1
|
Zaka A, Yousaf M, Shahzad S, Rao HZ, Foo JN, Siddiqi S. Structural and functional insights into a novel homozygous missense pathogenic variant in CUL7 identified in consanguineous Pakistani family. J Biomol Struct Dyn 2024; 42:5092-5103. [PMID: 37345548 DOI: 10.1080/07391102.2023.2224889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
3M syndrome is a rare genetic familial disorder characterized by short stature, growth retardation, facial dysmorphism, skeletal abnormalities, fleshy protruding heels, and normal intelligence, caused by mutations in the CUL7, OBSL1 and CCDC8 genes. In the present study, a novel homozygous missense variant of CUL7 (NP_001161842.1, c.4493T > C, p.L1498P) has been identified in a consanguineous Pakistani family by whole exome sequencing. In silico structural evaluation, molecular docking and simulation studies of mutant CUL7 provides substantial evidence about its crucial role in the progression of discussed ailment. The newly discovered variant significantly altered the protein's three dimensional structure, leading to abnormal interaction with binding proteins. This computational and experimental investigation provides useful information to drug developers for the synthesis of novel therapeutics against the discussed ailment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ayesha Zaka
- Genomics Research Lab, Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| | - Maha Yousaf
- Genomics Research Lab, Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Shaheen Shahzad
- Genomics Research Lab, Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Hadi Zahid Rao
- Department of Oral & Maxillofacial Surgery, Bahria University Medical and Dental College Karachi, Pakistan
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Saima Siddiqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| |
Collapse
|
2
|
Li Z, Chen J, Huang H, Zhan Q, Wang F, Chen Z, Lu X, Sun G. Post-translational modifications in diabetic cardiomyopathy. J Cell Mol Med 2024; 28:e18158. [PMID: 38494853 PMCID: PMC10945092 DOI: 10.1111/jcmm.18158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 03/19/2024] Open
Abstract
The increasing attention towards diabetic cardiomyopathy as a distinctive complication of diabetes mellitus has highlighted the need for standardized diagnostic criteria and targeted treatment approaches in clinical practice. Ongoing research is gradually unravelling the pathogenesis of diabetic cardiomyopathy, with a particular emphasis on investigating various post-translational modifications. These modifications dynamically regulate protein function in response to changes in the internal and external environment, and their disturbance of homeostasis holds significant relevance for the development of chronic ailments. This review provides a comprehensive overview of the common post-translational modifications involved in the initiation and progression of diabetic cardiomyopathy, including O-GlcNAcylation, phosphorylation, methylation, acetylation and ubiquitination. Additionally, the review discusses drug development strategies for targeting key post-translational modification targets, such as agonists, inhibitors and PROTAC (proteolysis targeting chimaera) technology that targets E3 ubiquitin ligases.
Collapse
Affiliation(s)
- Zhi Li
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Jie Chen
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Hailong Huang
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Qianru Zhan
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Fengzhi Wang
- Department of Neurology, People's Hospital of Liaoning ProvincePeople's Hospital of China Medical UniversityShenyangChina
| | - Zihan Chen
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Xinwei Lu
- Department of CardiologySiping Central People's HospitalSipingChina
| | - Guozhe Sun
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
3
|
TRIM58 Interacts with ZEB1 to Suppress NSCLC Tumor Malignancy by Promoting ZEB1 Protein Degradation via UPP. DISEASE MARKERS 2023; 2023:5899662. [PMID: 36644609 PMCID: PMC9836804 DOI: 10.1155/2023/5899662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/05/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023]
Abstract
Background Currently, how to successfully control refractory and metastatic diseases remains a fundamental goal for clinicians to improve therapeutic effects for patients with non-small cell lung cancer (NSCLC). Several studies have discovered that TRIM58, a member of tripartite motif protein family, shows antitumor effect in multiple types of cancer. In this study, we aimed to further clarify the molecular regulatory network of TRIM58 and corresponding targets for NSCLC patients. Methods TRIM58 expression in clinical tumor tissue samples and cancer cell lines was examined. Functional experiments including cellular invasion, cell metastasis, chemoresistance assay, and ubiquitination evaluation experiments were conducted to investigate the interaction between TRIM58 and ZEB1, which is a prime element of transcription factor network that controls epithelial-to-mesenchymal transition. Results TRIM58 expression was characteristically decreased in NSCLC tumor tissues and cancer cell lines. Functional experiments demonstrated that TRIM58 suppression enhanced malignant biological behaviors including cellular survivability, migration, and invasion, as well as stem-like cellular phenotype of tumor cells. TRIM58 silencing also significantly enhanced the chemoresistance of NSCLC cells to chemoagents. TRIM58-ZEB1 interaction accelerated degradation of ZEB1 protein, thus further leading to the augment of tumor behaviors. Further detailed molecular experiments revealed that the interaction between TRIM58 and ZEB1 was mediated via ubiquitin-proteasome pathway (UPP). Conclusion TRIM58 suppressed NSCLC through interacting with ZEB1 and promoting ZEB1 protein degradation via UPP. The present research sheds light on the interaction between TRIM58 and ZEB1, and TRIM58/ZEB1 axis might be the potential therapeutic targets of NSCLC.
Collapse
|
4
|
Progress in the mechanism of neuronal surface P antigen modulating hippocampal function and implications for autoimmune brain disease. Curr Opin Neurol 2022; 35:436-442. [PMID: 35674087 DOI: 10.1097/wco.0000000000001054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW The aim of this study was to present a new regulation system in the hippocampus constituted by the neuronal surface P antigen (NSPA) and the tyrosine phosphatase PTPMEG/PTPN4, which provides mechanistic and therapeutic possibilities for cognitive dysfunction driven by antiribosomal P protein autoantibodies in patients with systemic lupus erythematosus (SLE). RECENT FINDINGS Mice models lacking the function of NSPA as an E3 ubiquitin ligase show impaired glutamatergic synaptic plasticity, decreased levels of NMDAR at the postsynaptic density in hippocampus and memory deficits. The levels of PTPMEG/PTPN4 are increased due to lower ubiquitination and proteasomal degradation, resulting in dephosphorylation of tyrosines that control endocytosis in GluN2 NMDAR subunits. Adult hippocampal neurogenesis (AHN) that normally contributes to memory processes is also defective in the absence of NSPA. SUMMARY NSPA function is crucial in memory processes controlling the stability of NMDAR at PSD through the ubiquitination of PTPMEG/PTPN4 and also through AHN. As anti-P autoantibodies reproduce the impairments of glutamatergic transmission, plasticity and memory performance seen in the absence of NSPA, it might be expected to perturb the NSPA/PTPMEG/PTPN4 pathway leading to hypofunction of NMDAR. This neuropathogenic mechanism contrasts with that of anti-NMDAR antibodies also involved in lupus cognitive dysfunction. Testing this hypothesis might open new therapeutic possibilities for cognitive dysfunction in SLE patients bearing anti-P autoantibodies.
Collapse
|
5
|
Li M, Zhao X, Yong H, Shang B, Lou W, Wang Y, Bai J. FBXO22 Promotes Growth and Metastasis and Inhibits Autophagy in Epithelial Ovarian Cancers via the MAPK/ERK Pathway. Front Pharmacol 2021; 12:778698. [PMID: 34950036 PMCID: PMC8688818 DOI: 10.3389/fphar.2021.778698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
E3 ubiquitin ligase F-box only protein 22 (FBXO22), which targets the key regulators of cellular activities for ubiquitylation and degradation, plays an important role in tumorigenesis and metastasis. However, the function of FBXO22 in epithelial ovarian cancers has not been reported. This study aims to explore the biological function of FBXO22 in epithelial ovarian cancers progression and metastasis and its specific regulation mechanism. Immunohistochemistry analysis of tissue microarray was performed to evaluate the expression of FBXO22 in epithelial ovarian cancers patients. The proliferative ability of epithelial ovarian cancers cells was examined by the CCK8. The metastasis ability was detected by the wound healing assay, migration and invasion assays. Western blot was used to verify the relationship between FBXO22 expression and mitogen-activated protein kinase related proteins. Autophagic flux was detected by electron microscopy, mRFP-GFP-LC3 adenovirus, lysosomal tracker and western blot. For in vivo experiments, the effect of FBXO22 on epithelial ovarian cancers resistance was observed in a xenograft tumor model and a metastatic mice model. We found that FBXO22 expression was significantly increased in epithelial ovarian cancers tissues and was closely correlated with clinical pathological factors. As a result, we found that FBXO22 promoted the growth and metastasis, as well as inhibited the autophagy flux. In addition, we identified that FBXO22 performed these functions via the MAPK/ERK pathway. Our results first reported the function of FBXO22 in epithelial ovarian cancer and the correlation between FBXO22 and autophagy, suggesting FBXO22 as a novel target of epithelial ovarian cancers assessment and treatment.
Collapse
Affiliation(s)
- Minle Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Xue Zhao
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Hongmei Yong
- Department of Oncology, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| | - Bingqing Shang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Weihua Lou
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - You Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
6
|
Anger M, Scheufele F, Ramanujam D, Meyer K, Nakajima H, Field LJ, Engelhardt S, Sarikas A. Genetic ablation of Cullin-RING E3 ubiquitin ligase 7 restrains pressure overload-induced myocardial fibrosis. PLoS One 2020; 15:e0244096. [PMID: 33351822 PMCID: PMC7755222 DOI: 10.1371/journal.pone.0244096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/03/2020] [Indexed: 11/20/2022] Open
Abstract
Fibrosis is a pathognomonic feature of structural heart disease and counteracted by distinct cardioprotective mechanisms, e.g. activation of the phosphoinositide 3-kinase (PI3K) / AKT pro-survival pathway. The Cullin-RING E3 ubiquitin ligase 7 (CRL7) was identified as negative regulator of PI3K/AKT signalling in skeletal muscle, but its role in the heart remains to be elucidated. Here, we sought to determine whether CRL7 modulates to cardiac fibrosis following pressure overload and dissect its underlying mechanisms. For inactivation of CRL7, the Cullin 7 (Cul7) gene was deleted in cardiac myocytes (CM) by injection of adeno-associated virus subtype 9 (AAV9) vectors encoding codon improved Cre-recombinase (AAV9-CMV-iCre) in Cul7flox/flox mice. In addition, Myosin Heavy Chain 6 (Myh6; alpha-MHC)-MerCreMer transgenic mice with tamoxifen-induced CM-specific expression of iCre were used as alternate model. After transverse aortic constriction (TAC), causing chronic pressure overload and fibrosis, AAV9-CMV-iCre induced Cul7-/- mice displayed a ~50% reduction of interstitial cardiac fibrosis when compared to Cul7+/+ animals (6.7% vs. 3.4%, p<0.01). Similar results were obtained with Cul7flox/floxMyh6-Mer-Cre-MerTg(1/0) mice which displayed a ~30% reduction of cardiac fibrosis after TAC when compared to Cul7+/+Myh6-Mer-Cre-MerTg(1/0) controls after TAC surgery (12.4% vs. 8.7%, p<0.05). No hemodynamic alterations were observed. AKTSer473 phosphorylation was increased 3-fold (p<0.01) in Cul7-/- vs. control mice, together with a ~78% (p<0.001) reduction of TUNEL-positive apoptotic cells three weeks after TAC. In addition, CM-specific expression of a dominant-negative CUL71152stop mutant resulted in a 16.3-fold decrease (p<0.001) of in situ end-labelling (ISEL) positive apoptotic cells. Collectively, our data demonstrate that CM-specific ablation of Cul7 restrains myocardial fibrosis and apoptosis upon pressure overload, and introduce CRL7 as a potential target for anti-fibrotic therapeutic strategies of the heart.
Collapse
Affiliation(s)
- Melanie Anger
- Institute of Pharmacology and Toxicology, Technische Universität München, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Florian Scheufele
- Institute of Pharmacology and Toxicology, Technische Universität München, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Deepak Ramanujam
- Institute of Pharmacology and Toxicology, Technische Universität München, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Kathleen Meyer
- Institute of Pharmacology and Toxicology, Technische Universität München, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Hidehiro Nakajima
- Wells Center for Pediatric Research and Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Loren J. Field
- Wells Center for Pediatric Research and Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technische Universität München, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Antonio Sarikas
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
- * E-mail:
| |
Collapse
|
7
|
The functional analysis of Cullin 7 E3 ubiquitin ligases in cancer. Oncogenesis 2020; 9:98. [PMID: 33130829 PMCID: PMC7603503 DOI: 10.1038/s41389-020-00276-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 01/09/2023] Open
Abstract
Cullin (CUL) proteins have critical roles in development and cancer, however few studies on CUL7 have been reported due to its characteristic molecular structure. CUL7 forms a complex with the ROC1 ring finger protein, and only two F-box proteins Fbxw8 and Fbxw11 have been shown to bind to CUL7. Interestingly, CUL7 can interact with its substrates by forming a novel complex that is independent of these two F-box proteins. The biological implications of CUL-ring ligase 7 (CRL7) suggest that the CRL7 may not only perform a proteolytic function but may also play a non-proteolytic role. Among the existing studied CRL7-based E3 ligases, CUL7 exerts both tumor promotion and suppression in a context-dependent manner. Currently, the mechanism of CUL7 in cancer remains unclear, and no studies have addressed potential therapies targeting CUL7. Consistent with the roles of the various CRL7 adaptors exhibit, targeting CRL7 might be an effective strategy for cancer prevention and treatment. We systematically describe the recent major advances in understanding the role of the CUL7 E3 ligase in cancer and further summarize its potential use in clinical therapy.
Collapse
|
8
|
Blondelle J, Biju A, Lange S. The Role of Cullin-RING Ligases in Striated Muscle Development, Function, and Disease. Int J Mol Sci 2020; 21:E7936. [PMID: 33114658 PMCID: PMC7672578 DOI: 10.3390/ijms21217936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
The well-orchestrated turnover of proteins in cross-striated muscles is one of the fundamental processes required for muscle cell function and survival. Dysfunction of the intricate protein degradation machinery is often associated with development of cardiac and skeletal muscle myopathies. Most muscle proteins are degraded by the ubiquitin-proteasome system (UPS). The UPS involves a number of enzymes, including E3-ligases, which tightly control which protein substrates are marked for degradation by the proteasome. Recent data reveal that E3-ligases of the cullin family play more diverse and crucial roles in cross striated muscles than previously anticipated. This review highlights some of the findings on the multifaceted functions of cullin-RING E3-ligases, their substrate adapters, muscle protein substrates, and regulatory proteins, such as the Cop9 signalosome, for the development of cross striated muscles, and their roles in the etiology of myopathies.
Collapse
Affiliation(s)
- Jordan Blondelle
- Department of Medicine, University of California, La Jolla, CA 92093, USA
| | - Andrea Biju
- Department of Medicine, University of California, La Jolla, CA 92093, USA
| | - Stephan Lange
- Department of Medicine, University of California, La Jolla, CA 92093, USA
- Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| |
Collapse
|
9
|
Chemosensory Event-Related Potentials and Power Spectrum could be A Possible Biomarker in 3M Syndrome Infants? Brain Sci 2020; 10:brainsci10040201. [PMID: 32235515 PMCID: PMC7226335 DOI: 10.3390/brainsci10040201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/25/2020] [Accepted: 03/29/2020] [Indexed: 12/02/2022] Open
Abstract
3M syndrome is a rare disorder that involves the gene cullin-7 (CUL7). CUL7 modulates odour detection, conditions the olfactory response (OR) and plays a role in the development of the olfactory system. Despite this involvement, there are no direct studies on olfactory functional effects in 3M syndrome. The purpose of the present work was to analyse the cortical OR through chemosensory event-related potentials (CSERPs) and power spectra calculated by electroencephalogram (EEG) signals recorded in 3M infants: two twins (3M-N) and an additional subject (3M-O). The results suggest that olfactory processing is diversified. Comparison of N1 and Late Positive Component (LPC) indicated substantial differences in 3M syndrome that may be a consequence of a modified olfactory processing pattern. Moreover, the presence of delta rhythms in 3M-O and 3M-N clearly indicates their involvement with OR, since the delta rhythm is closely connected to chemosensory perception, in particular to olfactory perception.
Collapse
|
10
|
Abstract
The insulin-like growth factors (IGFs; IGF1/IGF2), known for their regulation of cell and organismal growth and development, are evolutionarily conserved ligands with equivalent peptides present in flies (
D. melanogaster), worms (
C. elegans) among others. Two receptor tyrosine kinases, the IGF1 receptor and the insulin receptor mediate the actions of these ligands with a family of IGF binding proteins serving as selective inhibitors of IGF1/2. This treatise reviews recent findings on IGF signaling in cancer biology and central nervous system function. This includes overexpression of IGF1 receptors in enhancing tumorigenesis, acquired resistance and contributions to metastasis in multiple cancer types. There is accumulating evidence that insulin resistance, a hallmark of type 2 diabetes, occurs in the central nervous system, independent of systemic insulin resistance and characterized by reduced insulin and IGF1 receptor signaling, and may contribute to dementias including Alzheimer’s Disease and cognitive impairment. Controversy over the role(s) of IGF signaling in cancer and whether its inhibition would be of benefit, still persist and extend to IGF1’s role in longevity and central nervous system function.
Collapse
Affiliation(s)
- Steven A Rosenzweig
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
11
|
Hu L, Wang X, Jin T, Han Y, Liu J, Jiang M, Yan S, Fu X, An B, Huang S. Identification of two CUL7 variants in two Chinese families with 3-M syndrome by whole-exome sequencing. J Clin Lab Anal 2020; 34:e23265. [PMID: 32141654 PMCID: PMC7370744 DOI: 10.1002/jcla.23265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/23/2020] [Accepted: 02/04/2020] [Indexed: 11/26/2022] Open
Abstract
Background 3‐M syndrome is a rare autosomal recessive disorder characterized by primordial growth retardation, large head circumference, characteristic facial features, and mild skeletal changes, which is associated with the exclusive variants in three genes, namely CUL7, OBSL1, and CCDC8. Only a few 3‐M syndrome patients have been reported in Chinese population. Methods Children with unexplained severe short stature, facial dysmorphism, and normal intelligence in two Chinese families and their relatives were enrolled. Trio‐whole‐exome sequencing (trio‐WES) and pathogenicity prediction analysis were conducted on the recruited patients. A conservative analysis of the mutant amino acid sequences and function prediction analysis of the wild‐type (WT) and mutant CUL7 protein were performed. Results We identified a homozygous missense variant (NM_014780.4: c.4898C > T, p.Thr1633Met) in CUL7 gene in a 6‐month‐old female infant from a non‐consanguineous family, and a homozygous frameshift variant (NM_014780.4: c.3722_3749 dup GGCTGGCACAGCTGCAGCAATGCCTGCA, p. Val1252Glyfs*23) in CUL7 gene in two affected siblings from a consanguinity family. These two variants may affect the properties and structure of CUL7 protein. Conclusion These two rare variants were observed in Chinese population for the first time and have not been reported in the literature. Our findings expand the variant spectrum of 3‐M syndrome in Chinese population and provide valuable insights into the early clinical manifestations and pathogenesis of 3‐M syndrome for pediatricians and endocrinologists.
Collapse
Affiliation(s)
- Li Hu
- School of Medicine, Guizhou University, Guiyang, China.,Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xike Wang
- Department of Pediatrics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Tingting Jin
- School of Medicine, Guizhou University, Guiyang, China.,Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yuanyuan Han
- School of Medicine, Guizhou University, Guiyang, China.,Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, China
| | - Juan Liu
- School of Medicine, Guizhou University, Guiyang, China.,Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, China
| | - Minmin Jiang
- Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, China
| | - Shujuan Yan
- Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xiaoling Fu
- Department of Pediatrics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Bangquan An
- Department of Blood Transfusion, Guizhou Provincial People's Hospital, Guiyang, China
| | - Shengwen Huang
- School of Medicine, Guizhou University, Guiyang, China.,Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, China.,NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
12
|
Pan ZQ. Cullin-RING E3 Ubiquitin Ligase 7 in Growth Control and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:285-296. [PMID: 31898234 PMCID: PMC8343956 DOI: 10.1007/978-981-15-1025-0_17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CRL7Fbxw8 is an E3 ubiquitin ligase complex, containing cullin7 (CUL7) as a scaffold, the F-box protein Fbxw8 as a substrate receptor, the Skp1 adaptor, and the ROC1/Rbx1 RING finger protein for working with E2 enzyme to facilitate ubiquitin transfer. This chapter provides an update on studies linking CRL7Fbxw8 to hereditary human growth retardation disease, as at least 64 cul7 germ line mutations were found in patients with autosomal recessive 3-M syndrome. CRL7Fbxw8 interacts with two additional 3-M associated proteins OBSL1 and CCDC8, leading to subcellular localization of the E3 complex to regions including plasma membrane, centrosome, and Golgi. At least ten mammalian cellular proteins were identified or implicated as CRL7Fbxw8 substrates. Discussion focuses on the possible impact of CRL7Fbxw8-mediated proteolytic or non-proteolytic pathways in growth control and cancer.
Collapse
Affiliation(s)
- Zhen-Qiang Pan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
13
|
Up-regulation of cullin7 promotes proliferation and migration of pulmonary artery smooth muscle cells in hypoxia-induced pulmonary hypertension. Eur J Pharmacol 2019; 864:172698. [DOI: 10.1016/j.ejphar.2019.172698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 02/04/2023]
|
14
|
Kong Y, Wang Z, Huang M, Zhou Z, Li Y, Miao H, Wan X, Huang J, Mao X, Chen C. CUL7 promotes cancer cell survival through promoting Caspase-8 ubiquitination. Int J Cancer 2019; 145:1371-1381. [PMID: 30807646 DOI: 10.1002/ijc.32239] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/20/2019] [Accepted: 02/12/2019] [Indexed: 01/01/2023]
Abstract
The Cullin 7 (CUL7) gene encodes a member of the cullin family of E3 ubiquitin ligases. Accumulated evidence suggests that CUL7 is oncogenic. However, the mechanism by which CUL7 improves cancer cell survival has not been fully elucidated. Here, we reported that CUL7 confers anti-apoptotic functions by interacting with Caspase-8. CUL7 prevents Caspase-8 activation by promoting Caspase-8 modification with non-degradative polyubiquitin chains at K215. CUL7 knockdown sensitized cancer cells to TRAIL-induced apoptosis in vitro and in nude mice. These results suggest that CUL7 limits extrinsic apoptotic signaling by promoting Caspase-8 ubiquitination.
Collapse
Affiliation(s)
- Yanjie Kong
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China.,Department of Pathology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zehua Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Maobo Huang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Zhongmei Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Yi Li
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huilai Miao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xing Wan
- Department of Dermatology, Jingmen No.1 people's Hospital, Jingmen, Hubei, China
| | - Jian Huang
- Department of Pathology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaoyun Mao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China.,Department of Pathology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Zhang J, Chen M, Zhu Y, Dai X, Dang F, Ren J, Ren S, Shulga YV, Beca F, Gan W, Wu F, Lin YM, Zhou X, DeCaprio JA, Beck AH, Lu KP, Huang J, Zhao C, Sun Y, Gao X, Pandolfi PP, Wei W. SPOP Promotes Nanog Destruction to Suppress Stem Cell Traits and Prostate Cancer Progression. Dev Cell 2018; 48:329-344.e5. [PMID: 30595538 DOI: 10.1016/j.devcel.2018.11.035] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/11/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022]
Abstract
Frequent SPOP mutation defines the molecular feature underlying one of seven sub-types of human prostate cancer (PrCa). However, it remains largely elusive how SPOP functions as a tumor suppressor in PrCa. Here, we report that SPOP suppresses stem cell traits of both embryonic stem cells and PrCa cells through promoting Nanog poly-ubiquitination and subsequent degradation. Mechanistically, Nanog, but not other pluripotency-determining factors including Oct4, Sox2, and Klf4, specifically interacts with SPOP via a conservative degron motif. Importantly, cancer-derived mutations in SPOP or at the Nanog-degron (S68Y) disrupt SPOP-mediated destruction of Nanog, leading to elevated cancer stem cell traits and PrCa progression. Notably, we identify the Pin1 oncoprotein as an upstream Nanog regulator that impairs its recognition by SPOP and thereby stabilizes Nanog. Thus, Pin1 inhibitors promote SPOP-mediated destruction of Nanog, which provides the molecular insight and rationale to use Pin1 inhibitor(s) for targeted therapies of PrCa patients with wild-type SPOP.
Collapse
Affiliation(s)
- Jinfang Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ming Chen
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yasheng Zhu
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xiangpeng Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Fabin Dang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Junming Ren
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Shancheng Ren
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yulia V Shulga
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Francisco Beca
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305-5324, USA
| | - Wenjian Gan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Fei Wu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yu-Min Lin
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - James A DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Andrew H Beck
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kun Ping Lu
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Cheryl Zhao
- Stemmera Inc, 3475 Edison Way Suite J2, Menlo Park, CA 94025, USA
| | - Yinghao Sun
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xu Gao
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433, China.
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
16
|
Jang SM, Redon CE, Aladjem MI. Chromatin-Bound Cullin-Ring Ligases: Regulatory Roles in DNA Replication and Potential Targeting for Cancer Therapy. Front Mol Biosci 2018; 5:19. [PMID: 29594129 PMCID: PMC5859106 DOI: 10.3389/fmolb.2018.00019] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
Cullin-RING (Really Interesting New Gene) E3 ubiquitin ligases (CRLs), the largest family of E3 ubiquitin ligases, are functional multi-subunit complexes including substrate receptors, adaptors, cullin scaffolds, and RING-box proteins. CRLs are responsible for ubiquitination of ~20% of cellular proteins and are involved in diverse biological processes including cell cycle progression, genome stability, and oncogenesis. Not surprisingly, cullins are deregulated in many diseases and instances of cancer. Recent studies have highlighted the importance of CRL-mediated ubiquitination in the regulation of DNA replication/repair, including specific roles in chromatin assembly and disassembly of the replication machinery. The development of novel therapeutics targeting the CRLs that regulate the replication machinery and chromatin in cancer is now an attractive therapeutic strategy. In this review, we summarize the structure and assembly of CRLs and outline their cellular functions and their diverse roles in cancer, emphasizing the regulatory functions of nuclear CRLs in modulating the DNA replication machinery. Finally, we discuss the current strategies for targeting CRLs against cancer in the clinic.
Collapse
Affiliation(s)
| | | | - Mirit I. Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
17
|
Puvabanditsin S, February M, Mayne J, McConnell J, Mehta R. Cleidocranial Dysplasia with 6p21.1-p12.3 Microdeletion: A Case Report and Literature Review. Cleft Palate Craniofac J 2018; 55:891-894. [PMID: 27500518 DOI: 10.1597/15-306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE The aim of this article is to publish a literature review and report on a new case of cleidocranial dysplasia syndrome with 6p21.1-p12.3 microdeletion. DESIGN A PubMed search using "cleidocranial dysplasia syndrome (CCD)" or "6p microdeletion" was performed. Articles with information relevant to our case were obtained for review. A new case of cleidocranial dysplasia syndrome is presented to describe and discuss clinical manifestations, pathogenesis, clinical progression of cleidocranial dysplasia syndrome, and management. RESULTS There were 22 articles with reports of cleidocranial dysplasia syndrome or 6p microdeletion. Cleidocranial dysplasia syndrome, a rare genetic disorder, documented to have an autosomal dominant inheritance pattern and caused by caused by mutations of the transcription factor RUNX2. RUNX2 has been mapped to chromosome 6p21. The anomalies in cleidocranial dysplasia syndrome can involve not only the clavicle and skull but the entire skeleton because the membranous as well as endochondral bone formation may be affected. Upon follow-up, our patient was found to have global developmental delay. CONCLUSIONS We report a near-term neonate with characteristic features of cleidocranial dysplasia and a 6p21.1-p12.3 microdeletion. Cleidocranial dysplasia syndrome is a rare autosomal dominant skeletal dysplasia. The mutation of the RUNX2 gene results in cleidocranial dysplasia syndrome.
Collapse
|
18
|
An J, Zhang Z, Liu Z, Wang R, Hui D, Jin Y. Overexpression of Cullin7 is associated with hepatocellular carcinoma progression and pathogenesis. BMC Cancer 2017; 17:828. [PMID: 29207970 PMCID: PMC5718086 DOI: 10.1186/s12885-017-3839-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 11/23/2017] [Indexed: 12/19/2022] Open
Abstract
Background Overexpression of Cullin7 is associated with some types of malignancies. However, the part of Cullin7 in hepatocellular carcinoma remains unclear. The aim of this study was to investigate the role of Cullin7 in pathogenesis and the progression of hepatocellular carcinoma. Methods In the present study, the expression of Cullin7 in hepatocellular carcinoma cell lines and five surgical hepatocellular carcinoma specimens was detected with quantitative reverse transcription PCR and western blotting. In addition, the protein expression of Cullin7 was examined in 162 cases of archived hepatocellular carcinoma using immunohistochemistry. Results We found elevated expression of both mRNA and protein levels of Cullin7 in hepatocellular carcinoma cell lines, and Cullin7 protein was significantly upregulated in hepatocellular carcinoma compared with paired normal hepatic tissues. The immunohistochemistry analysis revealed that overexpression of Cullin7 occurred in 69.1% of hepatocellular carcinoma samples, which was a significantly higher rate than that in adjacent normal hepatic tissue (P < 0.01). Statistical analysis found that overexpression of Cullin7 was significantly associated with lymph node metastasis, tumor thrombus of the portal vein and advanced clinical stage (P < 0.05). Furthermore, by overexpressing Cullin7 in hepatocellular carcinoma HepG2 cells, we revealed that Cullin7 could significantly enhance cell proliferation, growth, migration and invasion. Conversely, knocking down Cullin7 expression with short hairpin RNAi in hepatocellular carcinoma HepG2 cells inhibited cell proliferation, growth, migration and invasion. Conclusion Our studies provide evidence that overexpression of Cullin7 plays an important role in the pathogenesis and progression of hepatocellular carcinoma and may be a valuable marker for hepatocellular carcinoma management.
Collapse
Affiliation(s)
- Jun An
- Department of Cardiothoracic Surgery, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhigang Zhang
- Department of Pathology, Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Zhiyong Liu
- Department of Emergency Medicine, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ruizhi Wang
- Department of Clinical Laboratory, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dayang Hui
- Department of Pathology, Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Yi Jin
- Department of Pathology, Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China.
| |
Collapse
|
19
|
Zhang D, Yang G, Li X, Xu C, Ge H. Inhibition of Liver Carcinoma Cell Invasion and Metastasis by Knockdown of Cullin7 In Vitro and In Vivo. Oncol Res 2016; 23:171-81. [PMID: 27053346 PMCID: PMC7838605 DOI: 10.3727/096504016x14519995067562] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cullin7 is an E3 ubiquitin ligase. The Cullin7 protein family functions as a molecular scaffold to coordinate substrate ubiquitination in Skp, Cullin, and F-box-containing complex (SCF complex). Cullin7s control normal development and primary cellular processes and are characterized by a unique genomic network organization. Less is known about the involvement of Cullin7 with hepatocellular carcinoma (HCC). In this study, we found that Cullin7 showed a high expression in HCC tumor tissues, especially in metastatic HCC tumor tissues. Also, there was a negative correlation between Cullin7 expression and long survival. Silencing of Cullin7 in liver cancer cells can significantly reduce the migration, invasion, and metastatic abilities. Also, detection of epithelial–mesenchymal transition (EMT) marker expression showed that Cullin7 promotes epithelial–mesenchymal transformation of cancer cells. The results of this study helped to elucidate the oncogene functions of Cullin7 in liver cancers.
Collapse
Affiliation(s)
- Donghui Zhang
- Second Ward of Infectious Disease Department, Linyi People's Hospital, Linyi, Shandong, China
| | | | | | | | | |
Collapse
|
20
|
Xi J, Zeng ST, Guo L, Feng J. High Expression of Cullin7 Correlates with Unfavorable Prognosis in Epithelial Ovarian Cancer Patients. Cancer Invest 2016; 34:130-6. [PMID: 26962950 DOI: 10.3109/07357907.2015.1114123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ubiquitin ligase Cullin7 has been has been suggested to act as an oncogene in some tumors; however, the prognostic role of Cullin7 has not been evaluated in cancer patients. In this study, we observed that the expression of Cullin7 mRNA was significantly higher in epithelial ovarian cancer (EOC) compared with normal ovarian surface tissues. In addition, Cullin7 expression was related to FIGO stage (p = .001) and lymph node metastasis (p = .033). Furthermore, Cullin7 overexpression inhibited the migration and invasion of ovarian cancer cells. These results suggest that Cullin7 may serve as an indicator of poor prognosis in patients with EOC.
Collapse
Affiliation(s)
- Jie Xi
- a Department of Gynecology , Cangzhou Central Hospital, Hebei Medical University , Cangzhou , China
| | - Sai-Tian Zeng
- a Department of Gynecology , Cangzhou Central Hospital, Hebei Medical University , Cangzhou , China
| | - Liang Guo
- a Department of Gynecology , Cangzhou Central Hospital, Hebei Medical University , Cangzhou , China
| | - Jing Feng
- a Department of Gynecology , Cangzhou Central Hospital, Hebei Medical University , Cangzhou , China
| |
Collapse
|
21
|
Targeting Cullin-RING E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation. Biochem J 2015; 467:365-86. [PMID: 25886174 PMCID: PMC4403949 DOI: 10.1042/bj20141450] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the last decade, the ubiquitin–proteasome system has emerged as a valid target for the development of novel therapeutics. E3 ubiquitin ligases are particularly attractive targets because they confer substrate specificity on the ubiquitin system. CRLs [Cullin–RING (really interesting new gene) E3 ubiquitin ligases] draw particular attention, being the largest family of E3s. The CRLs assemble into functional multisubunit complexes using a repertoire of substrate receptors, adaptors, Cullin scaffolds and RING-box proteins. Drug discovery targeting CRLs is growing in importance due to mounting evidence pointing to significant roles of these enzymes in diverse biological processes and human diseases, including cancer, where CRLs and their substrates often function as tumour suppressors or oncogenes. In the present review, we provide an account of the assembly and structure of CRL complexes, and outline the current state of the field in terms of available knowledge of small-molecule inhibitors and modulators of CRL activity. A comprehensive overview of the reported crystal structures of CRL subunits, components and full-size complexes, alone or with bound small molecules and substrate peptides, is included. This information is providing increasing opportunities to aid the rational structure-based design of chemical probes and potential small-molecule therapeutics targeting CRLs.
Collapse
|
22
|
Palus S, von Haehling S, Springer J. Muscle wasting: an overview of recent developments in basic research. J Cachexia Sarcopenia Muscle 2014; 5:193-8. [PMID: 25163459 PMCID: PMC4159486 DOI: 10.1007/s13539-014-0157-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 08/07/2014] [Indexed: 02/06/2023] Open
Abstract
The syndrome of cachexia, i.e., involuntary weight loss in patients with underlying diseases, sarcopenia, i.e., loss of muscle mass due to aging, and general muscle atrophy from disuse and/or prolonged bed rest have received more attention over the last decades. All lead to a higher morbidity and mortality in patients, and therefore, they represent a major socio-economic burden for the society today. This mini-review looks at recent developments in basic research that are relevant to the loss of skeletal muscle. It aims to cover the most significant publication of last 3 years on the causes and effects of muscle wasting, new targets for therapy development, and potential biomarkers for assessing skeletal muscle mass. The targets include the following: (1) E-3 ligases TRIM32, SOCS1, and SOCS3 by involving the elongin BC ubiquitin-ligase, Cbl-b, culling 7, Fbxo40, MG53 (TRIM72), and the mitochondrial Mul1; (2) the kinase MST1; and (3) the G-protein Gαi2. D(3)-creatine has the potential to be used as a novel biomarker that allows to monitor actual change in skeletal muscle mass over time. In conclusion, significant development efforts are being made by academic groups as well as numerous pharmaceutical companies to identify new target and biomarker muscles, as muscle wasting represents a great medical need, but no therapies have been approved in the last decades.
Collapse
Affiliation(s)
- Sandra Palus
- Department of Innovative Clinical Trials, University Medical Centre Göttingen, Göttingen, Germany
| | | | | |
Collapse
|
23
|
Palus S, von Haehling S, Springer J. Muscle wasting: an overview of recent developments in basic research. Int J Cardiol 2014; 176:640-4. [PMID: 25205489 DOI: 10.1016/j.ijcard.2014.08.086] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 08/15/2014] [Indexed: 12/25/2022]
Abstract
The syndrome of cachexia, i.e. involuntary weight loss in patients with underlying diseases, sarcopenia, i.e. loss of muscle mass due to ageing, and general muscle atrophy from disuse and/or prolonged bed rest have received more attention over the last decades. All lead to a higher morbidity and mortality in patients and therefore, they represent a major socio-economic burden for the society today. This mini-review looks at recent developments in basic research that are relevant to the loss of skeletal muscle. It aims to cover the most significant publication of last three years on the causes and effects of muscle wasting, new targets for therapy development and potential biomarkers for assessing skeletal muscle mass. The targets include 1) E-3 ligases: TRIM32, SOCS1 and SOCS3 by involving the elongin BC ubiquitin-ligase, Cbl-b, culling 7, Fbxo40, MG53 (TRIM72) and the mitochondrial Mul1, 2) the kinase MST1 and 3) the G-protein Gαi2. D(3)-creatine has the potential to be used as a novel biomarker that allows to monitor actual change in skeletal muscle mass over time. In conclusion, significant development efforts are being made by academic groups as well as numerous pharmaceutical companies to identify new targets and biomarkers muscle, as muscle wasting represents a great medical need, but no therapies have been approved in the last decades.
Collapse
Affiliation(s)
- Sandra Palus
- Department of Innovative Clinical Trials, University Medical Centre Göttingen, Göttingen, Germany
| | - Stephan von Haehling
- Department of Innovative Clinical Trials, University Medical Centre Göttingen, Göttingen, Germany
| | - Jochen Springer
- Department of Innovative Clinical Trials, University Medical Centre Göttingen, Göttingen, Germany; Department of Cardiology and Pneumology, University Medical Centre Göttingen, Göttingen, Germany.
| |
Collapse
|
24
|
Cubillos-Rojas M, Amair-Pinedo F, Peiró-Jordán R, Bartrons R, Ventura F, Rosa JL. The E3 ubiquitin protein ligase HERC2 modulates the activity of tumor protein p53 by regulating its oligomerization. J Biol Chem 2014; 289:14782-95. [PMID: 24722987 DOI: 10.1074/jbc.m113.527978] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tumor suppressor p53 is a transcription factor that coordinates the cellular response to several kinds of stress. p53 inactivation is an important step in tumor progression. Oligomerization of p53 is critical for its posttranslational modification and its ability to regulate the transcription of target genes necessary to inhibit tumor growth. Here we report that the HECT E3 ubiquitin ligase HERC2 interacts with p53. This interaction involves the CPH domain of HERC2 (a conserved domain within Cul7, PARC, and HERC2 proteins) and the last 43 amino acid residues of p53. Through this interaction, HERC2 regulates p53 activity. RNA interference experiments showed how HERC2 depletion reduces the transcriptional activity of p53 without affecting its stability. This regulation of p53 activity by HERC2 is independent of proteasome or MDM2 activity. Under these conditions, up-regulation of cell growth and increased focus formation were observed, showing the functional relevance of the HERC2-p53 interaction. This interaction was maintained after DNA damage caused by the chemotherapeutic drug bleomycin. In these stressed cells, p53 phosphorylation was not impaired by HERC2 knockdown. Interestingly, p53 mutations that affect its tetramerization domain disrupted the HERC2-p53 interaction, suggesting a role for HERC2 in p53 oligomerization. This regulatory role was shown using cross-linking assays. Thus, the inhibition of p53 activity after HERC2 depletion can be attributed to a reduction in p53 oligomerization. Ectopic expression of HERC2 (residues 2292-2923) confirmed these observations. Together, these results identify HERC2 as a novel regulator of p53 signaling.
Collapse
Affiliation(s)
- Monica Cubillos-Rojas
- From the Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Fabiola Amair-Pinedo
- From the Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Roser Peiró-Jordán
- From the Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Ramon Bartrons
- From the Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Francesc Ventura
- From the Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Jose Luis Rosa
- From the Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| |
Collapse
|
25
|
Inhibition of Cullin-RING E3 ubiquitin ligase 7 by simian virus 40 large T antigen. Proc Natl Acad Sci U S A 2014; 111:3371-6. [PMID: 24550499 DOI: 10.1073/pnas.1401556111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Simian virus 40 (SV40) large tumor antigen (LT) triggers oncogenic transformation by inhibition of key tumor suppressor proteins, including p53 and members of the retinoblastoma family. In addition, SV40 transformation requires binding of LT to Cullin 7 (CUL7), a core component of Cullin-RING E3 ubiquitin ligase 7 (CRL7). However, the pathomechanistic effects of LT-CUL7 interaction are mostly unknown. Here we report both in vitro and in vivo experimental evidence that SV40 LT suppresses the ubiquitin ligase function of CRL7. We show that SV40 LT, but not a CUL7 binding-deficient mutant (LT(Δ69-83)), impaired 26S proteasome-dependent proteolysis of the CRL7 target protein insulin receptor substrate 1 (IRS1), a component of the insulin and insulin-like growth factor 1 signaling pathway. SV40 LT expression resulted in the accumulation and prolonged half-life of IRS1. In vitro, purified SV40 LT reduced CRL7-dependent IRS1 ubiquitination in a concentration-dependent manner. Expression of SV40 LT, or depletion of CUL7 by RNA interference, resulted in the enhanced activation of IRS1 downstream signaling pathways phosphatidylinositol-3-kinase/AKT and Erk mitogen-activated pathway kinase, as well as up-regulation of the downstream target gene c-fos. Finally, SV40 LT-positive carcinoma of carcinoembryonic antigen 424/SV40 LT transgenic mice displayed elevated IRS1 protein levels and activation of downstream signaling. Taken together, these data suggest that SV40 LT protects IRS1 from CRL7-mediated degradation, thereby sustaining high levels of promitogenic IRS1 downstream signaling pathways.
Collapse
|
26
|
Xie J, Proud CG. Signaling crosstalk between the mTOR complexes. ACTA ACUST UNITED AC 2014; 2:e28174. [PMID: 26779402 PMCID: PMC4705829 DOI: 10.4161/trla.28174] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/12/2014] [Accepted: 02/10/2014] [Indexed: 12/16/2022]
Abstract
mTOR is a protein kinase which integrates a variety of environmental and intracellular stimuli to positively regulate many anabolic processes of the cell, including protein synthesis. It exists within two highly conserved multi-protein complexes known as mTORC1 and 2 mTORC2. Each of these complexes phosphorylates different downstream targets, and play roles in different cellular functions. They also show distinctive sensitivity to the mTOR inhibitor rapamycin. Nevertheless, despite their biochemical and functional differences, recent studies have suggested that the regulation of these complexes is tightly linked to each other. For instance, both mTORC1 and 2 share some common upstream signaling molecules, such as PI3K and tuberous sclerosis complex TSC, which control their activation. Stimulation of the mTOR complexes may also trigger both positive and negative feedback mechanisms, which then in turn either further enhance or suppress their activation. Here, we summarize some recently discovered features relating to the crosstalk between mTORC1 and 2. We then discuss how aberrant mTOR complex crosstalk mechanisms may have an impact on the development of human diseases and drug resistance.
Collapse
Affiliation(s)
- Jianling Xie
- Centre for Biological Sciences; University of Southampton; Southampton, UK
| | - Chris G Proud
- Centre for Biological Sciences; University of Southampton; Southampton, UK
| |
Collapse
|
27
|
Regulation of insulin receptor substrate-1 by mTORC2 (mammalian target of rapamycin complex 2). Biochem Soc Trans 2013; 41:896-901. [PMID: 23863152 DOI: 10.1042/bst20130018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
mTOR (mammalian target of rapamycin) responds to the presence of nutrients, energy and growth factors to link cellular metabolism, growth and proliferation. The rapamycin-sensitive mTORC (mTOR complex) 1 activates the translational regulator S6K (S6 kinase), leading to increased protein synthesis in the presence of nutrients. On the other hand, the rapamycin-insensitive mTORC2 responds to the presence of growth factors such as insulin by phosphorylating Akt to promote its maturation and allosteric activation. We recently found that mTORC2 can also regulate insulin signalling at the level of IRS-1 (insulin receptor substrate-1). Whereas mTORC1 promotes IRS-1 serine phosphorylation that is linked to IRS-1 down-regulation, we uncovered that mTORC2 mediates its degradation. In mTORC2-disrupted cells, inactive IRS-1 accumulated despite undergoing phosphorylation at the mTORC1-mediated serine sites. Defective IRS-1 degradation was due to attenuated expression of the CUL7 (Cullin 7) ubiquitin ligase substrate-targeting sub-unit Fbw8. mTORC2 and Fbw8 co-localize at the membrane where mTORC2 phosphorylates Ser86 to stabilize Fbw8 and promotes its cytosolic localization upon insulin stimulation. Under conditions of chronic insulin exposure, inactive serine-phosphorylated IRS-1 and Fbw8 co-localize to the cytosol where the former becomes ubiquitylated via CUL7/Fbw8. Thus mTORC2 negatively feeds back to IRS-1 via control of Fbw8 stability and localization. Our findings reveal that, in addition to persistent mTORC1 signalling, increased mTORC2 signals can promote insulin resistance due to mTORC2-mediated degradation of IRS-1.
Collapse
|
28
|
Genschik P, Sumara I, Lechner E. The emerging family of CULLIN3-RING ubiquitin ligases (CRL3s): cellular functions and disease implications. EMBO J 2013; 32:2307-20. [PMID: 23912815 DOI: 10.1038/emboj.2013.173] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/12/2013] [Indexed: 01/07/2023] Open
Abstract
Protein ubiquitylation is a post-translational modification that controls all aspects of eukaryotic cell functionality, and its defective regulation is manifested in various human diseases. The ubiquitylation process requires a set of enzymes, of which the ubiquitin ligases (E3s) are the substrate recognition components. Modular CULLIN-RING ubiquitin ligases (CRLs) are the most prevalent class of E3s, comprising hundreds of distinct CRL complexes with the potential to recruit as many and even more protein substrates. Best understood at both structural and functional levels are CRL1 or SCF (SKP1/CUL1/F-box protein) complexes, representing the founding member of this class of multimeric E3s. Another CRL subfamily, called CRL3, is composed of the molecular scaffold CULLIN3 and the RING protein RBX1, in combination with one of numerous BTB domain proteins acting as substrate adaptors. Recent work has firmly established CRL3s as major regulators of different cellular and developmental processes as well as stress responses in both metazoans and higher plants. In humans, functional alterations of CRL3s have been associated with various pathologies, including metabolic disorders, muscle, and nerve degeneration, as well as cancer. In this review, we summarize recent discoveries on the function of CRL3s in both metazoans and plants, and discuss their mode of regulation and specificities.
Collapse
Affiliation(s)
- Pascal Genschik
- Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Conventionné avec l'Université de Strasbourg, Strasbourg, France.
| | | | | |
Collapse
|
29
|
6p21.2–p12.3 deletion detected by aCGH in an 8-year-old girl with cleidocranial dysplasia and developmental delay. Gene 2013; 523:99-102. [DOI: 10.1016/j.gene.2013.03.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/22/2013] [Accepted: 03/27/2013] [Indexed: 12/17/2022]
|
30
|
Ryšlavá H, Doubnerová V, Kavan D, Vaněk O. Effect of posttranslational modifications on enzyme function and assembly. J Proteomics 2013; 92:80-109. [PMID: 23603109 DOI: 10.1016/j.jprot.2013.03.025] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 03/01/2013] [Accepted: 03/11/2013] [Indexed: 12/22/2022]
Abstract
The detailed examination of enzyme molecules by mass spectrometry and other techniques continues to identify hundreds of distinct PTMs. Recently, global analyses of enzymes using methods of contemporary proteomics revealed widespread distribution of PTMs on many key enzymes distributed in all cellular compartments. Critically, patterns of multiple enzymatic and nonenzymatic PTMs within a single enzyme are now functionally evaluated providing a holistic picture of a macromolecule interacting with low molecular mass compounds, some of them being substrates, enzyme regulators, or activated precursors for enzymatic and nonenzymatic PTMs. Multiple PTMs within a single enzyme molecule and their mutual interplays are critical for the regulation of catalytic activity. Full understanding of this regulation will require detailed structural investigation of enzymes, their structural analogs, and their complexes. Further, proteomics is now integrated with molecular genetics, transcriptomics, and other areas leading to systems biology strategies. These allow the functional interrogation of complex enzymatic networks in their natural environment. In the future, one might envisage the use of robust high throughput analytical techniques that will be able to detect multiple PTMs on a global scale of individual proteomes from a number of carefully selected cells and cellular compartments. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
Affiliation(s)
- Helena Ryšlavá
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12840 Prague 2, Czech Republic.
| | | | | | | |
Collapse
|
31
|
McCourt P, Gallo-Ebert C, Gonghong Y, Jiang Y, Nickels JT. PP2A(Cdc55) regulates G1 cyclin stability. Cell Cycle 2013; 12:1201-10. [PMID: 23518505 PMCID: PMC3674085 DOI: 10.4161/cc.24231] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Maintaining accurate progression through the cell cycle requires the proper temporal expression and regulation of cyclins. The mammalian D-type cyclins promote G1-S transition. D1 cyclin protein stability is regulated through its ubiquitylation and resulting proteolysis catalyzed by the SCF E3 ubiquitin ligase complex containing the F-box protein, Fbx4. SCF E3-ligase-dependent ubiquitylation of D1 is trigged by an increase in the phosphorylation status of the cyclin. As inhibition of ubiquitin-dependent D1 degradation is seen in many human cancers, we set out to uncover how D-type cyclin phosphorylation is regulated. Here we show that in S. cerevisiae, a heterotrimeric protein phosphatase 2A (PP2A(Cdc55)) containing the mammalian PPP2R2/PR55 B subunit ortholog Cdc55 regulates the stability of the G1 cyclin Cln2 by directly regulating its phosphorylation state. Cells lacking Cdc55 contain drastically reduced Cln2 levels caused by degradation due to cdk-dependent hyperphosphorylation, as a Cln2 mutant unable to be phosphorylated by the yeast cdk Cdc28 is highly stable in cdc55-null cells. Moreover, cdc55-null cells become inviable when the SCF(Grr1) activity known to regulate Cln2 levels is eliminated or when Cln2 is overexpressed, indicating a critical relationship between SCF and PP2A functions in regulating cell cycle progression through modulation of G1-S cyclin degradation/stability. In sum, our results indicate that PP2A is absolutely required to maintain G1-S cyclin levels through modulating their phosphorylation status, an event necessary to properly transit through the cell cycle.
Collapse
Affiliation(s)
- Paula McCourt
- Venenum Biodesign, Genesis Biotechnology Group, Hamilton, NJ, USA
| | | | | | | | | |
Collapse
|
32
|
Clayton PE, Hanson D, Magee L, Murray PG, Saunders E, Abu-Amero SN, Moore GE, Black GCM. Exploring the spectrum of 3-M syndrome, a primordial short stature disorder of disrupted ubiquitination. Clin Endocrinol (Oxf) 2012; 77:335-42. [PMID: 22624670 DOI: 10.1111/j.1365-2265.2012.04428.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
3-M syndrome is an autosomal recessive primordial growth disorder characterized by small birth size and post-natal growth restriction associated with a spectrum of minor anomalies (including a triangular-shaped face, flat cheeks, full lips, short chest and prominent fleshy heels). Unlike many other primordial short stature syndromes, intelligence is normal and there is no other major system involvement, indicating that 3-M is predominantly a growth-related condition. From an endocrine perspective, serum GH levels are usually normal and IGF-I normal or low, while growth response to rhGH therapy is variable but typically poor. All these features suggest a degree of resistance in the GH-IGF axis. To date, mutations in three genes CUL7, OBSL1 and CCDC8 have been shown to cause 3-M. CUL7 acts an ubiquitin ligase and is known to interact with p53, cyclin D-1 and the growth factor signalling molecule IRS-1, the link with the latter may contribute to the GH-IGF resistance. OBSL1 is a putative cytoskeletal adaptor that interacts with and stabilizes CUL7. CCDC8 is the newest member of the pathway and interacts with OBSL1 and, like CUL7, associates with p53, acting as a co-factor in p53-medicated apoptosis. 3-M patients without a mutation have also been identified, indicating the involvement of additional genes in the pathway. Potentially damaging sequence variants in CUL7 and OBSL1 have been identified in idiopathic short stature (ISS), including those born small with failure of catch-up growth, signifying that the 3-M pathway could play a wider role in disordered growth.
Collapse
Affiliation(s)
- Peter E Clayton
- Developmental Biomedicine, Manchester Academic Health Sciences Centre (MAHSC), School of Biomedicine, University of Manchester, UK.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Voutsadakis IA. The ubiquitin-proteasome system and signal transduction pathways regulating Epithelial Mesenchymal transition of cancer. J Biomed Sci 2012; 19:67. [PMID: 22827778 PMCID: PMC3418218 DOI: 10.1186/1423-0127-19-67] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 07/09/2012] [Indexed: 02/08/2023] Open
Abstract
Epithelial to Mesenchymal transition (EMT) in cancer, a process permitting cancer cells to become mobile and metastatic, has a signaling hardwire forged from development. Multiple signaling pathways that regulate carcinogenesis enabling characteristics in neoplastic cells such as proliferation, resistance to apoptosis and angiogenesis are also the main players in EMT. These pathways, as almost all cellular processes, are in their turn regulated by ubiquitination and the Ubiquitin-Proteasome System (UPS). Ubiquitination is the covalent link of target proteins with the small protein ubiquitin and serves as a signal to target protein degradation by the proteasome or to other outcomes such as endocytosis, degradation by the lysosome or specification of cellular localization. This paper reviews signal transduction pathways regulating EMT and being regulated by ubiquitination.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Centre Pluridisciplinaire d'Oncologie, BH06, Centre Hospitalier Universitaire Vaudois, Bugnon 46, Lausanne, 1011, Switzerland.
| |
Collapse
|
34
|
Al-Dosari MS, Al-Shammari M, Shaheen R, Faqeih E, Alghofely MA, Boukai A, Alkuraya FS. 3M syndrome: an easily recognizable yet underdiagnosed cause of proportionate short stature. J Pediatr 2012; 161:139-45.e1. [PMID: 22325252 DOI: 10.1016/j.jpeds.2011.12.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/08/2011] [Accepted: 12/30/2011] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To characterize, via clinical and molecul criteria, a cohort of patients with 3M syndrome and thereby increase awareness of this syndrome as a recognizable cause of proportionate short stature. STUDY DESIGN We conducted a case series of patients referred to clinical genetics for proportionate short stature. CUL7, OBSL1, and CCDC8 genes were clinically phenotyped and sequenced. RESULTS In 6 Saudi families with 3M syndrome, we identified three CUL7, one OBSL1, and one CCDC8 novel mutations, which we show result in a remarkably similar clinical phenotype. Despite their typical and easily discernible clinical phenotype, all these patients have been extensively investigated for alternative causes of their short stature and received erroneous diagnoses. CONCLUSION Increased awareness about this syndrome among pediatricians and endocrinologists is needed to avoid a costly and unnecessary diagnostic odyssey.
Collapse
Affiliation(s)
- Mohammed S Al-Dosari
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | | | | | | | | | | |
Collapse
|
35
|
Fahlbusch FB, Dawood Y, Hartner A, Menendez-Castro C, Nögel SC, Tzschoppe A, Schneider H, Strissel P, Beckmann MW, Schleussner E, Ruebner M, Dörr HG, Schild RL, Rascher W, Dötsch J. Cullin 7 and Fbxw 8 expression in trophoblastic cells is regulated via oxygen tension: implications for intrauterine growth restriction? J Matern Fetal Neonatal Med 2012; 25:2209-15. [DOI: 10.3109/14767058.2012.684166] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
36
|
Ubiquitination and the Ubiquitin-Proteasome System as regulators of transcription and transcription factors in epithelial mesenchymal transition of cancer. Tumour Biol 2012; 33:897-910. [PMID: 22399444 DOI: 10.1007/s13277-012-0355-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/09/2012] [Indexed: 02/06/2023] Open
Abstract
Epithelial to Mesenchymal Transition (EMT) in cancer is a process that allows cancer cells to detach from neighboring cells, become mobile and metastasize and shares many signaling pathways with development. Several molecular mechanisms which regulate oncogenic properties in neoplastic cells such as proliferation, resistance to apoptosis and angiogenesis through transcription factors or other mediators are also regulators of EMT. These pathways and downstream transcription factors are, in their turn, regulated by ubiquitination and the Ubiquitin-Proteasome System (UPS). Ubiquitination, the covalent link of the small 76-amino acid protein ubiquitin to target proteins, serves as a signal for protein degradation by the proteasome or for other outcomes such as endocytosis, degradation by the lysosome or directing these proteins to specific cellular compartments. This review discusses aspects of the regulation of EMT by ubiquitination and the UPS and underlines its complexity focusing on transcription and transcription factors regulating EMT and are being regulated by ubiquitination.
Collapse
|
37
|
Abstract
Cullin proteins are molecular scaffolds that have crucial roles in the post-translational modification of cellular proteins involving ubiquitin. The mammalian cullin protein family comprises eight members (CUL1 to CUL7 and PARC), which are characterized by a cullin homology domain. CUL1 to CUL7 assemble multi-subunit Cullin-RING E3 ubiquitin ligase (CRL) complexes, the largest family of E3 ligases with more than 200 members. Although CUL7 and PARC are present only in chordates, other members of the cullin protein family are found in Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana and yeast. A cullin protein tethers both a substrate-targeting unit, often through an adaptor protein, and the RING finger component in a CRL. The cullin-organized CRL thus positions a substrate close to the RING-bound E2 ubiquitin-conjugating enzyme, which catalyzes the transfer of ubiquitin to the substrate. In addition, conjugation of cullins with the ubiquitin-like molecule Nedd8 modulates activation of the corresponding CRL complex, probably through conformational regulation of the interactions between cullin's carboxy-terminal tail and CRL's RING subunit. Genetic studies in several model organisms have helped to unravel a multitude of physiological functions associated with cullin proteins and their respective CRLs. CRLs target numerous substrates and thus have an impact on a range of biological processes, including cell growth, development, signal transduction, transcriptional control, genomic integrity and tumor suppression. Moreover, mutations in CUL7 and CUL4B genes have been linked to hereditary human diseases.
Collapse
Affiliation(s)
- Antonio Sarikas
- Institute of Pharmacology and Toxicology, Technische Universität München, 80802 Munich, Germany.
| | | | | |
Collapse
|
38
|
Wen H, Kim N, Fuentes EJ, Mallinger A, Gonzalez-Alegre P, Glenn KA. FBG1 is a promiscuous ubiquitin ligase that sequesters APC2 and causes S-phase arrest. Cell Cycle 2011; 9:4506-17. [PMID: 21135578 DOI: 10.4161/cc.9.22.13743] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During cell proliferation, protein degradation is strictly regulated by the cell cycle and involves two complementary ubiquitin ligase complexes, the SCF (Skp, Cullin, F-box) and APC/C (Anaphase Promoting Complex/Cyclosome) ubiquitin ligases. SCF ligases are constitutively active and generally target only proteins after they have been selected for degradation, usually by phosphorylation. In contrast, APC/C complexes are themselves activated by phosphorylation and their substrates contain a targeting signal known as degron, a consensus amino acid sequence such as a D-Box. SCF complexes degrade proteins during the G1 phase. However, as DNA synthesis begins, the SCF complexes are degraded and APC/C complexes are activated. APC-2, a protein crucial to cell division, initiates anaphase by triggering the degradation of multiple proteins. This study explores an unexpected interaction between APC-2 and SCFFBG1. We found that FBG1 is a promiscuous ubiquitin ligase with many partners. Immunoprecipitation experiments demonstrate that FBG1 and APC2 interact directly. Mutagenesis-based experiments show that this interaction requires a D-Box found within the FBG1 F-box domain. Unexpectedly, we demonstrate that co-expression with FBG1 increases total APC2 levels. However, free APC2 is decreased, inhibiting cell proliferation. Finally, FACS analysis of cell populations expressing different forms of FBG1 demonstrate that this ubiquitin ligase induces S-phase arrest, illustrating the functional consequences of the interaction described. In summary, we have discovered a novel APC2 inhibitory activity of FBG1 independent from its function as ubiquitin ligase, providing the basis for future studies of FBG1 in aging and cancer.
Collapse
Affiliation(s)
- Hsiang Wen
- Department of Internal Medicine, Roy and Lucille A. Carver College of Medicine, Iowa City, USA
| | | | | | | | | | | |
Collapse
|
39
|
Villeneuve NF, Lau A, Zhang DD. Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases. Antioxid Redox Signal 2010; 13:1699-712. [PMID: 20486766 PMCID: PMC2966484 DOI: 10.1089/ars.2010.3211] [Citation(s) in RCA: 335] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nrf2 is a transcription factor that has emerged as the cell's main defense mechanism against many harmful environmental toxicants and carcinogens. Nrf2 is negatively regulated by Keap1, a substrate adaptor protein for the Cullin3 (Cul3)-containing E3-ligase complex, which targets Nrf2 for ubiquitination and degradation by the ubiquitin proteasome system (UPS). Recent evidence suggests that constitutive activation of Nrf2, due to mutations in Keap1 or Nrf2, is prominent in many cancer types and contributes to chemoresistance. Regulation of Nrf2 by the Cul3-Keap1-E3 ligase provides strong evidence that tight regulation of Cullin-ring ligases (CRLs) is imperative to maintain cellular homeostasis. There are seven known Cullin proteins that form various CRL complexes. They are regulated by neddylation/deneddylation, ubiquitination/deubiquitination, CAND1-assisted complex assembly/disassembly, and subunit dimerization. In this review, we will discuss the regulation of each CRL using the Cul3-Keap1-E3 ligase complex as the primary focus. The substrates of CRLs are involved in many signaling pathways. Therefore, deregulation of CRLs affects several cellular processes, including cell cycle arrest, DNA repair, cell proliferation, senescence, and death, which may lead to many human diseases, including cancer. This makes CRLs a promising target for novel cancer drug therapies.
Collapse
Affiliation(s)
- Nicole F Villeneuve
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, 85721, USA
| | | | | |
Collapse
|
40
|
Diehl JA, Ponugoti B. Ubiquitin-dependent proteolysis in G1/S phase control and its relationship with tumor susceptibility. Genes Cancer 2010; 1:717-724. [PMID: 21113395 DOI: 10.1177/1947601910382902] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cell division depends upon the coordinated action of positive and negative regulatory factors that ensure high fidelity replication of the genome and its equivalent separation into daughter cells following cytokinesis. The role of positive factors such as the cyclin dependent kinases in promoting cell division is firmly established, as is the function of CDK inhibitors and phosphatases that antagonize CDKs. In addition to these, regulated protein destruction is now appreciated as essential for temporal regulation of cell cycle transitions. Protein degradation serves as an irreversible switch that ensures temporally regulated cell cycle transitions. Signal-dependent regulation of protein degradation is best understood with regard to the 26S proteasome. Proteins are directed to this machine subsequent to enzymatic transfer of a highly conserved small polypeptide, ubiquitin. The focus of this review is the regulatory molecules that direct the regulated attachment of ubiquitin, polyubiquitylation, to proteins destined for degradation as cells transition through the G1 phase into S-phase. During the past decade, it has become increasingly apparent that these molecules are critical mediators of normal cell proliferation and as such they are frequently deregulated in human cancers.
Collapse
Affiliation(s)
- J Alan Diehl
- Abramson Family Cancer Research Institute, Department of Cancer Biology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
41
|
Abstract
Over 50 years of polyomavirus research has produced a wealth of insights into not only general biologic processes in mammalian cells, but also, how conditions can be altered and signaling systems tweaked to produce transformation phenotypes. In the past few years three new members (KIV, WUV, and MCV) have joined two previously known (JCV and BKV) human polyomaviruses. In this review, we present updated information on general virologic features of these polyomaviruses in their natural host, concentrating on the association of MCV with human Merkel cell carcinoma. We further present a discussion on advances made in SV40 as the prototypic model, which has and will continue to inform our understanding about viruses and cancer.
Collapse
Affiliation(s)
- Ole Gjoerup
- Cancer Virology Program, Hillman Cancer Research Pavilion, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | | |
Collapse
|
42
|
Fu J, Lv X, Lin H, Wu L, Wang R, Zhou Z, Zhang B, Wang YL, Tsang BK, Zhu C, Wang H. Ubiquitin ligase cullin 7 induces epithelial-mesenchymal transition in human choriocarcinoma cells. J Biol Chem 2010; 285:10870-9. [PMID: 20139075 DOI: 10.1074/jbc.m109.004200] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Germ line mutations of the ubiquitin ligase cullin 7 (CUL7) are linked to 3-M syndrome and Yakuts short stature syndrome, both of which are characterized by pre- and post-natal growth retardation. CUL7 knock-out mice show placental and embryonic defects similar to intrauterine growth retardation, suggesting a role of CUL7 in placentation. CUL7 was found in this study to be highly expressed in first trimester invasive human placental villi as well as in HTR8/SVneo and B6Tert cells, two cell lines derived from human first trimester trophoblast cells. However, CUL7 levels in term trophoblast cells or JEG-3 cells, which are derived from human choriocarcinoma but exhibit weak invasion capacity, were low or undetectable. Forced expression of CUL7 in JEG-3 cells induced cell morphological changes characteristic of epithelial-mesenchymal transition, which was accompanied by a complete loss of the epithelial markers E-cadherin and P-cadherin and a significant elevation of mesenchymal markers Vimentin and N-cadherin. JEG-3 cells expressing CUL7 exhibited enhanced cell migration and invasion. Conversely, CUL7-specific RNA interference in HTR8/SVneo cells resulted in increased E-cadherin expression and reduced cell migration and invasion. Furthermore, CUL7 expression down-regulated E-cadherin mRNA expression by up-regulating ZEB1 and Slug, two transcriptional repressors of E-cadherin. Finally, CUL7-induced loss of E-cadherin expression was partially reversed by treatment of CUL7-expressing cells with the proteasome inhibitor MG-132. These results suggest that the CUL7 E3 ligase is a key regulator in trophoblast cell epithelial-mesenchymal transition and placental development.
Collapse
Affiliation(s)
- Jiejun Fu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Depuydt G, Vanfleteren JR, Braeckman BP. Protein metabolism and lifespan in Caenorhabditis elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 694:81-107. [PMID: 20886759 DOI: 10.1007/978-1-4419-7002-2_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lifespan of the versatile model system Caenorhabditis elegans can be extended by a decrease of insulin/IGF-1 signaling, TOR signaling, mitochondrial function, protein synthesis and dietary intake. The exact molecular mechanisms by which these modulations confer increased life expectancy are yet to be determined but increased stress resistance and improved protein homeostasis seem to be of major importance. In this chapter, we explore the interactions among several genetic pathways and cellular functions involved in lifespan extension and their relation to protein homeostasis in C. elegans. Several of these processes have been associated, however some relevant data are conflicting and further studies are needed to clarify these interactions. In mammals, protein homeostasis is also implicated in several neurodegenerative diseases, many of which can be modeled in C. elegans.
Collapse
Affiliation(s)
- Geert Depuydt
- Department of Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | | | | |
Collapse
|
44
|
Huber C, Fradin MÃ, Edouard T, Le Merrer M, Alanay Y, Da Silva DB, David A, Hamamy H, van Hest L, Lund AM, Michaud J, Oley C, Patel C, Rajab A, Skidmore DL, Stewart H, Tauber M, Munnich A, Cormier-Daire V. OBSL1mutations in 3-M syndrome are associated with a modulation ofIGFBP2andIGFBP5expression levels. Hum Mutat 2010; 31:20-6. [DOI: 10.1002/humu.21150] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Cullins in human intra-uterine growth restriction: expressional and epigenetic alterations. Placenta 2009; 31:151-7. [PMID: 20005570 DOI: 10.1016/j.placenta.2009.11.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 11/17/2009] [Accepted: 11/18/2009] [Indexed: 01/21/2023]
Abstract
Intra-uterine growth restriction (IUGR) is defined by a restriction of fetal growth during gestation. It is a prevalent significant public health problem that jeopardizes neonatal health but also that can have deleterious consequences later in adult life. Cullins constitute a family of seven proteins involved in cell scaffold and in selective proteolysis via the ubiquitin-proteasome system. Most Cullins are critical for early embryonic development and mutations in some Cullin genes have been identified in human syndromes including growth retardation. Our work hypothesis is that Cullins, particularly CUL4B and CUL7, are involved in placental diseases and especially in IUGR. Thus, expression of Cullins and their cofactors was analyzed in normal and pathological placentas. We show that they present a constant significant over-expression in IUGR placentas, whose extent is dependent on the position of the interrogated fragment along the cDNAs, suggesting the existence of different isoforms of the genes. Particularly, the CUL7 gene is up-regulated up to 10 times in IUGR and 15 times in preeclampsia associated with IUGR. The expression of cofactors of Cullins participating to functional complexes has also been evaluated and showed a similar significant increase in IUGR. Promoters of Cullin genes appeared to be under the control of the SP1 transcription factor. Finally, methylation levels of the CUL7 promoter in placental tissues are modulated according to the pathological conditions, with a significant hypomethylation in IUGR. These results concur to pinpoint the Cullin family as a new set of markers of IUGR.
Collapse
|