1
|
Folahan JT, Barabutis N. NEK kinases in cell cycle regulation, DNA damage response, and cancer progression. Tissue Cell 2025; 94:102811. [PMID: 40037068 PMCID: PMC11912005 DOI: 10.1016/j.tice.2025.102811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 03/06/2025]
Abstract
The NIMA-related kinase (NEK) family of serine/threonine kinases is essential for the regulation of cell cycle progression, mitotic spindle assembly, and genomic stability. In this review, we explore the structural and functional diversity of NEK kinases, highlighting their roles in both canonical and non-canonical cellular processes. We examine recent preclinical findings on NEK inhibition, showcasing promising results for NEK-targeted therapies, particularly in cancer types characterized by high NEK expression. We discussed the therapeutic potential of targeting NEKs as modulators of cell cycle and DDR pathways, with a focus on identifying strategies to exploit NEK activity for enhanced treatment efficacy. Future research directions are proposed to further elucidate NEK-mediated mechanisms and to develop selective inhibitors that target NEK-related pathways.
Collapse
Affiliation(s)
- Joy T Folahan
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
2
|
Gao S, Su M, Bian T, Liu Y, Xu Y, Zhang Y. NEK6 functions as an oncogene to promote the proliferation and metastasis of ovarian cancer. J Cancer 2025; 16:1335-1346. [PMID: 39895790 PMCID: PMC11786049 DOI: 10.7150/jca.103769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/29/2024] [Indexed: 02/04/2025] Open
Abstract
Background: Ovarian cancer (OC) is a common malignant tumor of the female reproductive organs. The novel serine/threonine kinase NEK6 is highly expressed in various cancers and affects the prognosis of patients. However, the role of NEK6 in OC is still unclear. Methods: In this study, the expression profiles of NEK6 in OC and its roles in the development of OC were investigated. The expression profiles of NEK6 across cancers and OC were explored using bioinformatics analysis, and its expression in OC patients was detected by immunohistochemical (IHC) staining. The correlation between its expression and clinicopathological factors was also analyzed. Furthermore, the NEK6 levels in the tumor tissues of OC patients were detected via RT‒qPCR and Western blotting. Biological functions, including cell growth, migration, invasion and apoptosis, were analyzed using MTT, Transwell and flow cytometry assays, respectively. Results: Bioinformatics analysis revealed that NEK6 was highly expressed in most human cancers, including OC. IHC revealed 67.27% moderate or strong NEK6 staining in tumor tissues, 32.73% (36/110) weak staining, and negative or weak NEK6 staining in normal ovarian tissues, and its high expression was correlated with clinicopathological factors, including histological grade (P=0.008) and metastasis (P=0.006). The Kaplan‒Meier survival curve revealed that OC patients with high expression of NEK6 had poorer overall survival rates (P=0.025). NEK6 was overexpressed in OC tissues and SK-OV-3 and A2780 cells, and when NEK6 was knocked down with siRNAs, cell growth, migration and invasion were inhibited, whereas cell apoptosis was significantly promoted. Conclusion: NEK6 is highly expressed in OC; its overexpression indicates poor prognosis; and NEK6 knockdown leads to inhibited growth, migration and invasion while promoting the apoptosis of OC cells. These findings indicate that NEK6 is a potential oncogene and a poor prognostic factor in OC, suggesting that NEK6 can serve as a new therapeutic candidate for OC and that NEK6 inhibition may be an effective strategy for OC treatment.
Collapse
Affiliation(s)
- Sainan Gao
- Suzhou Medical College of Soochow University, Suzhou 215123, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Min Su
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Tingting Bian
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yanhua Xu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yuquan Zhang
- Suzhou Medical College of Soochow University, Suzhou 215123, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
3
|
Panchal NK, Mohanty S, Prince SE. Computational insights into NIMA-related kinase 6: unraveling mutational effects on structure and function. Mol Cell Biochem 2024; 479:2989-3009. [PMID: 38117419 DOI: 10.1007/s11010-023-04910-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/25/2023] [Indexed: 12/21/2023]
Abstract
The NEK6 (NIMA-related kinase 6) serine/threonine kinase is a pivotal player in a multitude of cellular processes, including the regulation of the cell cycle and the response to DNA damage. Its significance extends to disease pathogenesis, as changes in NEK6 activity have been linked to the development of cancer. Non-synonymous single nucleotide polymorphisms (nsSNPs) in NEK6 have been linked to cancer as they alter the protein's native structure and function. The association between NEK6 activity and cancer development has prompted researchers to explore the effects of genetic variations within the NEK6 gene. Therefore, we utilized advanced computational tools to analyze 155 high-confidence nsSNPs in the NEK6 gene. From this analysis, 21 nsSNPs were identified as potentially harmful, raising concerns about their impact on NEK6 activity and cancer risk. These 21 mutations were then examined for structural alterations, and eight of nsSNPs (I51M, V76A, I134N, Y152D, R171Q, V186G, L237R, and C285S) were found to destabilize the protein. Among the destabilizing mutations screened, a specific mutation, R171Q, stood out due to its conserved nature. To understand its impact on the protein and conformation, all-atom molecular dynamics simulations (MDS) for 100 ns were performed for both Wildtype NEK6 (WT-NEK6) and R171Q. The simulations revealed that the R171Q variant was unstable and led to significant conformational changes in NEK6. This study provides valuable insights into NEK6 dysfunction caused by single amino acid alterations, offering a novel understanding of the molecular mechanisms underlying NEK6-related cancer progression.
Collapse
Affiliation(s)
- Nagesh Kishan Panchal
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India
| | - Shruti Mohanty
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Sabina Evan Prince
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India.
| |
Collapse
|
4
|
Wu X, Deng K, Cai H, Zeng Z, Cao J, Zhang L, Lu Z, Cheng W. Nek6 knockdown polarized macrophages into a pro-inflammatory phenotype via inhibiting STAT3 expression. Int J Exp Pathol 2023; 104:237-246. [PMID: 37431082 PMCID: PMC10500168 DOI: 10.1111/iep.12489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/08/2023] [Accepted: 06/18/2023] [Indexed: 07/12/2023] Open
Abstract
Recently macrophage polarization has emerged as playing an essential role in the oathogenesis of atherosclerosis, which is the most important underlying process in many types of cardiovascular diseases. Although Nek6 has been reported to be involved in various cellular processes, the effect of Nek6 on macrophage polarization remains unknown. Macrophages exposed to lipopolysaccharide (LPS) or IL-4 were used to establish an in vitro model for the study of regulation of classically (M1) or alternatively (M2) activated macrophage. Bone marrow-derived macrophages (BMDMs) transfected with short hairpin RNA-targeting Nek6 were then in functional studies. We observed that Nek6 expression was decreased in both peritoneal macrophages (PMs) and BMDMs stimulated by LPS. This effect was seen at both mRNA and protein level. The opposite results were obtained after administration of IL-4. Macrophage-specific Nek6 knockdown significantly exacerbated pro-inflammatory M1 polarized macrophage gene expression in response to LPS challenge, but the anti-inflammatory response gene expression that is related to M2 macrophages was attenuated by Nek6 silencing followed by treatment with IL-4. Mechanistic studies exhibited that Nek6 knockdown inhibited the phosphorylated STAT3 expression that mediated the effect on macrophage polarization regulated by AdshNek6. Moreover, decreased Nek6 expression was also observed in atherosclerotic plaques. Collectively, these evidences suggested that Nek6 acts as a crucial site in macrophage polarization, and that this operates in a STAT3-dependent manner.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Department of Cardiology, Zhongnan HospitalWuhan UniversityWuhanChina
- Institute of Myocardial Injury and RepairWuhan UniversityWuhanChina
| | - Ke‐Qiong Deng
- Department of Cardiology, Zhongnan HospitalWuhan UniversityWuhanChina
- Institute of Myocardial Injury and RepairWuhan UniversityWuhanChina
| | - Huan‐Huan Cai
- Department of Cardiology, Zhongnan HospitalWuhan UniversityWuhanChina
- Institute of Myocardial Injury and RepairWuhan UniversityWuhanChina
| | - Ziyue Zeng
- Department of Cardiology, Zhongnan HospitalWuhan UniversityWuhanChina
- Institute of Myocardial Injury and RepairWuhan UniversityWuhanChina
| | - Jian‐Lei Cao
- Department of Cardiology, Zhongnan HospitalWuhan UniversityWuhanChina
- Institute of Myocardial Injury and RepairWuhan UniversityWuhanChina
| | - Lin Zhang
- Department of Cardiology, Zhongnan HospitalWuhan UniversityWuhanChina
- Institute of Myocardial Injury and RepairWuhan UniversityWuhanChina
| | - Zhibing Lu
- Department of Cardiology, Zhongnan HospitalWuhan UniversityWuhanChina
- Institute of Myocardial Injury and RepairWuhan UniversityWuhanChina
| | - Wen‐Lin Cheng
- Department of Cardiology, Zhongnan HospitalWuhan UniversityWuhanChina
- Institute of Myocardial Injury and RepairWuhan UniversityWuhanChina
| |
Collapse
|
5
|
Zhang H, Li B. NIMA-related kinase 6 as an effective target inhibits the hepatocarcinogenesis and progression of hepatocellular carcinoma. Heliyon 2023; 9:e15971. [PMID: 37260886 PMCID: PMC10227323 DOI: 10.1016/j.heliyon.2023.e15971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 06/02/2023] Open
Abstract
Background NIMA-related kinase 6 (NEK 6) is over-expressed in some tumor cell lines and tissues. However, its expression in hepatocellular carcinoma (HCC) and its correlation with clinical features remain unclear. Methods Total RNA from HCC liver tissues, other liver specimens, and hepatic cell lines was extracted and QPCR was adopted to detect NEK6 expression. The correlation between NEK6 expression and the clinical characteristics of HCC was analyzed. Scratch assay, Transwell assay, and tumor-formation assay were used to evaluate the effects of NEK6 on the HCC progression in vitro and in vivo. Results The expression of NEK6 was up-regulated in HCC tissues and HCC cell lines: Li-7 and HepG2. The overexpression of NEK6 was correlated with hepatitis B virus infection and tumor diameter (P = 0.045). When down-regulated the expression of NEK6, both the migration and invasion capabilities of Li-7 and HepG2 cells and the growth of xenograft tumors were suppressed. (P < 0.05). Conclusions NEK6 expression was up-regulated in HCC and correlated with the progression, suggesting it might be a valuable biomarker and a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Hepatobiliary Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Bo Li
- Department of Hepatobiliary Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Sugahara S, Haga H, Ikeda C, Makino N, Matsuda A, Kakizaki Y, Hoshikawa K, Katsumi T, Ishizawa T, Kobayashi T, Maki K, Suzuki F, Murakami R, Sato H, Ueno Y. Role of Bile-Derived Extracellular Vesicles in Hepatocellular Proliferation after Partial Hepatectomy in Rats. Int J Mol Sci 2023; 24:ijms24119230. [PMID: 37298180 DOI: 10.3390/ijms24119230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Although liver regeneration has been extensively studied, the effects of bile-derived extracellular vesicles (bile EVs) on hepatocytes has not been elucidated. We examined the influence of bile EVs, collected from a rat model of 70% partial hepatectomy (PH), on hepatocytes. We produced bile-duct-cannulated rats. Bile was collected over time through an extracorporeal bile duct cannulation tube. Bile EVs were extracted via size exclusion chromatography. The number of EVs released into the bile per liver weight 12 h after PH significantly increased. Bile EVs collected 12 and 24 h post-PH, and after sham surgery (PH12-EVs, PH24-EVs, sham-EVs) were added to the rat hepatocyte cell line, and 24 h later, RNA was extracted and transcriptome analysis performed. The analysis revealed that more upregulated/downregulated genes were observed in the group with PH24-EVs. Moreover, the gene ontology (GO) analysis focusing on the cell cycle revealed an upregulation of 28 types of genes in the PH-24 group, including genes that promote cell cycle progression, compared to the sham group. PH24-EVs induced hepatocyte proliferation in a dose-dependent manner in vitro, whereas sham-Evs showed no significant difference compared to the controls. This study revealed that post-PH bile Evs promote the proliferation of the hepatocytes, and genes promoting cell cycles are upregulated in hepatocytes.
Collapse
Affiliation(s)
- Shinpei Sugahara
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-8595, Japan
| | - Hiroaki Haga
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-8595, Japan
| | - Chisaki Ikeda
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-8595, Japan
| | - Naohiko Makino
- Yamagata University Health Administration Center, 1-4-12 Kojirakawa-Machi, Yamagata 990-8560, Japan
| | - Akiko Matsuda
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-8595, Japan
| | - Yasuharu Kakizaki
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-8595, Japan
| | - Kyoko Hoshikawa
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-8595, Japan
| | - Tomohiro Katsumi
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-8595, Japan
| | - Tetsuya Ishizawa
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-8595, Japan
| | - Toshikazu Kobayashi
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-8595, Japan
| | - Keita Maki
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-8595, Japan
| | - Fumiya Suzuki
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-8595, Japan
| | - Ryoko Murakami
- Genomic Information Analysis Unit, Department of Genomic Cohort Research, Faculty of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-8595, Japan
| | - Hidenori Sato
- Genomic Information Analysis Unit, Department of Genomic Cohort Research, Faculty of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-8595, Japan
| | - Yoshiyuki Ueno
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-8595, Japan
| |
Collapse
|
7
|
Panchal NK, Mohanty S, Prince SE. NIMA-related kinase-6 (NEK6) as an executable target in cancer. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:66-77. [PMID: 36074296 DOI: 10.1007/s12094-022-02926-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/09/2022] [Indexed: 01/07/2023]
Abstract
Cancer is a disease that develops when cells begin to divide uncontrollably and spreads to other parts of the body. Proliferation and invasion of cancerous cells are generally known to be influenced by cell cycle-related proteins in human malignancies. Therefore, in this review, we have emphasized on the serine/threonine kinase named NEK6. NEK6 is been deliberated to play a critical role in mitosis progression that includes mitotic spindle formation, metaphase to anaphase transition, and centrosome separation. Moreover, it has a mechanistic role in DNA repair and can cause apoptosis when inhibited. Past studies have connected NEK6 protein expression to cancer cell senescence. Besides, there are reports relating NEK6 to a range of malignancies including breast, lung, ovarian, prostate, kidney, liver, and others. Given its significance, this review attempts to describe the structural and functional aspects of NEK6 in various cellular processes, as well as how it is linked to different forms of cancer. Lastly, we have accentuated, on some of the plausible inhibitors that have been explored against NEK6 overexpression.
Collapse
Affiliation(s)
- Nagesh Kishan Panchal
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Shruti Mohanty
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Sabina Evan Prince
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
8
|
In Mitosis You Are Not: The NIMA Family of Kinases in Aspergillus, Yeast, and Mammals. Int J Mol Sci 2022; 23:ijms23074041. [PMID: 35409400 PMCID: PMC8999480 DOI: 10.3390/ijms23074041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
The Never in mitosis gene A (NIMA) family of serine/threonine kinases is a diverse group of protein kinases implicated in a wide variety of cellular processes, including cilia regulation, microtubule dynamics, mitotic processes, cell growth, and DNA damage response. The founding member of this family was initially identified in Aspergillus and was found to play important roles in mitosis and cell division. The yeast family has one member each, Fin1p in fission yeast and Kin3p in budding yeast, also with functions in mitotic processes, but, overall, these are poorly studied kinases. The mammalian family, the main focus of this review, consists of 11 members named Nek1 to Nek11. With the exception of a few members, the functions of the mammalian Neks are poorly understood but appear to be quite diverse. Like the prototypical NIMA, many members appear to play important roles in mitosis and meiosis, but their functions in the cell go well beyond these well-established activities. In this review, we explore the roles of fungal and mammalian NIMA kinases and highlight the most recent findings in the field.
Collapse
|
9
|
MicroRNA-323a-3p Negatively Regulates NEK6 in Colon Adenocarcinoma Cells. JOURNAL OF ONCOLOGY 2022; 2022:7007718. [PMID: 35096064 PMCID: PMC8791743 DOI: 10.1155/2022/7007718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 11/18/2022]
Abstract
Objective. The activity of NEK6 is enhanced in several cancer cells, including colon adenocarcinoma (COAD) cells. However, there are few reports on the microRNA (miRNA/miR) regulation of NEK6. In this study, we aimed to investigate the effects of miRNAs targeting NEK6 in COAD cells. Methods. Public data and online analysis sites were used to analyze the expression levels of NEK6 and miR-323a-3p in COAD tissues as well as the relationship between NEK6 or miR-323a-3p levels and survival in patients with COAD and to predict miRNAs targeting NEK6. Real-time polymerase chain reaction and western blotting were performed to determine the levels of NEK6 and miR-323a-3p in COAD cells. The targeting of NEK6 by miR-323a-3p was verified using a dual-luciferase reporter assay. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, 5-ethynyl-2′-deoxyuridine assay, propidium iodide (PI) staining, annexin V-fluorescein isothiocyanate/PI staining, and transwell assay were employed to test the proliferation, apoptosis, migration ability, and invasiveness of COAD cells. Results. In COAD cells, NEK6 was highly expressed, whereas miR-323a-3p was expressed at low levels and negatively regulated NEK6. Upregulating the level of miR-323a-3p impaired the proliferation, migration, and invasion of COAD cells and promoted apoptosis, whereas supplementing NEK6 alleviated the damage of the proliferation, migration, and invasion of COAD cells caused by miR-323a-3p and inhibited miR-323a-3p-induced apoptosis. These findings indicate that miR-323a-3p regulates the proliferation, migration, invasion, and apoptosis of COAD cells by targeting NEK6. Conclusion. miR-323a-3p downregulates NEK6 in COAD cells; this provides a novel basis for further understanding the occurrence and development of COAD.
Collapse
|
10
|
Liu Y, Fu W, Yin F, Xia L, Zhang Y, Wang B, Li T, Zhang T, Cheng L, Wei Y, Gao B. miR-141-3p suppresses development of clear cell renal cell carcinoma by regulating NEK6. Anticancer Drugs 2022; 33:e125-e133. [PMID: 34387594 DOI: 10.1097/cad.0000000000001158] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Currently, there have been few studies on the function and molecular mechanism of miR-141-3p in the development of clear cell renal cell carcinoma (CCRCC). This study aimed to explore the relationship between miR-141-3p and NIMA (never in mitosis, gene A)-related kinase-6 (NEK6) and investigate the role of the interaction in CCRCC cell proliferation, migration, invasion and apoptosis.Starbase database was used to predict the target gene of miR-141-3p in CCRCC and dual-luciferase reporter assay was performed to verify the targeting relationship between miR-141-3p and the target gene. Real-time quantitative PCR was conducted to detect the expression of miR-141-3p and NEK6 mRNA in cells. Western blot was carried out to detect the protein level of NEK6 in cells. Cell Counting Kit-8 assay, transwell assay and wound healing assay were conducted to detect CCRCC cell proliferation, invasion and migration abilities. Flow cytometry was performed to detect CCRCC cell apoptosis. miR-141-3p was markedly lowly expressed, and NEK6 was a target of miR-141-3p and was remarkably highly expressed in CCRCC cells. Over-expressing miR-141-3p could inhibit CCRCC cell proliferation, migration, invasion and promote apoptosis. The inhibitory effect of miR-141-3p over-expression on cell proliferation, migration and invasion was significantly weakened by over-expressing NEK6. miR-141-3p could regulate CCRCC cell proliferation, migration, invasion and apoptosis by targeting NEK6. This study lays the basis for the exploration of the molecular mechanism underlying CCRCC pathogenesis and research on targeted therapies for CCRCC.
Collapse
Affiliation(s)
- Yifei Liu
- Department of Urology, Tangshan Central Hospital, Tangshan
| | - Wenqiang Fu
- Department of Urology, Tangshan Central Hospital, Tangshan
| | - Feng Yin
- Department of Urology, Tangshan Central Hospital, Tangshan
| | - Lianjie Xia
- Department of Urology, Tangshan Central Hospital, Tangshan
| | - Yubo Zhang
- Department of Urology, Tangshan Central Hospital, Tangshan
| | - Baocun Wang
- Department of Urology, Tangshan Central Hospital, Tangshan
| | - Tengfei Li
- Department of Urology, Tangshan Central Hospital, Tangshan
| | - Tingting Zhang
- Department of Urology, Tangshan Central Hospital, Tangshan
| | - Ling Cheng
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, China
| | - Yanbing Wei
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, China
| | - Bin Gao
- Department of Urology, Tangshan Central Hospital, Tangshan
| |
Collapse
|
11
|
Martins MB, Perez AM, Bohr VA, Wilson DM, Kobarg J. NEK1 deficiency affects mitochondrial functions and the transcriptome of key DNA repair pathways. Mutagenesis 2021; 36:223-236. [PMID: 33740813 DOI: 10.1093/mutage/geab011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/17/2021] [Indexed: 12/16/2022] Open
Abstract
Previous studies have indicated important roles for NIMA-related kinase 1 (NEK1) in modulating DNA damage checkpoints and DNA repair capacity. To broadly assess the contributions of NEK1 to genotoxic stress and mitochondrial functions, we characterised several relevant phenotypes of NEK1 CRISPR knockout (KO) and wild-type (WT) HAP1 cells. Our studies revealed that NEK1 KO cells resulted in increased apoptosis and hypersensitivity to the alkylator methyl methanesulfonate, the radiomimetic bleomycin and UVC light, yet increased resistance to the crosslinker cisplatin. Mitochondrial functionalities were also altered in NEK1 KO cells, with phenotypes of reduced mitophagy, increased total mitochondria, elevated levels of reactive oxygen species, impaired complex I activity and higher amounts of mitochondrial DNA damage. RNA-seq transcriptome analysis coupled with quantitative real-time PCR studies comparing NEK1 KO cells with NEK1 overexpressing cells revealed that the expression of genes involved in DNA repair pathways, such as base excision repair, nucleotide excision repair and double-strand break repair, are altered in a way that might influence genotoxin resistance. Together, our studies underline and further support that NEK1 serves as a hub signalling kinase in response to DNA damage, modulating DNA repair capacity, mitochondrial activity and cell fate determination.
Collapse
Affiliation(s)
- Mariana Bonjiorno Martins
- Departamento de Bioquímica e de Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Arina Marina Perez
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224-6825, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224-6825, USA
| | - David M Wilson
- Neurosciences Group, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Jörg Kobarg
- Departamento de Bioquímica e de Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.,Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
12
|
Pavan ICB, Peres de Oliveira A, Dias PRF, Basei FL, Issayama LK, Ferezin CDC, Silva FR, Rodrigues de Oliveira AL, Alves dos Reis Moura L, Martins MB, Simabuco FM, Kobarg J. On Broken Ne(c)ks and Broken DNA: The Role of Human NEKs in the DNA Damage Response. Cells 2021; 10:507. [PMID: 33673578 PMCID: PMC7997185 DOI: 10.3390/cells10030507] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/04/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
NIMA-related kinases, or NEKs, are a family of Ser/Thr protein kinases involved in cell cycle and mitosis, centrosome disjunction, primary cilia functions, and DNA damage responses among other biological functional contexts in vertebrate cells. In human cells, there are 11 members, termed NEK1 to 11, and the research has mainly focused on exploring the more predominant roles of NEKs in mitosis regulation and cell cycle. A possible important role of NEKs in DNA damage response (DDR) first emerged for NEK1, but recent studies for most NEKs showed participation in DDR. A detailed analysis of the protein interactions, phosphorylation events, and studies of functional aspects of NEKs from the literature led us to propose a more general role of NEKs in DDR. In this review, we express that NEK1 is an activator of ataxia telangiectasia and Rad3-related (ATR), and its activation results in cell cycle arrest, guaranteeing DNA repair while activating specific repair pathways such as homology repair (HR) and DNA double-strand break (DSB) repair. For NEK2, 6, 8, 9, and 11, we found a role downstream of ATR and ataxia telangiectasia mutated (ATM) that results in cell cycle arrest, but details of possible activated repair pathways are still being investigated. NEK4 shows a connection to the regulation of the nonhomologous end-joining (NHEJ) repair of DNA DSBs, through recruitment of DNA-PK to DNA damage foci. NEK5 interacts with topoisomerase IIβ, and its knockdown results in the accumulation of damaged DNA. NEK7 has a regulatory role in the detection of oxidative damage to telomeric DNA. Finally, NEK10 has recently been shown to phosphorylate p53 at Y327, promoting cell cycle arrest after exposure to DNA damaging agents. In summary, this review highlights important discoveries of the ever-growing involvement of NEK kinases in the DDR pathways. A better understanding of these roles may open new diagnostic possibilities or pharmaceutical interventions regarding the chemo-sensitizing inhibition of NEKs in various forms of cancer and other diseases.
Collapse
Affiliation(s)
- Isadora Carolina Betim Pavan
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Andressa Peres de Oliveira
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Pedro Rafael Firmino Dias
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Fernanda Luisa Basei
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Luidy Kazuo Issayama
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Camila de Castro Ferezin
- Graduate Program in “Biologia Funcional e Molecular”, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas 13083-857, Brazil;
| | - Fernando Riback Silva
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Ana Luisa Rodrigues de Oliveira
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Lívia Alves dos Reis Moura
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Mariana Bonjiorno Martins
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
- Graduate Program in “Biologia Funcional e Molecular”, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas 13083-857, Brazil;
| | | | - Jörg Kobarg
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
- Graduate Program in “Biologia Funcional e Molecular”, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas 13083-857, Brazil;
| |
Collapse
|
13
|
Transcriptomic Changes Associated with Loss of Cell Viability Induced by Oxysterol Treatment of a Retinal Photoreceptor-Derived Cell Line: An In Vitro Model of Smith-Lemli-Opitz Syndrome. Int J Mol Sci 2021; 22:ijms22052339. [PMID: 33652836 PMCID: PMC7956713 DOI: 10.3390/ijms22052339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 11/17/2022] Open
Abstract
Smith–Lemli–Opitz Syndrome (SLOS) results from mutations in the gene encoding the enzyme DHCR7, which catalyzes conversion of 7-dehydrocholesterol (7DHC) to cholesterol (CHOL). Rats treated with a DHCR7 inhibitor serve as a SLOS animal model, and exhibit progressive photoreceptor-specific cell death, with accumulation of 7DHC and oxidized sterols. To understand the basis of this cell type specificity, we performed transcriptomic analyses on a photoreceptor-derived cell line (661W), treating cells with two 7DHC-derived oxysterols, which accumulate in tissues and bodily fluids of SLOS patients and in the rat SLOS model, as well as with CHOL (negative control), and evaluated differentially expressed genes (DEGs) for each treatment. Gene enrichment analysis and compilation of DEG sets indicated that endoplasmic reticulum stress, oxidative stress, DNA damage and repair, and autophagy were all highly up-regulated pathways in oxysterol-treated cells. Detailed analysis indicated that the two oxysterols exert their effects via different molecular mechanisms. Changes in expression of key genes in highlighted pathways (Hmox1, Ddit3, Trib3, and Herpud1) were validated by immunofluorescence confocal microscopy. The results extend our understanding of the pathobiology of retinal degeneration and SLOS, identifying potential new druggable targets for therapeutic intervention into these and other related orphan diseases.
Collapse
|
14
|
NEK10 tyrosine phosphorylates p53 and controls its transcriptional activity. Oncogene 2020; 39:5252-5266. [DOI: 10.1038/s41388-020-1361-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 11/09/2022]
|
15
|
Melo-Hanchuk TD, Slepicka PF, Pelegrini AL, Menck CFM, Kobarg J. NEK5 interacts with topoisomerase IIβ and is involved in the DNA damage response induced by etoposide. J Cell Biochem 2019; 120:16853-16866. [PMID: 31090963 DOI: 10.1002/jcb.28943] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023]
Abstract
Cells are daily submitted to high levels of DNA lesions that trigger complex pathways and cellular responses by cell cycle arrest, apoptosis, alterations in transcriptional response, and the onset of DNA repair. Members of the NIMA-related kinase (NEK) family have been related to DNA damage response and repair and the first insight about NEK5 in this context is related to its role in centrosome separation resulting in defects in chromosome integrity. Here we investigate the potential correlation between NEK5 and the DNA damage repair index. The effect of NEK5 in double-strand breaks caused by etoposide was accessed by alkaline comet assay and revealed that NEK5-silenced cells are more sensitive to etoposide treatment. Topoisomerase IIβ (TOPIIβ) is a target of etoposide that leads to the production of DNA breaks. We demonstrate that NEK5 interacts with TOPIIβ, and the dynamics of this interaction is evaluated by proximity ligation assay. The complex NEK5/TOPIIβ is formed immediately after etoposide treatment. Taken together, the results of our study reveal that NEK5 depletion increases DNA damage and impairs proper DNA damage response, pointing out NEK5 as a potential kinase contributor to genomic stability.
Collapse
Affiliation(s)
- Talita Diniz Melo-Hanchuk
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Priscila Ferreira Slepicka
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brazil
| | - Alessandra Luiza Pelegrini
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Jörg Kobarg
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.,Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
16
|
Pei J, Zhang J, Yang X, Wu Z, Sun C, Wang Z, Wang B. NEK5 promotes breast cancer cell proliferation through up-regulation of Cyclin A2. Mol Carcinog 2019; 58:933-943. [PMID: 30675923 DOI: 10.1002/mc.22982] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 02/06/2023]
Abstract
NEK5, a contraction of NIMA Related Kinase 5, has been shown to regulate the centrosome integrity of cells though; it has been little described in cancer. Herein, to explore the clinicopathological meaning of NEK5 expression in breast cancer, immunohistochemistry was performed to detect the expression of NEK5 on tissue blocks, totaling 203 cases. Quantitative real-time PCR (qRT-PCR) was used to evaluate NEK5 mRNA expression with 30 cases of fresh tissues. To observe the function of NEK5 in the growth of breast cancer cells, both MTT and xenografted nude mice were performed. And Transwell assay was employed to observe the variation of migration and invasion. It was shown that up-regulated NEK5 was significantly associated with tumor progression and poor overall prognosis; and that silencing of NEK5 can significantly suppress the proliferation both in vivo and in vitro, inhibiting migration, and invasion. To get insight into the underlying mechanism by which NEK5 operates in proliferation of breast cancer cells, we showed that NEK5 can up-regulate Cyclin A2 and down-regulate Cyclin D1, Cyclin D3, and Cyclin E1 expression. Additionally, Cyclin A2 was also identified as a novel interacting protein for NEK5. Taking together, we firstly defined the oncogenic role of NEK5 in breast cancer that was related to proliferation, supporting that NEK5 might be used a new therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Jing Pei
- The Department of Breast Surgery, The Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, PR China
| | - Jing Zhang
- The Department of Breast Surgery, The Tumor Hospital of XuZhou, XuZhou, JiangSu Province, PR China
| | - Xiaowei Yang
- The Department of Breast Surgery, The Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, PR China
| | - Zhengsheng Wu
- The Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, PR China
| | - Chenyu Sun
- The Department of Breast Surgery, The Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, PR China
| | - Zhaorui Wang
- The Department of Breast Surgery, The Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, PR China
| | - Benzhong Wang
- The Department of Breast Surgery, The Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, PR China
| |
Collapse
|
17
|
De Donato M, Righino B, Filippetti F, Battaglia A, Petrillo M, Pirolli D, Scambia G, De Rosa MC, Gallo D. Identification and antitumor activity of a novel inhibitor of the NIMA-related kinase NEK6. Sci Rep 2018; 8:16047. [PMID: 30375481 PMCID: PMC6207720 DOI: 10.1038/s41598-018-34471-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/12/2018] [Indexed: 12/29/2022] Open
Abstract
The NIMA (never in mitosis, gene A)-related kinase-6 (NEK6), which is implicated in cell cycle control and plays significant roles in tumorigenesis, is an attractive target for the development of novel anti-cancer drugs. Here we describe the discovery of a potent ATP site-directed inhibitor of NEK6 identified by virtual screening, adopting both structure- and ligand-based techniques. Using a homology-built model of NEK6 as well as the pharmacophoric features of known NEK6 inhibitors we identified novel binding scaffolds. Twenty-five compounds from the top ranking hits were subjected to in vitro kinase assays. The best compound, i.e. compound 8 ((5Z)-2-hydroxy-4-methyl-6-oxo-5-[(5-phenylfuran-2-yl)methylidene]-5,6-dihydropyridine-3-carbonitrile), was able to inhibit NEK6 with low micromolar IC50 value, also displaying antiproliferative activity against a panel of human cancer cell lines. Our results suggest that the identified inhibitor can be used as lead candidate for the development of novel anti-cancer agents, thus opening the possibility of new therapeutic strategies.
Collapse
Affiliation(s)
- Marta De Donato
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Rome, Italy.,Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Benedetta Righino
- Institute of Biochemistry and Clinical Biochemistry - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Flavia Filippetti
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Rome, Italy.,Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Alessandra Battaglia
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco Petrillo
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Rome, Italy.,Gynecologic and Obstetric Clinic, Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Davide Pirolli
- Institute of Chemistry of Molecular Recognition (ICRM) - CNR, Rome, Italy
| | - Giovanni Scambia
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Rome, Italy.,Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | | | - Daniela Gallo
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Rome, Italy.,Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| |
Collapse
|
18
|
He Z, Ni X, Xia L, Shao Z. Overexpression of NIMA-related kinase 6 (NEK6) contributes to malignant growth and dismal prognosis in Human Breast Cancer. Pathol Res Pract 2018; 214:1648-1654. [PMID: 30153958 DOI: 10.1016/j.prp.2018.07.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/16/2018] [Accepted: 07/25/2018] [Indexed: 12/16/2022]
Abstract
NIMA Related Kinase 6 (Nek6) is a protein kinase involved in various cellular processes, including cell cycle regulation, apopotosis, senescence, telomere maintainance and chemoresistance. In the present study, we investigated the role of Nek6 in breast tumorigenesis and the prognostic merit of Nek6 expression in breast cancer. Immunohistochemistry and Western blot analyses was conducted to determine the expression profile of Nek6 in 133 breast cancer specimens. Nek6 was overexpressed in a majority of breast cancer specimens, compared with the adjacent non-tumorous tissues. Furthermore, we revealed that high expression of Nek6 was associated with histologic grade, tumor size and TNM stage in breast cancer. Liner regression analysis showed a significant association between the levels of Nek6 and Ki-67. Cox regression analysis indicated that Nek6 expression was an independent prognostic predictor for breast cancer. Moreover, intracellular level of Nek6 was remarkably increased following the release from serum starvation in MCF-7 cells. EdU incorporation assay indicated that depletion of Nek6 remarkably impaired the proliferation of MCF-7 cells. Finally, spheroid formation assay revealed that interference of Nek6 led to diminished oncospheroid-forming capacity of breast cancer cells. In conclusion, our results imply that Nek6 plays a facilitating role in breast cancer cell proliferation and may serve as a promising therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Zhixian He
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu, PR China
| | - Xiaojian Ni
- Department of General Surgery, Fudan University Zhongshan Hospital, Shanghai 200032, PR China
| | - Liuwan Xia
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu, PR China
| | - Zhimin Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China.
| |
Collapse
|
19
|
Wells CI, Kapadia NR, Couñago RM, Drewry DH. In depth analysis of kinase cross screening data to identify chemical starting points for inhibition of the Nek family of kinases. MEDCHEMCOMM 2018; 9:44-66. [PMID: 30108900 PMCID: PMC6071746 DOI: 10.1039/c7md00510e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/01/2017] [Indexed: 01/11/2023]
Abstract
Potent, selective, and cell active small molecule kinase inhibitors are useful tools to help unravel the complexities of kinase signaling. As the biological functions of individual kinases become better understood, they can become targets of drug discovery efforts. The small molecules used to shed light on function can also then serve as chemical starting points in these drug discovery efforts. The Nek family of kinases has received very little attention, as judged by number of citations in PubMed, yet they appear to play many key roles and have been implicated in disease. Here we present our work to identify high quality chemical starting points that have emerged due to the increased incidence of broad kinome screening. We anticipate that this analysis will allow the community to progress towards the generation of chemical probes and eventually drugs that target members of the Nek family.
Collapse
Affiliation(s)
- C I Wells
- Structural Genomics Consortium , Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , NC , 27599 USA .
| | - N R Kapadia
- Structural Genomics Consortium , Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , NC , 27599 USA .
| | - R M Couñago
- Structural Genomics Consortium , Universidade Estadual de Campinas - UNICAMP , Campinas , SP , 13083 Brazil
| | - D H Drewry
- Structural Genomics Consortium , Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , NC , 27599 USA .
| |
Collapse
|
20
|
Fry AM, Bayliss R, Roig J. Mitotic Regulation by NEK Kinase Networks. Front Cell Dev Biol 2017; 5:102. [PMID: 29250521 PMCID: PMC5716973 DOI: 10.3389/fcell.2017.00102] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/17/2017] [Indexed: 12/24/2022] Open
Abstract
Genetic studies in yeast and Drosophila led to identification of cyclin-dependent kinases (CDKs), Polo-like kinases (PLKs) and Aurora kinases as essential regulators of mitosis. These enzymes have since been found in the majority of eukaryotes and their cell cycle-related functions characterized in great detail. However, genetic studies in another fungal species, Aspergillus nidulans, identified a distinct family of protein kinases, the NEKs, that are also widely conserved and have key roles in the cell cycle, but which remain less well studied. Nevertheless, it is now clear that multiple NEK family members act in networks to regulate specific events of mitosis, including centrosome separation, spindle assembly and cytokinesis. Here, we describe our current understanding of how the NEK kinases contribute to these processes, particularly through targeted phosphorylation of proteins associated with the microtubule cytoskeleton. We also present the latest findings on molecular events that control the activation state of the NEKs and how these are revealing novel modes of enzymatic regulation relevant not only to other kinases but also to pathological mechanisms of disease.
Collapse
Affiliation(s)
- Andrew M. Fry
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Richard Bayliss
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Joan Roig
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain
| |
Collapse
|
21
|
Baumgart M, Barth E, Savino A, Groth M, Koch P, Petzold A, Arisi I, Platzer M, Marz M, Cellerino A. A miRNA catalogue and ncRNA annotation of the short-living fish Nothobranchius furzeri. BMC Genomics 2017; 18:693. [PMID: 28874118 PMCID: PMC5584509 DOI: 10.1186/s12864-017-3951-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 07/20/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The short-lived fish Nothobranchius furzeri is the shortest-lived vertebrate that can be cultured in captivity and was recently established as a model organism for aging research. Small non-coding RNAs, especially miRNAs, are implicated in age dependent control of gene expression. RESULTS Here, we present a comprehensive catalogue of miRNAs and several other non-coding RNA classes (ncRNAs) for Nothobranchius furzeri. Analyzing multiple small RNA-Seq libraries, we show most of these identified miRNAs are expressed in at least one of seven Nothobranchius species. Additionally, duplication and clustering of N. furzeri miRNAs was analyzed and compared to the four fish species Danio rerio, Oryzias latipes, Gasterosteus aculeatus and Takifugu rubripes. A peculiar characteristic of N. furzeri, as compared to other teleosts, was a duplication of the miR-29 cluster. CONCLUSION The completeness of the catalogue we provide is comparable to that of the zebrafish. This catalogue represents a basis to investigate the role of miRNAs in aging and development in this species.
Collapse
Affiliation(s)
- Mario Baumgart
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Emanuel Barth
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
- Bioinformatics/High Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | | | - Marco Groth
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Philipp Koch
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | | | - Ivan Arisi
- European Brain Research Institute (EBRI), Rome, Italy
| | - Matthias Platzer
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Manja Marz
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
- Bioinformatics/High Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - Alessandro Cellerino
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
- Laboratory of Biology, Scuola Normale Superiore, 56126 Pisa, Italy
| |
Collapse
|
22
|
NEK1 kinase domain structure and its dynamic protein interactome after exposure to Cisplatin. Sci Rep 2017; 7:5445. [PMID: 28710492 PMCID: PMC5511132 DOI: 10.1038/s41598-017-05325-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/02/2017] [Indexed: 11/11/2022] Open
Abstract
NEK family kinases are serine/threonine kinases that have been functionally implicated in the regulation of the disjunction of the centrosome, the assembly of the mitotic spindle, the function of the primary cilium and the DNA damage response. NEK1 shows pleiotropic functions and has been found to be mutated in cancer cells, ciliopathies such as the polycystic kidney disease, as well as in the genetic diseases short-rib thoracic dysplasia, Mohr-syndrome and amyotrophic lateral sclerosis. NEK1 is essential for the ionizing radiation DNA damage response and priming of the ATR kinase and of Rad54 through phosphorylation. Here we report on the structure of the kinase domain of human NEK1 in its apo- and ATP-mimetic inhibitor bound forms. The inhibitor bound structure may allow the design of NEK specific chemo-sensitizing agents to act in conjunction with chemo- or radiation therapy of cancer cells. Furthermore, we characterized the dynamic protein interactome of NEK1 after DNA damage challenge with cisplatin. Our data suggest that NEK1 and its interaction partners trigger the DNA damage pathways responsible for correcting DNA crosslinks.
Collapse
|
23
|
Tan R, Nakajima S, Wang Q, Sun H, Xue J, Wu J, Hellwig S, Zeng X, Yates NA, Smithgall TE, Lei M, Jiang Y, Levine AS, Su B, Lan L. Nek7 Protects Telomeres from Oxidative DNA Damage by Phosphorylation and Stabilization of TRF1. Mol Cell 2017; 65:818-831.e5. [PMID: 28216227 PMCID: PMC5924698 DOI: 10.1016/j.molcel.2017.01.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 11/26/2016] [Accepted: 01/05/2017] [Indexed: 11/24/2022]
Abstract
Telomeric repeat binding factor 1 (TRF1) is essential to the maintenance of telomere chromatin structure and integrity. However, how telomere integrity is maintained, especially in response to damage, remains poorly understood. Here, we identify Nek7, a member of the Never in Mitosis Gene A (NIMA) kinase family, as a regulator of telomere integrity. Nek7 is recruited to telomeres and stabilizes TRF1 at telomeres after damage in an ATM activation-dependent manner. Nek7 deficiency leads to telomere aberrations, long-lasting γH2AX and 53BP1 foci, and augmented cell death upon oxidative telomeric DNA damage. Mechanistically, Nek7 interacts with and phosphorylates TRF1 on Ser114, which prevents TRF1 from binding to Fbx4, an Skp1-Cul1-F box E3 ligase subunit, thereby alleviating proteasomal degradation of TRF1, leading to a stable association of TRF1 with Tin2 to form a shelterin complex. Our data reveal a mechanism of efficient protection of telomeres from damage through Nek7-dependent stabilization of TRF1.
Collapse
Affiliation(s)
- Rong Tan
- Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA; Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Satoshi Nakajima
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Qun Wang
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Hongxiang Sun
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Jing Xue
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Jian Wu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Sabine Hellwig
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Xuemei Zeng
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, 3501 Fifth Avenue, 9th Floor Biomedical Science Tower III, Pittsburgh, PA 15261, USA
| | - Nathan A Yates
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA; Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, 3501 Fifth Avenue, 9th Floor Biomedical Science Tower III, Pittsburgh, PA 15261, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, S362 Biomedical Science Tower S, Pittsburgh, PA 15261, USA
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Ming Lei
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, W1058 Thomas E. Starzl Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | - Arthur S Levine
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Bing Su
- Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China; Department of Immunobiology and the Vascular Biology and Therapeutics Program, Yale School of Medicine, 10 Amistad Street, PO Box 208011, New Haven, CT 06520, USA.
| | - Li Lan
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA.
| |
Collapse
|
24
|
Abeyta A, Castella M, Jacquemont C, Taniguchi T. NEK8 regulates DNA damage-induced RAD51 foci formation and replication fork protection. Cell Cycle 2016; 16:335-347. [PMID: 27892797 PMCID: PMC5324754 DOI: 10.1080/15384101.2016.1259038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Proteins essential for homologous recombination play a pivotal role in the repair of DNA double strand breaks, DNA inter-strand crosslinks and replication fork stability. Defects in homologous recombination also play a critical role in the development of cancer and the sensitivity of these cancers to chemotherapy. RAD51, an essential factor for homologous recombination and replication fork protection, accumulates and forms immunocytochemically detectable nuclear foci at sites of DNA damage. To identify kinases that may regulate RAD51 localization to sites of DNA damage, we performed a human kinome siRNA library screen, using DNA damage-induced RAD51 foci formation as readout. We found that NEK8, a NIMA family kinase member, is required for efficient DNA damage-induced RAD51 foci formation. Interestingly, knockout of Nek8 in murine embryonic fibroblasts led to cellular sensitivity to the replication inhibitor, hydroxyurea, and inhibition of the ATR kinase. Furthermore, NEK8 was required for proper replication fork protection following replication stall with hydroxyurea. Loading of RAD51 to chromatin was decreased in NEK8-depleted cells and Nek8-knockout cells. Single-molecule DNA fiber analyses revealed that nascent DNA tracts were degraded in the absence of NEK8 following treatment with hydroxyurea. Consistent with this, Nek8-knockout cells showed increased chromosome breaks following treatment with hydroxyurea. Thus, NEK8 plays a critical role in replication fork stability through its regulation of the DNA repair and replication fork protection protein RAD51.
Collapse
Affiliation(s)
- Antonio Abeyta
- a Divisions of Human Biology and Public Health Sciences , Fred Hutchinson Cancer Research Center , Seattle , WA , USA.,b Molecular & Cellular Biology Graduate Program , University of Washington , Seattle , WA , USA
| | - Maria Castella
- a Divisions of Human Biology and Public Health Sciences , Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| | - Celine Jacquemont
- a Divisions of Human Biology and Public Health Sciences , Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| | - Toshiyasu Taniguchi
- a Divisions of Human Biology and Public Health Sciences , Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| |
Collapse
|
25
|
Sambaturu N, Mishra M, Chandra N. EpiTracer - an algorithm for identifying epicenters in condition-specific biological networks. BMC Genomics 2016; 17 Suppl 4:543. [PMID: 27556637 PMCID: PMC5001201 DOI: 10.1186/s12864-016-2792-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In biological systems, diseases are caused by small perturbations in a complex network of interactions between proteins. Perturbations typically affect only a small number of proteins, which go on to disturb a larger part of the network. To counteract this, a stress-response is launched, resulting in a complex pattern of variations in the cell. Identifying the key players involved in either spreading the perturbation or responding to it can give us important insights. RESULTS We develop an algorithm, EpiTracer, which identifies the key proteins, or epicenters, from which a large number of changes in the protein-protein interaction (PPI) network ripple out. We propose a new centrality measure, ripple centrality, which measures how effectively a change at a particular node can ripple across the network by identifying highest activity paths specific to the condition of interest, obtained by mapping gene expression profiles to the PPI network. We demonstrate the algorithm using an overexpression study and a knockdown study. In the overexpression study, the gene that was overexpressed (PARK2) was highlighted as the most important epicenter specific to the perturbation. The other top-ranked epicenters were involved in either supporting the activity of PARK2, or counteracting it. Also, 5 of the identified epicenters showed no significant differential expression, showing that our method can find information which simple differential expression analysis cannot. In the second dataset (SP1 knockdown), alternative regulators of SP1 targets were highlighted as epicenters. Also, the gene that was knocked down (SP1) was picked up as an epicenter specific to the control condition. Sensitivity analysis showed that the genes identified as epicenters remain largely unaffected by small changes. CONCLUSIONS We develop an algorithm, EpiTracer, to find epicenters in condition-specific biological networks, given the PPI network and gene expression levels. EpiTracer includes programs which can extract the immediate influence zone of epicenters and provide a summary of dysregulated genes, facilitating quick biological analysis. We demonstrate its efficacy on two datasets with differing characteristics, highlighting its general applicability. We also show that EpiTracer is not sensitive to minor changes in the network. The source code for EpiTracer is provided at Github ( https://github.com/narmada26/EpiTracer ).
Collapse
Affiliation(s)
- Narmada Sambaturu
- IISc Mathematics Initiative, Indian Institute of Science, Bangalore, 560012 India
| | - Madhulika Mishra
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012 India
| | - Nagasuma Chandra
- IISc Mathematics Initiative, Indian Institute of Science, Bangalore, 560012 India
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012 India
| |
Collapse
|
26
|
Hirai Y, Tamura M, Otani J, Ishikawa F. NEK6-mediated phosphorylation of human TPP1 regulates telomere length through telomerase recruitment. Genes Cells 2016; 21:874-89. [DOI: 10.1111/gtc.12391] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/31/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Yugo Hirai
- Department of Gene Mechanisms; Graduate School of Biostudies; Kyoto University; Yoshida-Konoe-cho Sakyo-ku Kyoto 606-8501 Japan
| | - Miki Tamura
- Department of Gene Mechanisms; Graduate School of Biostudies; Kyoto University; Yoshida-Konoe-cho Sakyo-ku Kyoto 606-8501 Japan
| | - Junji Otani
- Department of Gene Mechanisms; Graduate School of Biostudies; Kyoto University; Yoshida-Konoe-cho Sakyo-ku Kyoto 606-8501 Japan
| | - Fuyuki Ishikawa
- Department of Gene Mechanisms; Graduate School of Biostudies; Kyoto University; Yoshida-Konoe-cho Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
27
|
Zuo J, Ma H, Cai H, Wu Y, Jiang W, Yu L. An inhibitory role of NEK6 in TGFβ/Smad signaling pathway. BMB Rep 2015; 48:473-478. [PMID: 25523445 PMCID: PMC4576956 DOI: 10.5483/bmbrep.2015.48.8.225] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 11/17/2014] [Accepted: 12/09/2014] [Indexed: 11/20/2022] Open
Abstract
The NEK6 (NIMA-related kinases 6) is reported to play potential roles in tumorigenesis. Although it is suggested to function in several cellular pathways, the underlying mechanism in tumorigenesis is still largely unknown. In the present study, we discovered interaction of NEK6 with Smad4, a key member of transforming growth factor beta (TGFβ) pathway. Over-expression of NEK6 in hepatocellular carcinoma (HCC) cell lines suppresses TGFβ-mediated transcription activity in a kinase activity-dependent manner. In addition, NEK6 suppresses the cell growth arrest induced by TGFβ. Mechanically, NEK6 blocks nuclear translocation of Smad4, which is essential for TGFβ function. Moreover, we identified that NEK6 could be regulated by TGFβ and hypoxia. Our study sheds new light on the roles of NEK6 in canonical TGFβ/Smad pathway and tumorigenesis.
Collapse
Affiliation(s)
- Jie Zuo
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Fudan University, Shanghai 200433, PR China
| | - Haijie Ma
- Cell and Molecular Biology Laboratory, Zhoushan Hospital, Zhejiang, China
| | - Hao Cai
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Fudan University, Shanghai 200433, PR China
| | - Yanhua Wu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Fudan University, Shanghai 200433, PR China
| | - Wei Jiang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Fudan University, Shanghai 200433, PR China
| | - Long Yu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Fudan University, Shanghai 200433, PR China
| |
Collapse
|
28
|
Zhao Y, Hu J, Li R, Song J, Kang Y, Liu S, Zhang D. Enhanced NK cell adoptive antitumor effects against breast cancer in vitro via blockade of the transforming growth factor-β signaling pathway. Onco Targets Ther 2015; 8:1553-9. [PMID: 26124672 PMCID: PMC4482381 DOI: 10.2147/ott.s82616] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Natural killer (NK) cells have great potential for improving cancer immunotherapy. Adoptive NK cell transfer, an adoptive immunotherapy, represents a promising nontoxic anticancer therapy. However, existing data indicate that tumor cells can effectively escape NK cell-mediated apoptosis through immunosuppressive effects in the tumor microenvironment, and the therapeutic activity of adoptive NK cell transfer is not as efficient as anticipated. Transforming growth factor-beta (TGF-β) is a potent immunosuppressant. Genetic and epigenetic events that occur during mammary tumorigenesis circumvent the tumor-suppressing activity of TGF-β, thereby permitting late-stage breast cancer cells to acquire an invasive and metastatic phenotype in response to TGF-β. To block the TGF-β signaling pathway, NK cells were genetically modified with a dominant-negative TGF-β type II receptor by optimizing electroporation using the Amaxa Nucleofector system. These genetically modified NK cells were insensitive to TGF-β and resisted the suppressive effect of TGF-β on MCF-7 breast cancer cells in vitro. Our results demonstrate that blocking the TGF-β signaling pathway to modulate the tumor microenvironment can improve the antitumor activity of adoptive NK cells in vitro, thereby providing a new rationale for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yue Zhao
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Jinyue Hu
- Department of Breast and Thyroid Surgery, The Third Hospital of Zhengzhou, Zhengzhou, People's Republic of China
| | - Rongguo Li
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Jian Song
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Yujuan Kang
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Si Liu
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Dongwei Zhang
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
29
|
Yochem J, Lažetić V, Bell L, Chen L, Fay D. C. elegans NIMA-related kinases NEKL-2 and NEKL-3 are required for the completion of molting. Dev Biol 2015; 398:255-66. [PMID: 25523392 PMCID: PMC4314388 DOI: 10.1016/j.ydbio.2014.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/29/2014] [Accepted: 12/04/2014] [Indexed: 12/20/2022]
Abstract
Caenorhabditis elegans molting is a process during which the apical extracellular matrix of the epidermis, the cuticle, is remodeled through a process of degradation and re-synthesis. Using a genetic approach, we identified nekl-3 as essential for the completion of molting. NEKL-3 is highly similar to the mammalian NEK kinase family members NEK6 and NEK7. Animals homozygous for a hypomorphic mutation in nekl-3, sv3, had a novel molting defect in which the central body region, but not the head or tail, was unable to shed the old cuticle. In contrast, a null mutation in nekl-3, gk506, led to complete enclosure within the old cuticle. nekl-2, which is most similar to mammalian NEK8, was also essential for molting. Mosaic analyses demonstrated that NEKL-2 and NEKL-3 were specifically required within the large epidermal syncytium, hyp7, to facilitate molting. Consistent with this, NEKL-2 and NEKL-3 were expressed at the apical surface of hyp7 where they localized to small spheres or tubular structures. Inhibition of nekl-2, but not nekl-3, led to the mislocalization of LRP-1/megalin, a cell surface receptor for low-density lipoprotein (LDL)-binding proteins. In addition, nekl-2 inhibition led to the mislocalization of several other endosome-associated proteins. Notably, LRP-1 acts within hyp7 to facilitate completion of molting, suggesting at least one mechanism by which NEKL-2 may influence molting. Notably, our studies failed to reveal a requirement for NEKL-2 or NEKL-3 in cell division, a function reported for several mammalian NEKs including NEK6 and NEK7. Our findings provide the first genetic and in vivo evidence for a role of NEK family members in endocytosis, which may be evolutionarily conserved.
Collapse
Affiliation(s)
- John Yochem
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY 82071, United States; Department of Genetics, Cell Biology, and Development and the Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, United States
| | - Vladimir Lažetić
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY 82071, United States
| | - Leslie Bell
- Department of Genetics, Cell Biology, and Development and the Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, United States
| | - Lihsia Chen
- Department of Genetics, Cell Biology, and Development and the Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, United States
| | - David Fay
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY 82071, United States.
| |
Collapse
|
30
|
Moraes EC, Meirelles GV, Honorato RV, de Souza TDACB, de Souza EE, Murakami MT, de Oliveira PSL, Kobarg J. Kinase inhibitor profile for human nek1, nek6, and nek7 and analysis of the structural basis for inhibitor specificity. Molecules 2015; 20:1176-91. [PMID: 25591119 PMCID: PMC6272266 DOI: 10.3390/molecules20011176] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/05/2015] [Indexed: 12/11/2022] Open
Abstract
Human Neks are a conserved protein kinase family related to cell cycle progression and cell division and are considered potential drug targets for the treatment of cancer and other pathologies. We screened the activation loop mutant kinases hNek1 and hNek2, wild-type hNek7, and five hNek6 variants in different activation/phosphorylation statesand compared them against 85 compounds using thermal shift denaturation. We identified three compounds with significant Tm shifts: JNK Inhibitor II for hNek1(Δ262-1258)-(T162A), Isogranulatimide for hNek6(S206A), andGSK-3 Inhibitor XIII for hNek7wt. Each one of these compounds was also validated by reducing the kinases activity by at least 25%. The binding sites for these compounds were identified by in silico docking at the ATP-binding site of the respective hNeks. Potential inhibitors were first screened by thermal shift assays, had their efficiency tested by a kinase assay, and were finally analyzed by molecular docking. Our findings corroborate the idea of ATP-competitive inhibition for hNek1 and hNek6 and suggest a novel non-competitive inhibition for hNek7 in regard to GSK-3 Inhibitor XIII. Our results demonstrate that our approach is useful for finding promising general and specific hNekscandidate inhibitors, which may also function as scaffolds to design more potent and selective inhibitors.
Collapse
Affiliation(s)
- Eduardo Cruz Moraes
- LaboratórioNacional de Biociências, Centro Nacional de PesquisaemEnergia e Materiais, Campinas, 13083-970 SP, Brazil.
| | - Gabriela Vaz Meirelles
- LaboratórioNacional de Biociências, Centro Nacional de PesquisaemEnergia e Materiais, Campinas, 13083-970 SP, Brazil.
| | - Rodrigo Vargas Honorato
- LaboratórioNacional de Biociências, Centro Nacional de PesquisaemEnergia e Materiais, Campinas, 13083-970 SP, Brazil.
| | | | - Edmarcia Elisa de Souza
- LaboratórioNacional de Biociências, Centro Nacional de PesquisaemEnergia e Materiais, Campinas, 13083-970 SP, Brazil.
| | - Mario Tyago Murakami
- LaboratórioNacional de Biociências, Centro Nacional de PesquisaemEnergia e Materiais, Campinas, 13083-970 SP, Brazil.
| | | | - Jörg Kobarg
- Programa de Pós-graduação em Biologia Funcional e Molecular, Departamento de Bioquímica e BiologiaTecidual, Instituto de Biologia, UniversidadeEstadual de Campinas, Campinas, 13083-862 SP, Brazil.
| |
Collapse
|
31
|
Smith SC, Petrova AV, Madden MZ, Wang H, Pan Y, Warren MD, Hardy CW, Liang D, Liu EA, Robinson MH, Rudra S, Wang J, Ehdaivand S, Torres MA, Wang Y, Yu DS. A gemcitabine sensitivity screen identifies a role for NEK9 in the replication stress response. Nucleic Acids Res 2014; 42:11517-27. [PMID: 25217585 PMCID: PMC4191414 DOI: 10.1093/nar/gku840] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Replication Stress Response (RSR) is a signaling network that recognizes challenges to DNA replication and coordinates diverse DNA repair and cell-cycle checkpoint pathways. Gemcitabine is a nucleoside analogue that causes cytotoxicity by inducing DNA replication blocks. Using a synthetic lethal screen of a RNAi library of nuclear enzymes to identify genes that when silenced cause gemcitabine sensitization or resistance in human triple-negative breast cancer cells, we identified NIMA (never in mitosis gene A)-related kinase 9 (NEK9) as a key component of the RSR. NEK9 depletion in cells leads to replication stress hypersensitivity, spontaneous accumulation of DNA damage and RPA70 foci, and an impairment in recovery from replication arrest. NEK9 protein levels also increase in response to replication stress. NEK9 complexes with CHK1, and moreover, NEK9 depletion impairs CHK1 autophosphorylation and kinase activity in response to replication stress. Thus, NEK9 is a critical component of the RSR that promotes CHK1 activity, maintaining genome integrity following challenges to DNA replication.
Collapse
Affiliation(s)
- Scott C Smith
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Aleksandra V Petrova
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Matthew Z Madden
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hongyan Wang
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yunfeng Pan
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Matthew D Warren
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Claire W Hardy
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dong Liang
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Elaine A Liu
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - M Hope Robinson
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Soumon Rudra
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jie Wang
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shahrzad Ehdaivand
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mylin A Torres
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ya Wang
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David S Yu
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
32
|
Meirelles GV, Perez AM, de Souza EE, Basei FL, Papa PF, Melo Hanchuk TD, Cardoso VB, Kobarg J. “Stop Ne(c)king around”: How interactomics contributes to functionally characterize Nek family kinases. World J Biol Chem 2014; 5:141-160. [PMID: 24921005 PMCID: PMC4050109 DOI: 10.4331/wjbc.v5.i2.141] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 01/07/2014] [Accepted: 02/18/2014] [Indexed: 02/05/2023] Open
Abstract
Aside from Polo and Aurora, a third but less studied kinase family involved in mitosis regulation is the never in mitosis-gene A (NIMA)-related kinases (Neks). The founding member of this family is the sole member NIMA of Aspergillus nidulans, which is crucial for the initiation of mitosis in that organism. All 11 human Neks have been functionally assigned to one of the three core functions established for this family in mammals: (1) centrioles/mitosis; (2) primary ciliary function/ciliopathies; and (3) DNA damage response (DDR). Recent findings, especially on Nek 1 and 8, showed however, that several Neks participate in parallel in at least two of these contexts: primary ciliary function and DDR. In the core section of this in-depth review, we report the current detailed functional knowledge on each of the 11 Neks. In the discussion, we return to the cross-connections among Neks and point out how our and other groups’ functional and interactomics studies revealed that most Neks interact with protein partners associated with two if not all three of the functional contexts. We then raise the hypothesis that Neks may be the connecting regulatory elements that allow the cell to fine tune and synchronize the cellular events associated with these three core functions. The new and exciting findings on the Nek family open new perspectives and should allow the Neks to finally claim the attention they deserve in the field of kinases and cell cycle biology.
Collapse
|
33
|
Discovery of novel inhibitors for Nek6 protein through homology model assisted structure based virtual screening and molecular docking approaches. ScientificWorldJournal 2014; 2014:967873. [PMID: 24587765 PMCID: PMC3920677 DOI: 10.1155/2014/967873] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/13/2013] [Indexed: 01/24/2023] Open
Abstract
Nek6 is a member of the NIMA (never in mitosis, gene A)-related serine/threonine kinase family that plays an important role in the initiation of mitotic cell cycle progression. This work is an attempt to emphasize the structural and functional relationship of Nek6 protein based on homology modeling and binding pocket analysis. The three-dimensional structure of Nek6 was constructed by molecular modeling studies and the best model was further assessed by PROCHECK, ProSA, and ERRAT plot in order to analyze the quality and consistency of generated model. The overall quality of computed model showed 87.4% amino acid residues under the favored region. A 3 ns molecular dynamics simulation confirmed that the structure was reliable and stable. Two lead compounds (Binding database ID: 15666, 18602) were retrieved through structure-based virtual screening and induced fit docking approaches as novel Nek6 inhibitors. Hence, we concluded that the potential compounds may act as new leads for Nek6 inhibitors designing.
Collapse
|
34
|
The inhibition of Nek6 function sensitizes human cancer cells to premature senescence upon serum reduction or anticancer drug treatment. Cancer Lett 2013; 335:175-82. [PMID: 23416273 DOI: 10.1016/j.canlet.2013.02.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 02/01/2013] [Accepted: 02/05/2013] [Indexed: 12/30/2022]
Abstract
The induction of premature senescence in cancer cells was proposed as an effective cancer treatment strategy. In this paper, we show that the inhibition of Nek6 expression by Nek6 siRNA-mediated knockdown or the overexpression of a dominant negative form of Nek6 (Nek6KM) induced premature senescence as well as cell death under reduced serum conditions in multiple cancer cell lines, including both p53 wild-type and p53 mutant/null backgrounds. Moreover, cancer cells expressing Nek6KM exhibited significantly increased premature senescence upon treatment with the anticancer drugs doxorubicin (DOX) and camptothecin (CPT). Significantly, the overexpression of Nek6KM also inhibited tumor growth and promoted premature senescence in vivo in a xenograft mouse model. Taken together, our results further confirm that Nek6 plays an important role in the premature senescence of cancer cells, suggesting that Nek6 may be a potential therapeutic target for human cancers.
Collapse
|
35
|
Nek1 kinase associates with ATR-ATRIP and primes ATR for efficient DNA damage signaling. Proc Natl Acad Sci U S A 2013; 110:2175-80. [PMID: 23345434 DOI: 10.1073/pnas.1217781110] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The master checkpoint kinase ATR (ATM and Rad3-related) and its partner ATRIP (ATR-interacting protein) exist as a complex and function together in the DNA damage response. Unexpectedly, we found that the stability of the ATR-ATRIP complex is regulated by an unknown kinase independently of DNA damage. In search for this regulator of ATR-ATRIP, we found that a single member of the NIMA (never in mitosis A)-related kinase family, Nek1, is critical for initiating the ATR response. Upon DNA damage, cells lacking Nek1 failed to efficiently phosphorylate multiple ATR substrates and support ATR autophosphorylation at threnine 1989, one of the earliest events during the ATR response. The ability of Nek1 to promote ATR activation relies on the kinase activity of Nek1 and its interaction with ATR-ATRIP. Importantly, even in undamaged cells, Nek1 is required for maintaining the levels of ATRIP, the association between ATR and ATRIP, and the basal kinase activity of ATR. Thus, as an ATR-associated kinase, Nek1, enhances the stability and activity of ATR-ATRIP before DNA damage, priming ATR-ATRIP for a robust DNA damage response.
Collapse
|
36
|
Fry AM, O'Regan L, Sabir SR, Bayliss R. Cell cycle regulation by the NEK family of protein kinases. J Cell Sci 2012; 125:4423-33. [PMID: 23132929 DOI: 10.1242/jcs.111195] [Citation(s) in RCA: 265] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Genetic screens for cell division cycle mutants in the filamentous fungus Aspergillus nidulans led to the discovery of never-in-mitosis A (NIMA), a serine/threonine kinase that is required for mitotic entry. Since that discovery, NIMA-related kinases, or NEKs, have been identified in most eukaryotes, including humans where eleven genetically distinct proteins named NEK1 to NEK11 are expressed. Although there is no evidence that human NEKs are essential for mitotic entry, it is clear that several NEK family members have important roles in cell cycle control. In particular, NEK2, NEK6, NEK7 and NEK9 contribute to the establishment of the microtubule-based mitotic spindle, whereas NEK1, NEK10 and NEK11 have been implicated in the DNA damage response. Roles for NEKs in other aspects of mitotic progression, such as chromatin condensation, nuclear envelope breakdown, spindle assembly checkpoint signalling and cytokinesis have also been proposed. Interestingly, NEK1 and NEK8 also function within cilia, the microtubule-based structures that are nucleated from basal bodies. This has led to the current hypothesis that NEKs have evolved to coordinate microtubule-dependent processes in both dividing and non-dividing cells. Here, we review the functions of the human NEKs, with particular emphasis on those family members that are involved in cell cycle control, and consider their potential as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Andrew M Fry
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK.
| | | | | | | |
Collapse
|
37
|
Bensimon A, Aebersold R, Shiloh Y. Beyond ATM: the protein kinase landscape of the DNA damage response. FEBS Lett 2011; 585:1625-39. [PMID: 21570395 DOI: 10.1016/j.febslet.2011.05.013] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 05/04/2011] [Accepted: 05/04/2011] [Indexed: 01/18/2023]
Abstract
The DNA of all organisms is constantly subjected to damaging agents, both exogenous and endogenous. One extremely harmful lesion is the double-strand break (DSB), which activates a massive signaling network - the DNA damage response (DDR). The chief activator of the DSB response is the ATM protein kinase, which phosphorylates numerous key players in its various branches. Recent phosphoproteomic screens have extended the scope of damage-induced phosphorylations beyond the direct ATM substrates. We review the evidence for the involvement of numerous other protein kinases in the DDR, obtained from documentation of specific pathways as well as high-throughput screens. The emerging picture of the protein phosphorylation landscape in the DDR broadens the current view on the role of this protein modification in the maintenance of genomic stability. Extensive cross-talk between many of these protein kinases forms an interlaced signaling network that spans numerous cellular processes. Versatile protein kinases in this network affect pathways that are different from those they have been identified with to date. The DDR appears to be one of the most extensive signaling responses to cellular stimuli.
Collapse
Affiliation(s)
- Ariel Bensimon
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| | | | | |
Collapse
|
38
|
Jee HJ, Kim HJ, Kim AJ, Song N, Kim M, Yun J. Nek6 suppresses the premature senescence of human cancer cells induced by camptothecin and doxorubicin treatment. Biochem Biophys Res Commun 2011; 408:669-73. [PMID: 21539811 DOI: 10.1016/j.bbrc.2011.04.083] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 04/18/2011] [Indexed: 01/24/2023]
Abstract
Cellular senescence plays an important role in tumor suppression. The mitotic kinase Nek6 has recently been shown to be overexpressed in various cancers and has been implicated in tumorigenesis. Previously, we reported that the down-regulation of Nek6 expression was required for p53-induced senescence. In this study, we examined the effect of Nek6 overexpression on the premature senescence of cancer cells induced by the anticancer drugs camptothecin (CPT) and doxorubicin (DOX). We found that CPT- and DOX-induced morphology changes and increases in senescence-associated β-galactosidase staining were significantly inhibited in EJ human bladder cancer cells and H1299 human lung cancer cells overexpressing HA-Nek6. DOX-induced G2/M cell cycle arrest and the reduction in cyclin B and cdc2 levels after DOX treatment were significantly reduced by Nek6 overexpression. In addition, an increase in the intracellular levels of ROS in response to DOX was also inhibited in cells overexpressing Nek6. These results suggest that the increased expression of Nek6 renders cancer cells resistant to premature senescence, and targeting Nek6 could be an efficient strategy for cancer treatment.
Collapse
Affiliation(s)
- Hye Jin Jee
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, South Korea
| | | | | | | | | | | |
Collapse
|
39
|
Vaz Meirelles G, Ferreira Lanza DC, da Silva JC, Santana Bernachi J, Paes Leme AF, Kobarg J. Characterization of hNek6 interactome reveals an important role for its short N-terminal domain and colocalization with proteins at the centrosome. J Proteome Res 2010; 9:6298-316. [PMID: 20873783 DOI: 10.1021/pr100562w] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Physical protein-protein interactions are fundamental to all biological processes and are organized in complex networks. One branch of the kinome network is the evolutionarily conserved NIMA-related serine/threonine kinases (Neks). Most of the 11 mammalian Neks studied so far are related to cell cycle regulation, and due to association with diverse human pathologies, Neks are promising chemotherapeutic targets. Human Nek6 was associated to carcinogenesis, but its interacting partners and signaling pathways remain elusive. Here we introduce hNek6 as a highly connected member in the human kinase interactome. In a more global context, we performed a broad data bank comparison based on degree distribution analysis and found that the human kinome is enriched in hubs. Our networks include a broad set of novel hNek6 interactors as identified by our yeast two-hybrid screens classified into 18 functional categories. All of the tested interactions were confirmed, and the majority of tested substrates were phosphorylated in vitro by hNek6. Notably, we found that hNek6 N-terminal is important to mediate the interactions with its partners. Some novel interactors also colocalized with hNek6 and γ-tubulin in human cells, pointing to a possible centrosomal interaction. The interacting proteins link hNek6 to novel pathways, for example, Notch signaling and actin cytoskeleton regulation, or give new insights on how hNek6 may regulate previously proposed pathways such as cell cycle regulation, DNA repair response, and NF-κB signaling. Our findings open new perspectives in the study of hNek6 role in cancer by analyzing its novel interactions in specific pathways in tumor cells, which may provide important implications for drug design and cancer therapy.
Collapse
Affiliation(s)
- Gabriela Vaz Meirelles
- Laboratório Nacional de Biociências, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | | | | | | | | | | |
Collapse
|
40
|
Nek10 mediates G2/M cell cycle arrest and MEK autoactivation in response to UV irradiation. Mol Cell Biol 2010; 31:30-42. [PMID: 20956560 DOI: 10.1128/mcb.00648-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Appropriate cell cycle checkpoint control is essential for the maintenance of cell and organismal homeostasis. Members of the Nek (NIMA-related kinase) family of serine/threonine protein kinases have been implicated in the regulation of various aspects of the cell cycle. We explored the cellular functions of Nek10, a novel member of the Nek family, and demonstrate a role for Nek10 in the cellular UV response. Nek10 was required for the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) signaling upon UV irradiation but not in response to mitogens, such as epidermal growth factor stimulation. Nek10 physically associated with Raf-1 and MEK1 in a Raf-1-dependent manner, and the formation of this complex was necessary for Nek10-mediated MEK1 activation. Nek10 did not affect the kinase activity of Raf-1 but instead promoted the autophosphorylation-dependent activation of MEK1. The appropriate maintenance of the G(2)/M checkpoint following UV irradiation required Nek10 expression and ERK1/2 activation. Taken together, our results uncover a role for Nek10 in the cellular response to UV irradiation.
Collapse
|
41
|
Berretta R, Moscato P. Cancer biomarker discovery: the entropic hallmark. PLoS One 2010; 5:e12262. [PMID: 20805891 PMCID: PMC2923618 DOI: 10.1371/journal.pone.0012262] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Accepted: 06/26/2010] [Indexed: 12/29/2022] Open
Abstract
Background It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-througput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases.
Collapse
Affiliation(s)
- Regina Berretta
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, New South Wales, Australia
- Information Based Medicine Program, Hunter Medical Research Institute, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Pablo Moscato
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, New South Wales, Australia
- Information Based Medicine Program, Hunter Medical Research Institute, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
- Australian Research Council Centre of Excellence in Bioinformatics, Callaghan, New South Wales, Australia
- * E-mail:
| |
Collapse
|
42
|
Jeon YJ, Lee KY, Cho YY, Pugliese A, Kim HG, Jeong CH, Bode AM, Dong Z. Role of NEK6 in tumor promoter-induced transformation in JB6 C141 mouse skin epidermal cells. J Biol Chem 2010; 285:28126-33. [PMID: 20595392 DOI: 10.1074/jbc.m110.137190] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
NEK6 (NIMA-related kinase 6) is a homologue of the Aspergillus nidulans protein NIMA (never in mitosis, gene A). We demonstrate that overexpression of NEK6 induces anchorage-independent transformation of JB6 Cl41 mouse epidermal cells. Tissue arrays and Western immunoblot analysis show that NEK6 is overexpressed in malignant tissues and several cancer cell lines. Our data also show that NEK6 interacts with STAT3, an oncogenic transcription factor, and phosphorylates STAT3 on Ser(727), which is important for transcriptional activation. Additional studies using NEK6 mutants suggested that the phosphorylation on both Ser(206) and Thr(210) of NEK6 is critical for STAT3 phosphorylation and anchorage-independent transformation of mouse epidermal cells. Notably, knockdown of NEK6 decreased colony formation and STAT3 Ser(727) phosphorylation. Based on our findings, the most likely mechanism that can account for this biological effect involves the activation of STAT3 through the phosphorylation on Ser(727). Because of the critical role that STAT3 plays in mediating oncogenesis, the stimulatory effects of NEK6 on STAT3 and cell transformation suggest that this family of serine/threonine kinases might represent a novel chemotherapeutic target.
Collapse
Affiliation(s)
- Young Jin Jeon
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Salem H, Rachmin I, Yissachar N, Cohen S, Amiel A, Haffner R, Lavi L, Motro B. Nek7 kinase targeting leads to early mortality, cytokinesis disturbance and polyploidy. Oncogene 2010; 29:4046-57. [PMID: 20473324 DOI: 10.1038/onc.2010.162] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mammalian NIMA-related kinases (Neks) are commonly referred to as mitotic kinases, although a definitive in vivo verification of this definition is largely missing. Reduction in the activity of Nek7 or its close paralog, Nek6, has previously been shown to arrest cells in mitosis, mainly at metaphase. In this study, we investigate the developmental and cellular roles of Nek7 kinase through the generation and analysis of Nek7-deficient mice. We show that absence of Nek7 leads to lethality in late embryogenesis or at early post-natal stages and to severe growth retardation. Mouse embryonic fibroblasts (MEFs) derived from Nek7(-/-) embryos show increase tendency for chromosomal lagging, micronuclei formation and cytokinesis failure. Tetraploidy and aneuploidy were commonly observed and their prevalence arises with MEFs passages. The frequency of multicentrosomal cells in the mutant's MEF cells was higher, and it commonly occurred concurrently with a binuclear phenotype, suggesting cytokinesis failure etiology. Lastly, the percentage of mutant MEF cells bearing primary cilia (PC) was low, whereas a cell population having two cilia appeared in the mutant MEFs. Taken together, these results confirm Nek7 as a regulator of cell division, and reveal it as an essential component for mammalian growth and survival. The intimate connection between tetraploidy, aneuploidy and cancer development suggests that Nek7 deregulation can induce oncogenesis.
Collapse
Affiliation(s)
- H Salem
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Nassirpour R, Shao L, Flanagan P, Abrams T, Jallal B, Smeal T, Yin MJ. Nek6 mediates human cancer cell transformation and is a potential cancer therapeutic target. Mol Cancer Res 2010; 8:717-28. [PMID: 20407017 DOI: 10.1158/1541-7786.mcr-09-0291] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated the role of Nek6, a member of the NIMA-related serine/threonine kinase family, in tumorigenesis. Transcript, protein, and kinase activity levels of Nek6 were highly elevated in the malignant tumors and human cancer cell lines compared with normal tissue and fibroblast cells. Expression of exogenous wild-type Nek6 increased anchorage-independent growth of a variety of human cancer cell lines, whereas overexpression of the kinase-dead Nek6 and RNAi knockdown of endogenous Nek6 suppressed cancer cell transformation and induced apoptosis. Additionally, in in vivo xenograft nude mouse model, knockdown of Nek6 in HeLa cells resulted in reduction of tumor size relative to control siRNA tumors. Most importantly, knocking down endogenous Nek6 levels or exogenous expression of the kinase-dead form did not inhibit cell proliferation, nor did it induce apoptosis in normal fibroblast cells. Taken together, our data indicate a pivotal role for Nek6 in tumorigenesis and establish Nek6 as a potential target for treatment of a variety of human cancers.
Collapse
Affiliation(s)
- Rounak Nassirpour
- Pfizer Global Research and Development, La Jolla Laboratories, 10724 Science Center Drive, San Diego, CA 92121, USA
| | | | | | | | | | | | | |
Collapse
|