G, most likely due to a combination of H-bonding and stacking. While extending the π surface of the analogs enhances their performance as adduct-directed probes, the precise origins of the increased affinity between the synthetic analogs and O6-MeG remain unclear. To better understand relevant conformational and pairing properties, we used X-ray crystallography and analyzed the structures of the DNA duplexes with naphthimidazolinone inserted opposite G or O6-MeG. The structures reveal a complex interaction of the analog found either in an anti orientation and stacked inside the duplex, either above or below G or O6-MeG, or in a syn orientation and paired opposite G with formation of a single H-bond. The experimental structural data are consistent with the stabilizing effect of the synthetic analog observed in UV melting experiments and calculations and moreover reveal that the origin of these observations appears to be superior stacking between O6-MeG and the extended π system of the synthetic probe.
Collapse
Affiliation(s)
- Andrew H Kellum
- Department of Chemistry, Vanderbilt University, College of Arts and Science, Nashville, Tennessee 37235, United States
| | - Pradeep S Pallan
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States
| | - Arman Nilforoushan
- Department of Health Sciences and Technology, ETH Zürich, Zurich 8092, Switzerland
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zürich, Zurich 8092, Switzerland
| | - Michael P Stone
- Department of Chemistry, Vanderbilt University, College of Arts and Science, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States
| | - Martin Egli
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
5
|
Jones SP, Goossen C, Lewis SD, Delaney AM, Gleghorn ML. Not making the cut: Techniques to prevent RNA cleavage in structural studies of RNase-RNA complexes. J Struct Biol X 2022; 6:100066. [PMID: 35340590 PMCID: PMC8943300 DOI: 10.1016/j.yjsbx.2022.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
RNases are varied in the RNA structures and sequences they target for cleavage and are an important type of enzyme in cells. Despite the numerous examples of RNases known, and of those with determined three-dimensional structures, relatively few examples exist with the RNase bound to intact cognate RNA substrate prior to cleavage. To better understand RNase structure and sequence specificity for RNA targets, in vitro methods used to assemble these enzyme complexes trapped in a pre-cleaved state have been developed for a number of different RNases. We have surveyed the Protein Data Bank for such structures and in this review detail methodologies that have successfully been used and relate them to the corresponding structures. We also offer ideas and suggestions for future method development. Many strategies within this review can be used in combination with X-ray crystallography, as well as cryo-EM, and other structure-solving techniques. Our hope is that this review will be used as a guide to resolve future yet-to-be-determined RNase-substrate complex structures.
Collapse
Affiliation(s)
- Seth P. Jones
- School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, United States
| | - Christian Goossen
- School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, United States
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Lothrop St, Pittsburgh, PA 15261, United States
| | - Sean D. Lewis
- School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, United States
- Mayo Clinic, 200 1st St SW, Rochester, MN 5590, United States
| | - Annie M. Delaney
- School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, United States
| | - Michael L. Gleghorn
- School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, United States
| |
Collapse
|
6
|
Xiong H, Veedu RN, Diermeier SD. Recent Advances in Oligonucleotide Therapeutics in Oncology. Int J Mol Sci 2021; 22:3295. [PMID: 33804856 PMCID: PMC8036554 DOI: 10.3390/ijms22073295] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 02/08/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. Conventional therapies, including surgery, radiation, and chemotherapy have achieved increased survival rates for many types of cancer over the past decades. However, cancer recurrence and/or metastasis to distant organs remain major challenges, resulting in a large, unmet clinical need. Oligonucleotide therapeutics, which include antisense oligonucleotides, small interfering RNAs, and aptamers, show promising clinical outcomes for disease indications such as Duchenne muscular dystrophy, familial amyloid neuropathies, and macular degeneration. While no approved oligonucleotide drug currently exists for any type of cancer, results obtained in preclinical studies and clinical trials are encouraging. Here, we provide an overview of recent developments in the field of oligonucleotide therapeutics in oncology, review current clinical trials, and discuss associated challenges.
Collapse
Affiliation(s)
- Haoyu Xiong
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand;
| | - Rakesh N. Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia;
- Perron Institute for Neurological and Translational Science, Perth 6009, Australia
| | - Sarah D. Diermeier
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand;
| |
Collapse
|
7
|
de Vrieze E, Cañas Martín J, Peijnenborg J, Martens A, Oostrik J, van den Heuvel S, Neveling K, Pennings R, Kremer H, van Wijk E. AON-based degradation of c.151C>T mutant COCH transcripts associated with dominantly inherited hearing impairment DFNA9. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 24:274-283. [PMID: 33815940 PMCID: PMC7985667 DOI: 10.1016/j.omtn.2021.02.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/24/2021] [Indexed: 01/22/2023]
Abstract
The c.151C>T founder mutation in COCH is a frequent cause of late-onset, dominantly inherited hearing impairment and vestibular dysfunction (DFNA9) in the Dutch/Belgian population. The initial clinical symptoms only manifest between the 3rd and 5th decade of life, which leaves ample time for therapeutic intervention. The dominant inheritance pattern and established non-haploinsufficiency disease mechanism indicate that suppressing translation of mutant COCH transcripts has high therapeutic potential. Single-molecule real-time (SMRT) sequencing resulted in the identification of 11 variants with a low population frequency (<10%) that are specific to the c.151C>T mutant COCH allele. Proof of concept was obtained that gapmer antisense oligonucleotides (AONs), directed against the c.151C>T mutation or mutant allele-specific intronic variants, are able to induce mutant COCH transcript degradation when delivered to transgenic cells expressing COCH minigenes. The most potent AON, directed against the c.151C>T mutation, was able to induce a 60% decrease in mutant COCH transcripts without affecting wild-type COCH transcript levels. Allele specificity decreased when increasing concentrations of AON were delivered to the cells. With the proven safety of AONs in humans, and rapid advancements in inner ear drug delivery, our in vitro studies indicate that AONs offer a promising treatment modality for DFNA9.
Collapse
Affiliation(s)
- Erik de Vrieze
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Corresponding author: Erik de Vrieze, Department of Otorhinolaryngology, Radboud University Medical Center, P.O. Box 9101, 6525 GA Nijmegen (Route 855), the Netherlands.
| | - Jorge Cañas Martín
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Jolien Peijnenborg
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Aniek Martens
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Jaap Oostrik
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Simone van den Heuvel
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Kornelia Neveling
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Ronald Pennings
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Hannie Kremer
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Erwin van Wijk
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| |
Collapse
|
8
|
McKenzie LK, El-Khoury R, Thorpe JD, Damha MJ, Hollenstein M. Recent progress in non-native nucleic acid modifications. Chem Soc Rev 2021; 50:5126-5164. [DOI: 10.1039/d0cs01430c] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
While Nature harnesses RNA and DNA to store, read and write genetic information, the inherent programmability, synthetic accessibility and wide functionality of these nucleic acids make them attractive tools for use in a vast array of applications.
Collapse
Affiliation(s)
- Luke K. McKenzie
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| | | | | | | | - Marcel Hollenstein
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| |
Collapse
|
9
|
Generating Crystallographic Models of DNA Dodecamers from Structures of RNase H:DNA Complexes. Methods Mol Biol 2016; 1320:111-26. [PMID: 26227040 DOI: 10.1007/978-1-4939-2763-0_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The DNA dodecamer 5'-d(CGCGAATTCGCG)-3' is arguably the best studied oligonucleotide and crystal structures of duplexes with this sequence account for a considerable portion of the total number of oligo-2'-deoxynucleotide structures determined over the last 30 years. The dodecamer has commonly served as a template to analyze the effects of sequence on DNA conformation, the conformational properties of chemically modified nucleotides, DNA-ligand interactions as well as water structure and DNA-cation binding. Although molecular replacement is the phasing method of choice given the large number of available models of the dodecamer, this strategy often fails as a result of conformational changes caused by chemical modification, mismatch pairs, or differing packing modes. Here, we describe an alternative approach to determine crystal structures of the dodecamer in cases where molecular replacement does not produce a solution or when crystals of the DNA alone cannot be grown. It is based on the discovery that many dodecamers of the above sequence can be readily co-crystallized with Bacillus halodurans RNase H, whereby the enzyme is unable to cleave the DNA. Determination of the structure of the complex using the protein portion as the search model yields a structural model of the DNA. Provided crystals of the DNA alone are also available, the DNA model from the complex then enables phasing their structures by molecular replacement.
Collapse
|
10
|
Davis RR, Shaban NM, Perrino FW, Hollis T. Crystal structure of RNA-DNA duplex provides insight into conformational changes induced by RNase H binding. Cell Cycle 2015; 14:668-73. [PMID: 25664393 DOI: 10.4161/15384101.2014.994996] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
RNA-DNA hybrids play essential roles in a variety of biological processes, including DNA replication, transcription, and viral integration. Ribonucleotides incorporated within DNA are hydrolyzed by RNase H enzymes in a removal process that is necessary for maintaining genomic stability. In order to understand the structural determinants involved in recognition of a hybrid substrate by RNase H we have determined the crystal structure of a dodecameric non-polypurine/polypyrimidine tract RNA-DNA duplex. A comparison to the same sequence bound to RNase H, reveals structural changes to the duplex that include widening of the major groove to 12.5 Å from 4.2 Å and decreasing the degree of bending along the axis which may play a crucial role in the ribonucleotide recognition and cleavage mechanism within RNase H. This structure allows a direct comparison to be made about the conformational changes induced in RNA-DNA hybrids upon binding to RNase H and may provide insight into how dysfunction in the endonuclease causes disease.
Collapse
Affiliation(s)
- Ryan R Davis
- a Department of Biochemistry; Center for Structural Biology ; Wake Forest School of Medicine ; Winston-Salem , NC USA
| | | | | | | |
Collapse
|
11
|
Niemietz C, Chandhok G, Schmidt H. Therapeutic Oligonucleotides Targeting Liver Disease: TTR Amyloidosis. Molecules 2015; 20:17944-75. [PMID: 26437390 PMCID: PMC6332041 DOI: 10.3390/molecules201017944] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/23/2015] [Accepted: 09/23/2015] [Indexed: 12/13/2022] Open
Abstract
The liver has become an increasingly interesting target for oligonucleotide therapy. Mutations of the gene encoding transthyretin (TTR), expressed in vast amounts by the liver, result in a complex degenerative disease, termed familial amyloid polyneuropathy (FAP). Misfolded variants of TTR are linked to the establishment of extracellular protein deposition in various tissues, including the heart and the peripheral nervous system. Recent progress in the chemistry and formulation of antisense (ASO) and small interfering RNA (siRNA) designed for a knockdown of TTR mRNA in the liver has allowed to address the issue of gene-specific molecular therapy in a clinical setting of FAP. The two therapeutic oligonucleotides bind to RNA in a sequence specific manner but exploit different mechanisms. Here we describe major developments that have led to the advent of therapeutic oligonucleotides for treatment of TTR-related disease.
Collapse
MESH Headings
- Amyloid Neuropathies, Familial/genetics
- Amyloid Neuropathies, Familial/therapy
- Animals
- Clinical Studies as Topic
- Drug Evaluation, Preclinical
- Gene Silencing
- Genetic Therapy
- Humans
- Liver Diseases/genetics
- Liver Diseases/therapy
- Mutation
- Oligonucleotides/administration & dosage
- Oligonucleotides/chemistry
- Oligonucleotides/genetics
- Oligonucleotides/therapeutic use
- Oligonucleotides, Antisense/administration & dosage
- Oligonucleotides, Antisense/chemistry
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/therapeutic use
- Prealbumin/genetics
- RNA Interference
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/genetics
- RNA, Small Interfering/therapeutic use
- Treatment Outcome
Collapse
Affiliation(s)
- Christoph Niemietz
- Klinik für Transplantationsmedizin, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A14, D-48149 Münster, Germany.
| | - Gursimran Chandhok
- Klinik für Transplantationsmedizin, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A14, D-48149 Münster, Germany.
| | - Hartmut Schmidt
- Klinik für Transplantationsmedizin, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A14, D-48149 Münster, Germany.
| |
Collapse
|
12
|
Abdur R, Gerlits OO, Gan J, Jiang J, Salon J, Kovalevsky AY, Chumanevich AA, Weber IT, Huang Z. Novel complex MAD phasing and RNase H structural insights using selenium oligonucleotides. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:354-61. [PMID: 24531469 PMCID: PMC3940196 DOI: 10.1107/s1399004713027922] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 10/11/2013] [Indexed: 11/11/2022]
Abstract
The crystal structures of protein-nucleic acid complexes are commonly determined using selenium-derivatized proteins via MAD or SAD phasing. Here, the first protein-nucleic acid complex structure determined using selenium-derivatized nucleic acids is reported. The RNase H-RNA/DNA complex is used as an example to demonstrate the proof of principle. The high-resolution crystal structure indicates that this selenium replacement results in a local subtle unwinding of the RNA/DNA substrate duplex, thereby shifting the RNA scissile phosphate closer to the transition state of the enzyme-catalyzed reaction. It was also observed that the scissile phosphate forms a hydrogen bond to the water nucleophile and helps to position the water molecule in the structure. Consistently, it was discovered that the substitution of a single O atom by a Se atom in a guide DNA sequence can largely accelerate RNase H catalysis. These structural and catalytic studies shed new light on the guide-dependent RNA cleavage.
Collapse
Affiliation(s)
- Rob Abdur
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Oksana O. Gerlits
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jianhua Gan
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jiansheng Jiang
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jozef Salon
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Andrey Y. Kovalevsky
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Alexander A. Chumanevich
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Irene T. Weber
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Zhen Huang
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
13
|
Liu B, Xiang D, Long Y, Tong C. Real time monitoring of junction ribonuclease activity of RNase H using chimeric molecular beacons. Analyst 2013; 138:3238-45. [DOI: 10.1039/c3an36414c] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
14
|
Patra A, Harp J, Pallan PS, Zhao L, Abramov M, Herdewijn P, Egli M. Structure, stability and function of 5-chlorouracil modified A:U and G:U base pairs. Nucleic Acids Res 2012; 41:2689-97. [PMID: 23275540 PMCID: PMC3575798 DOI: 10.1093/nar/gks1316] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The thymine analog 5-chlorouridine, first reported in the 1950s as anti-tumor agent, is known as an effective mutagen, clastogen and toxicant as well as an effective inducer of sister-chromatid exchange. Recently, the first microorganism with a chemically different genome was reported; the selected Escherichia coli strain relies on the four building blocks 5-chloro-2'-deoxyuridine (ClU), A, C and G instead of the standard T, A, C, G alphabet [Marlière,P., Patrouix,J., Döring,V., Herdewijn,P., Tricot,S., Cruveiller,S., Bouzon,M. and Mutzel,R. (2011) Chemical evolution of a bacterium's genome. Angew. Chem. Int. Ed., 50, 7109-7114]. The residual fraction of T in the DNA of adapted bacteria was <2% and the switch from T to ClU was accompanied by a massive number of mutations, including >1500 A to G or G to A transitions in a culture. The former is most likely due to wobble base pairing between ClU and G, which may be more common for ClU than T. To identify potential changes in the geometries of base pairs and duplexes as a result of replacement of T by ClU, we determined four crystal structures of a B-form DNA dodecamer duplex containing ClU:A or ClU:G base pairs. The structures reveal nearly identical geometries of these pairs compared with T:A or T:G, respectively, and no consequences for stability and cleavage by an endonuclease (EcoRI). The lack of significant changes in the geometry of ClU:A and ClU:G base pairs relative to the corresponding native pairs is consistent with the sustained unlimited self-reproduction of E. coli strains with virtually complete T→ClU genome substitution.
Collapse
Affiliation(s)
- Amritraj Patra
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Zheng X, Mueller GA, DeRose EF, London RE. Metal and ligand binding to the HIV-RNase H active site are remotely monitored by Ile556. Nucleic Acids Res 2012; 40:10543-53. [PMID: 22941642 PMCID: PMC3488238 DOI: 10.1093/nar/gks791] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 07/26/2012] [Accepted: 07/27/2012] [Indexed: 11/14/2022] Open
Abstract
HIV-1 reverse transcriptase (RT) contains a C-terminal ribonuclease H (RH) domain on its p66 subunit that can be expressed as a stable, although inactive protein. Recent studies of several RH enzymes demonstrate that substrate binding plays a major role in the creation of the active site. In the absence of substrate, the C-terminal helix E of the RT RNase H domain is dynamic, characterized by severe exchange broadening of its backbone amide resonances, so that the solution characterization of this region of the protein has been limited. Nuclear magnetic resonance studies of 13C-labeled RH as a function of experimental conditions reveal that the δ1 methyl resonance of Ile556, located in a short, random coil segment following helix E, experiences a large 13C shift corresponding to a conformational change of Ile556 that results from packing of helix E against the central β-sheet. This shift provides a useful basis for monitoring the effects of various ligands on active site formation. Additionally, we report that the RNase H complexes formed with one or both divalent ions can be individually observed and characterized using diamagnetic Zn2+ as a substitute for Mg2+. Ordering of helix E results specifically from the interaction with the lower affinity binding to the A divalent ion site.
Collapse
Affiliation(s)
| | | | | | - Robert E. London
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
16
|
Egli M. The steric hypothesis for DNA replication and fluorine hydrogen bonding revisited in light of structural data. Acc Chem Res 2012; 45:1237-46. [PMID: 22524491 DOI: 10.1021/ar200303k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In DNA, bases pair in a molecular interaction that is both highly predictable and exquisitely specific. Therefore researchers have generally believed that the insertion of the matching nucleotide opposite a template base by DNA polymerases (pols) required Watson-Crick (W-C) hydrogen bond formation. However pioneering work by Kool and co-workers using hydrophobic base analogs such as the thymine (T) isostere 2,4-difluorotoluene (F) showed that shape rather than H-bonding served as the primary source of specificity in DNA replication by certain pols. This steric hypothesis for DNA replication has gained popularity, perhaps discouraging further experimental studies to address potential limitations of this new idea. The idea that shape trumps H-bonding in terms of pol selectivity largely hinges on the belief that fluorine is a poor H-bond acceptor. However, the shape complementarity model was embraced in the absence of any detailed structural data for match (F:A) and mismatch pairs (F:G, F:C, F:T) in DNA duplexes or at active sites of pols. Although the F and T nucleosides are roughly isosteric, it is unclear whether F:A and T:A pairs exhibit similar geometries. If the F:A pair is devoid of H-bonding, it will be notably wider than a T:A pair. Because shape and size and H-bonding are intimately related, it may not be possible to separate these two properties. Thus the geometries of an isolated F:A pair in water may differ considerably from an F:A pair embedded in a stretch of duplex DNA, at the tight active site of an A-family replicative pol, or within the spacious active site of a Y-family translesion pol. The shape complementarity model may have more significance for pol accuracy than efficiency: this model appears to be most relevant for replicative pols that use specific residues to probe the identity of the nascent base pair from the minor groove side. However, researchers have not fully considered the importance of such interactions that include H-bonds compared with W-C H-bonds in terms of pol fidelity and the shape complementarity model. This Account revisits the steric hypothesis for DNA replication in light of recent structural data and discusses the role of fluorine as an H-bond acceptor. Over the last 5 years, crystal structures have emerged for nucleic acid duplexes with F paired opposite to natural bases or located at the active sites of DNA pols. These data permit a more nuanced understanding of the role of shape in DNA replication and the capacity of fluorine to form H-bonds. These studies and additional research involving RNA or other fluorine-containing nucleoside analogs within duplexes indicate that fluorine engages in H-bonding in many cases. Although T and F are isosteric at the nucleoside level, replacement of a natural base by F in pairs often changes their shapes and sizes, and dF in DNA behaves differently from rF in RNA. Similarly, the pairing geometries observed for F and T opposite dATP, dGTP, dTTP, or dCTP and their H-bonding patterns at the active site of a replicative pol differ considerably.
Collapse
Affiliation(s)
- Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
17
|
Romainczyk O, Endeward B, Prisner TF, Engels JW. The RNA-DNA hybrid structure determined by EPR, CD and RNase H1. MOLECULAR BIOSYSTEMS 2011; 7:1050-2. [PMID: 21336379 DOI: 10.1039/c0mb00258e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A or B: RNA-DNA hybrids, key intermediates in gene regulation, were classified by pulsed electron-electron double resonance (PELDOR) in combination with CD spectroscopy into two classes, interpreted as A- and B-like structures. RNase H1 cleavage of these hybrids is in full agreement with these assignments, cleaving the hybrids with A-like geometry preferentially. This combined analytical approach allows the interpretation and eventually the design of more easily cleavable hybrids as needed for the antisense technology.
Collapse
Affiliation(s)
- Olga Romainczyk
- Institute of Organic Chemistry and Chemical Biology, Max-von-Laue-Str 7, 60438 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
18
|
Egli M, Pallan PS. Crystallographic studies of chemically modified nucleic acids: a backward glance. Chem Biodivers 2010; 7:60-89. [PMID: 20087997 PMCID: PMC2905155 DOI: 10.1002/cbdv.200900177] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chemically modified nucleic acids (CNAs) are widely explored as antisense oligonucleotide or small interfering RNA (siRNA) candidates for therapeutic applications. CNAs are also of interest in diagnostics, high-throughput genomics and target validation, nanotechnology and as model systems in investigations directed at a better understanding of the etiology of nucleic acid structure, as well as the physicochemical and pairing properties of DNA and RNA, and for probing protein-nucleic acid interactions. In this article, we review research conducted in our laboratory over the past two decades with a focus on crystal-structure analyses of CNAs and artificial pairing systems. We highlight key insights into issues ranging from conformational distortions as a consequence of modification to the modulation of pairing strength, and RNA affinity by stereoelectronic effects and hydration. Although crystal structures have only been determined for a subset of the large number of modifications that were synthesized and analyzed in the oligonucleotide context to date, they have yielded guiding principles for the design of new analogs with tailor-made properties, including pairing specificity, nuclease resistance, and cellular uptake. And, perhaps less obviously, crystallographic studies of CNAs and synthetic pairing systems have shed light on fundamental aspects of DNA and RNA structure and function that would not have been disclosed by investigations solely focused on the natural nucleic acids.
Collapse
Affiliation(s)
- Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232-0146, USA.
| | | |
Collapse
|
19
|
Pallan PS, Egli M. Pairing geometry of the hydrophobic thymine analogue 2,4-difluorotoluene in duplex DNA as analyzed by X-ray crystallography. J Am Chem Soc 2009; 131:12548-9. [PMID: 19685868 DOI: 10.1021/ja905739j] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Certain DNA polymerases (pols) were found to efficiently insert A opposite the hydrophobic T isostere 2,4-difluorotoluene (F) and vice versa, resulting in the widely held belief that some pols rely on shape rather than H-bonding for accurate replication. Using X-ray crystallography we have analyzed the geometry of F:A pairs in duplex DNA and observed a distance between fluorine and the exocyclic amino group of A that is consistent with a H-bond, thus challenging the assumption that the F analogue is unable to engage in H-bonding as well as the steric hypothesis of DNA replication. Therefore, shape and H-bonding are inherently related, and steric constraints at a pol active site, or conferred by stacking or the DNA backbone conformation, may enable H-bonding by F.
Collapse
Affiliation(s)
- Pradeep S Pallan
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
20
|
Shaban NM, Harvey S, Perrino FW, Hollis T. The structure of the mammalian RNase H2 complex provides insight into RNA.NA hybrid processing to prevent immune dysfunction. J Biol Chem 2009; 285:3617-3624. [PMID: 19923215 DOI: 10.1074/jbc.m109.059048] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The mammalian RNase H2 ribonuclease complex has a critical function in nucleic acid metabolism to prevent immune activation with likely roles in processing of RNA primers in Okazaki fragments during DNA replication, in removing ribonucleotides misinserted by DNA polymerases, and in eliminating RNA.DNA hybrids during cell death. Mammalian RNase H2 is a heterotrimeric complex of the RNase H2A, RNase H2B, and RNase H2C proteins that are all required for proper function and activity. Mutations in the human RNase H2 genes cause Aicardi-Goutières syndrome. We have determined the crystal structure of the three-protein mouse RNase H2 enzyme complex to better understand the molecular basis of RNase H2 dysfunction in human autoimmunity. The structure reveals the intimately interwoven architecture of RNase H2B and RNase H2C that interface with RNase H2A in a complex ideally suited for nucleic acid binding and hydrolysis coupled to protein-protein interaction motifs that could allow for efficient participation in multiple cellular functions. We have identified four conserved acidic residues in the active site that are necessary for activity and suggest a two-metal ion mechanism of catalysis for RNase H2. An Okazaki fragment has been modeled into the RNase H2 nucleic acid binding site providing insight into the recognition of RNA.DNA junctions by the RNase H2. Further structural and biochemical analyses show that some RNase H2 disease-causing mutations likely result in aberrant protein-protein interactions while the RNase H2A subunit-G37S mutation appears to distort the active site accounting for the demonstrated substrate specificity modification.
Collapse
Affiliation(s)
- Nadine M Shaban
- From the Department of Biochemistry, Center for Structural Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| | - Scott Harvey
- From the Department of Biochemistry, Center for Structural Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| | - Fred W Perrino
- From the Department of Biochemistry, Center for Structural Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| | - Thomas Hollis
- From the Department of Biochemistry, Center for Structural Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157.
| |
Collapse
|
21
|
Pallan PS, Prakash TP, Li F, Eoff RL, Manoharan M, Egli M. A conformational transition in the structure of a 2'-thiomethyl-modified DNA visualized at high resolution. Chem Commun (Camb) 2009:2017-9. [PMID: 19333476 PMCID: PMC2909737 DOI: 10.1039/b822781k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crystal structures of A-form and B-form DNA duplexes containing 2'-S-methyl-uridines reveal that the modified residues adopt a RNA-like C3'-endo pucker, illustrating that the replacement of electronegative oxygen at the 2'-carbon of RNA by sulfur does not appear to fundamentally alter the conformational preference of the sugar in the oligonucleotide context and sterics trump stereoelectronics.
Collapse
Affiliation(s)
- Pradeep S. Pallan
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, Fax: (+) 1-615-322-7122
| | - Thazha P. Prakash
- Department of Medicinal Chemistry, ISIS Pharmaceuticals Inc., Carlsbad, California 92008
| | - Feng Li
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, Fax: (+) 1-615-322-7122
| | - Robert L. Eoff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, Fax: (+) 1-615-322-7122
| | - Muthiah Manoharan
- Department of Drug Discovery, Alnylam Pharmaceuticals Inc., Cambridge, Massachusetts 02142
| | - Martin Egli
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, Fax: (+) 1-615-322-7122
| |
Collapse
|