1
|
Wei J, Gao C, Lu C, Wang L, Dong D, Sun M. The E2F family: a ray of dawn in cardiomyopathy. Mol Cell Biochem 2025; 480:825-839. [PMID: 38985251 DOI: 10.1007/s11010-024-05063-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024]
Abstract
Cardiomyopathies are a group of heterogeneous diseases, characterized by abnormal structure and function of the myocardium. For many years, it has been a hot topic because of its high morbidity and mortality as well as its complicated pathogenesis. The E2Fs, a group of transcription factors found extensively in eukaryotes, play a crucial role in governing cell proliferation, differentiation, and apoptosis, meanwhile their deregulated activity can also cause a variety of diseases. Based on accumulating evidence, E2Fs play important roles in cardiomyopathies. In this review, we describe the structural and functional characteristics of the E2F family and its role in cardiomyocyte processes, with a focus on how E2Fs are associated with the onset and development of cardiomyopathies. Moreover, we discuss the great potential of E2Fs as biomarkers and therapeutic targets, aiming to provide a reference for future research.
Collapse
Affiliation(s)
- Jinwen Wei
- College of Exercise and Health, Shenyang Sport University, No.36 Jinqiansong East Road, Shenyang, 110102, Liaoning, People's Republic of China
| | - Can Gao
- College of Exercise and Health, Shenyang Sport University, No.36 Jinqiansong East Road, Shenyang, 110102, Liaoning, People's Republic of China
| | - Changxu Lu
- College of Exercise and Health, Shenyang Sport University, No.36 Jinqiansong East Road, Shenyang, 110102, Liaoning, People's Republic of China
| | - Lijie Wang
- Department of Cardiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110033, Liaoning, People's Republic of China
| | - Dan Dong
- College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, No.36 Jinqiansong East Road, Shenyang, 110102, Liaoning, People's Republic of China.
| |
Collapse
|
2
|
Boogerd CJ, Perini I, Kyriakopoulou E, Han SJ, La P, van der Swaan B, Berkhout JB, Versteeg D, Monshouwer-Kloots J, van Rooij E. Cardiomyocyte proliferation is suppressed by ARID1A-mediated YAP inhibition during cardiac maturation. Nat Commun 2023; 14:4716. [PMID: 37543677 PMCID: PMC10404286 DOI: 10.1038/s41467-023-40203-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/18/2023] [Indexed: 08/07/2023] Open
Abstract
The inability of adult human cardiomyocytes to proliferate is an obstacle to efficient cardiac regeneration after injury. Understanding the mechanisms that drive postnatal cardiomyocytes to switch to a non-regenerative state is therefore of great significance. Here we show that Arid1a, a subunit of the switching defective/sucrose non-fermenting (SWI/SNF) chromatin remodeling complex, suppresses postnatal cardiomyocyte proliferation while enhancing maturation. Genome-wide transcriptome and epigenome analyses revealed that Arid1a is required for the activation of a cardiomyocyte maturation gene program by promoting DNA access to transcription factors that drive cardiomyocyte maturation. Furthermore, we show that ARID1A directly binds and inhibits the proliferation-promoting transcriptional coactivators YAP and TAZ, indicating ARID1A sequesters YAP/TAZ from their DNA-binding partner TEAD. In ischemic heart disease, Arid1a expression is enhanced in cardiomyocytes of the border zone region. Inactivation of Arid1a after ischemic injury enhanced proliferation of border zone cardiomyocytes. Our study illuminates the pivotal role of Arid1a in cardiomyocyte maturation, and uncovers Arid1a as a crucial suppressor of cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Cornelis J Boogerd
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands.
| | - Ilaria Perini
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands
| | - Eirini Kyriakopoulou
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands
| | - Su Ji Han
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands
| | - Phit La
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands
| | - Britt van der Swaan
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands
| | - Jari B Berkhout
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands
| | - Danielle Versteeg
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands
| | - Jantine Monshouwer-Kloots
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands.
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
3
|
Direct Effects of Mifepristone on Mice Embryogenesis: An In Vitro Evaluation by Single-Embryo RNA Sequencing Analysis. Biomedicines 2023; 11:biomedicines11030907. [PMID: 36979886 PMCID: PMC10046204 DOI: 10.3390/biomedicines11030907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
The clinical use of mifepristone for medical abortions has been established in 1987 in France and since 2000 in the United States. Mifepristone has a limited medical period that lasts <9 weeks of gestation, and the incidence of mifepristone treatment failure increases with gestation time. Mifepristone functions as an antagonist for progesterone and glucocorticoid receptors. Studies have confirmed that mifepristone treatments can directly contribute to endometrium disability by interfering with the endometrial receptivity of the embryo, thus causing decidual endometrial degeneration. However, whether mifepristone efficacy directly affects embryo survival and growth is still an open question. Some women choose to continue their pregnancy after mifepristone treatment fails, and some women express regret and seek medically unapproved mifepristone antagonization with high doses of progesterone. These unapproved treatments raise the potential risk of embryonic fatality and developmental anomalies. Accordingly, in the present study, we collected mouse blastocysts ex vivo and treated implanted blastocysts with mifepristone for 24 h. The embryos were further cultured to day 8 in vitro to finish their growth in the early somite stage, and the embryos were then collected for RNA sequencing (control n = 3, mifepristone n = 3). When we performed a gene set enrichment analysis, our data indicated that mifepristone treatment considerably altered the cellular pathways of embryos in terms of viability, proliferation, and development. The data indicated that mifepristone was involved in hallmark gene sets of protein secretion, mTORC1, fatty acid metabolism, IL-2-STAT5 signaling, adipogenesis, peroxisome, glycolysis, E2F targets, and heme metabolism. The data further revealed that mifepristone interfered with normal embryonic development. In sum, our data suggest that continuing a pregnancy after mifepristone treatment fails is inappropriate and infeasible. The results of our study reveal a high risk of fetus fatality and developmental problems when pregnancies are continued after mifepristone treatment fails.
Collapse
|
4
|
Marques IJ, Ernst A, Arora P, Vianin A, Hetke T, Sanz-Morejón A, Naumann U, Odriozola A, Langa X, Andrés-Delgado L, Zuber B, Torroja C, Osterwalder M, Simões FC, Englert C, Mercader N. Wt1 transcription factor impairs cardiomyocyte specification and drives a phenotypic switch from myocardium to epicardium. Development 2022; 149:274789. [DOI: 10.1242/dev.200375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/16/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
During development, the heart grows by addition of progenitor cells to the poles of the primordial heart tube. In the zebrafish, Wilms tumor 1 transcription factor a (wt1a) and b (wt1b) genes are expressed in the pericardium, at the venous pole of the heart. From this pericardial layer, the proepicardium emerges. Proepicardial cells are subsequently transferred to the myocardial surface and form the epicardium, covering the myocardium. We found that while wt1a and wt1b expression is maintained in proepicardial cells, it is downregulated in pericardial cells that contribute cardiomyocytes to the developing heart. Sustained wt1b expression in cardiomyocytes reduced chromatin accessibility of specific genomic loci. Strikingly, a subset of wt1a- and wt1b-expressing cardiomyocytes changed their cell-adhesion properties, delaminated from the myocardium and upregulated epicardial gene expression. Thus, wt1a and wt1b act as a break for cardiomyocyte differentiation, and ectopic wt1a and wt1b expression in cardiomyocytes can lead to their transdifferentiation into epicardial-like cells.
Collapse
Affiliation(s)
- Ines J. Marques
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
| | - Alexander Ernst
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
| | - Prateek Arora
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
| | - Andrej Vianin
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | - Tanja Hetke
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | - Andrés Sanz-Morejón
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Centro Nacional de Investigaciones Cardiovasculares CNIC, Madrid 28029, Spain
| | - Uta Naumann
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena 07745, Germany
| | - Adolfo Odriozola
- Department of Microscopic Anatomy and Structural Biology, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | - Xavier Langa
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | | | - Benoît Zuber
- Department of Microscopic Anatomy and Structural Biology, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | - Carlos Torroja
- Centro Nacional de Investigaciones Cardiovasculares CNIC, Madrid 28029, Spain
| | - Marco Osterwalder
- Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
- Department of Cardiology, Bern University Hospital, 3010 Bern, Switzerland
| | - Filipa C. Simões
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Christoph Englert
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena 07745, Germany
- Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Jena 07745, Germany
| | - Nadia Mercader
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
- Centro Nacional de Investigaciones Cardiovasculares CNIC, Madrid 28029, Spain
| |
Collapse
|
5
|
Chen W, Gao G, Yan M, Yu M, Shi K, Yang P. Long noncoding RNA MAPKAPK5-AS1 promoted lipopolysaccharide-induced inflammatory damage in the myocardium by sponging microRNA-124-3p/E2F3. Mol Med 2021; 27:131. [PMID: 34666672 PMCID: PMC8524853 DOI: 10.1186/s10020-021-00385-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Myocardial dysfunction caused by sepsis (SIMD) leads to high mortality in critically ill patients. We investigated the function and mechanism of long non-coding RNA MAPKAPK5-AS1 (lncRNA MAPKAPK-AS1) on lipopolysaccharide (LPS)-induced inflammation response in vivo and in vitro. METHOD Male SD rats were utilized for in vivo experiments. Rat cardiomyocytes (H9C2) were employed for in vitro experiments. Western blotting was employed to measure protein expression, and RT-PCR was performed to measure mRNA expression of inflammation factors. TUNEL and flow cytometry were carried out to evulate cell apoptosis. RESULT The results showed that the expression of MAPKAPK5-AS1 was increased, while the expression of miR-124-3p was decreased in the inflammatory damage induced by LPS in vivo and in vitro. Knockdown of MAPKAPK5-AS1 reduced LPS-induced cell apoptosis and inflammation response, while overexpression of miR-124-3p weakened the effects of MAPKAPK5-AS1 knockdown on LPS-induced cell apoptosis and inflammation response. Moreover, miR-124-3p was identified as a downstream miRNA of MAPKAPK5-AS1, and E2F3 was a target of miR-214-3p. MAPKAPK5-AS1 knockdown increased the expression of miR-124-3p, while miR-124-3p overexpression reduced the expression of MAPKAPK5-AS1. In addition, miR-124-3p was found to downregulate E2F3 expression in H9C2 cells. CONCLUSION MAPKAPK5-AS1/miR-124-3p/E2F3 axis regulates LPS-related H9C2 cell apoptosis and inflammatory response.
Collapse
Affiliation(s)
- Weiwei Chen
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun City, 130033, Jilin Province, People's Republic of China
- Jilin Provincial Key Laboratory for Genetic Diagnosis of Cardiovascular Disease, Changchun City, 130033, Jilin Province, People's Republic of China
| | - Guangyuan Gao
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun City, 130033, Jilin Province, People's Republic of China
- Jilin Provincial Key Laboratory for Genetic Diagnosis of Cardiovascular Disease, Changchun City, 130033, Jilin Province, People's Republic of China
| | - Mengjie Yan
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun City, 130033, Jilin Province, People's Republic of China
- Jilin Provincial Key Laboratory for Genetic Diagnosis of Cardiovascular Disease, Changchun City, 130033, Jilin Province, People's Republic of China
| | - Ming Yu
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun City, 130033, Jilin Province, People's Republic of China
- Jilin Provincial Key Laboratory for Genetic Diagnosis of Cardiovascular Disease, Changchun City, 130033, Jilin Province, People's Republic of China
| | - Kaiyao Shi
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun City, 130033, Jilin Province, People's Republic of China
- Jilin Provincial Key Laboratory for Genetic Diagnosis of Cardiovascular Disease, Changchun City, 130033, Jilin Province, People's Republic of China
| | - Ping Yang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun City, 130033, Jilin Province, People's Republic of China.
- Jilin Provincial Key Laboratory for Genetic Diagnosis of Cardiovascular Disease, Changchun City, 130033, Jilin Province, People's Republic of China.
| |
Collapse
|
6
|
Calderon-Dominguez M, Belmonte T, Quezada-Feijoo M, Ramos M, Calderon-Dominguez J, Campuzano O, Mangas A, Toro R. Plasma microrna expression profile for reduced ejection fraction in dilated cardiomyopathy. Sci Rep 2021; 11:7517. [PMID: 33824379 PMCID: PMC8024336 DOI: 10.1038/s41598-021-87086-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 03/23/2021] [Indexed: 01/10/2023] Open
Abstract
The left ventricular (LV) ejection fraction (EF) is key to prognosis in dilated cardiomyopathy (DCM). Circulating microRNAs have emerged as reliable biomarkers for heart diseases, included DCM. Clinicians need improved tools for greater clarification of DCM EF categorization, to identify high-risk patients. Thus, we investigated whether microRNA profiles can categorize DCM patients based on their EF. 179-differentially expressed circulating microRNAs were screened in two groups: (1) non-idiopathic DCM; (2) idiopathic DCM. Then, 26 microRNAs were identified and validated in the plasma of ischemic-DCM (n = 60), idiopathic-DCM (n = 55) and healthy individuals (n = 44). We identified fourteen microRNAs associated with echocardiographic variables that differentiated idiopathic DCM according to the EF degree. A predictive model of a three-microRNA (miR-130b-3p, miR-150-5p and miR-210-3p) combined with clinical variables (left bundle branch block, left ventricle end-systolic dimension, lower systolic blood pressure and smoking habit) was obtained for idiopathic DCM with a severely reduced-EF. The receiver operating characteristic curve analysis supported the discriminative potential of the diagnosis. Bioinformatics analysis revealed that miR-150-5p and miR-210-3p target genes might interact with each other with a high connectivity degree. In conclusion, our results revealed a three-microRNA signature combined with clinical variables that highly discriminate idiopathic DCM categorization. This is a potential novel prognostic biomarker with high clinical value.
Collapse
Affiliation(s)
- Maria Calderon-Dominguez
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, Av/Ana de Viya 21, 11009, Cadiz, Spain.
| | - Thalía Belmonte
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, Av/Ana de Viya 21, 11009, Cadiz, Spain
| | - Maribel Quezada-Feijoo
- Cardiology Department, Cruz Roja Hospital, Madrid, Spain
- Universidad Alfonso X, Madrid, Spain
| | - Mónica Ramos
- Cardiology Department, Cruz Roja Hospital, Madrid, Spain
- Universidad Alfonso X, Madrid, Spain
| | - Juan Calderon-Dominguez
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, Av/Ana de Viya 21, 11009, Cadiz, Spain
| | - Oscar Campuzano
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
- Medical Science Department, School of Medicine, University of Girona, Girona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Alipio Mangas
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, Av/Ana de Viya 21, 11009, Cadiz, Spain
- Internal Medicine Department, Puerta del Mar University Hospital, School of Medicine, University of Cadiz, Cadiz, Spain
- Medicine Department, School of Medicine, University of Cadiz, Edifício Andrés Segovia 3º Floor, C/Dr Marañón S/N, 21001, Cádiz, Spain
| | - Rocio Toro
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, Av/Ana de Viya 21, 11009, Cadiz, Spain.
- Medicine Department, School of Medicine, University of Cadiz, Edifício Andrés Segovia 3º Floor, C/Dr Marañón S/N, 21001, Cádiz, Spain.
| |
Collapse
|
7
|
Lv XB, Niu QH, Zhang M, Feng L, Feng J. Critical functions of microRNA-30a-5p-E2F3 in cardiomyocyte apoptosis induced by hypoxia/reoxygenation. Kaohsiung J Med Sci 2020; 37:92-100. [PMID: 33058540 DOI: 10.1002/kjm2.12309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 08/26/2020] [Accepted: 09/13/2020] [Indexed: 01/01/2023] Open
Abstract
The high-mortality rate of cardiovascular diseases (CVDs) is associated with the myocardial ischemia and reperfusion (I/R). Recent investigations have revealed that microRNAs (miRNAs) exert vital functions in the apoptosis of cardiomyocyte cell. Nevertheless, the potential role of miR-30a-5p in the regulation of cardiomyocyte cell apoptosis needs to be illuminated. In the current study, we observed that hypoxia/reoxygenation (H/R) remarkably raised the level of miR-30a-5p but reduced the expression of E2F transcription factor 3 (E2F3) in H9c2 cardiomyocytes. In vivo, miR-30a-5p was found to be significantly upregulated in the hearts of rats following I/R. Downregulation of miR-30a-5p using anti-miR-30a-5p decreased H9c2 cardiomyocytes apoptosis caused by H/R and promoted the proliferation of H9c2 inhibited by H/R. Moreover, E2F3 was a possible target gene of miR-30a-5p and upregulation of miR-30a-5p reduced the expression level of E2F3 in H9c2 cardiomyocytes. We further identified that E2F3 silencing reversed the effect of anti-miR-30a-5p on the proliferation and apoptosis in H/R treated H9c2 cells. These studies suggested that downregulation of miR-30a-5p attenuated the impact of H/R on H9c2 cardiomyocytes through targeting E2F3.
Collapse
Affiliation(s)
- Xiao-Bing Lv
- Department of Cardiology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qing-Hui Niu
- Liver Disease Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Min Zhang
- Department of Geriatrics, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li Feng
- Department of Cardiology, the Central Hospital of Lijin County, Dongying, China
| | - Jia Feng
- Department of Pediatrics, the Central Hospital of Shengli Oil Field, Dongying, China
| |
Collapse
|
8
|
Xu Y. TET2 expedites coronary heart disease by promoting microRNA-126 expression and inhibiting the E2F3-PI3K-AKT axis. Biochem Cell Biol 2020; 98:698-708. [PMID: 32818384 DOI: 10.1139/bcb-2020-0297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
DNA demethylases of the ten-eleven translocation (TET) family serve as tumor suppressors in various human cancers, but their pathogenic effects in coronary heart disease (CHD) remain unclear. Here we report that TET2 is transcriptionally upregulated in CHD patients, where it shows potential as a diagnostic tool. Mechanistic investigations revealed that TET2 facilitates inflammatory responses and cardiomyocyte apoptosis in rats through demethylation of microRNA-126 (miR-126) promoter. This interaction leads to sequestration of miR-126 from its target E2F transcription factor 3 (E2F3), contributing to E2F3 suppression in CHD. Upregulation of miR-126 when TET2 was silenced restored levels of inflammatory factors and aggravated the degree of cardiac injury and cardiomyocyte apoptosis in rats. By contrast, simultaneous overexpression of E2F3 and miR-126 reduced the levels of inflammatory factors, cardiac injury, and cardiomyocyte apoptosis in rats. Also, TET2 was found to regulate the activity of the PI3K-AKT pathway through the miR-126-E2F3 axis. Our findings uncover a novel function for TET2 in facilitating the progression of CHD.
Collapse
Affiliation(s)
- Yan Xu
- Department of Internal Medicine-Cardiovascular, the People's Hospital of Rizhao City, Rizhao 276800, Shandong, P.R. China.,Department of Internal Medicine-Cardiovascular, the People's Hospital of Rizhao City, Rizhao 276800, Shandong, P.R. China
| |
Collapse
|
9
|
Identification of microRNA biomarkers in serum of patients at different stages of atrial fibrillation. Heart Lung 2020; 49:902-908. [PMID: 32482362 DOI: 10.1016/j.hrtlng.2020.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/16/2020] [Accepted: 03/27/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) is a type of cardiac arrhythmia which is caused by irregular electrical activities in the atria. OBJECTIVE To identify serum microRNA (miRNA) biomarkers at three durations (duration since diagnosis of AF) of AF. METHODS This study included 14 patients with AF and 8 healthy subjects. The blood sample was collected from each patient at baseline (time of diagnosis) and 12-month and 24-month follow-up periods. The serum was used for miRNA sequencing. The differentially expressed miRNAs (DEMs) between the 3 AF and control groups were independently compared. The predicted target genes of DEMs were subjected to functional enrichment and protein-protein interaction network analyses. Additionally, the miRNA-target gene networks were constructed for the 3 AF groups and miRNA time series analysis was performed. The expression of several key miRNAs was verified by real-time quantitative polymerase chain reaction (qRT-PCR). RESULTS In total, 28, 22, and 24 DEMs were identified in the baseline, 12-month, and 24-month groups, respectively. miR-483-5p was the common DEM in the 3 AF groups. In the baseline and 12-month groups, the miR-200b-3p and miR-125b-5p target genes were significantly enriched in the Wnt signaling and several cancer-related pathways, respectively. In the 12-month group, the miR-34a-5p target genes were enriched in the cancer-related pathways. In the miRNA-target gene network, miR-34a-5p regulated the highest number of target genes. The time series analysis revealed that 7 miRNAs, which were downregulated in the control group, were upregulated in the AF groups. The qRT-PCR analysis revealed that the 24-month group exhibited a significant upregulation of miR-483-5p (p < 0.05), whereas the baseline group exhibited significant a downregulation of miR-125b-5p (p < 0.05). CONCLUSION In patients with AF, miR-125b-5p and miR-483-5p can be potential biomarkers of the baseline and 24-month periods, respectively.
Collapse
|
10
|
Wang H, Wang X, Xu L, Cao H. Identification of transcription factors MYC and C/EBPβ mediated regulatory networks in heart failure based on gene expression omnibus datasets. BMC Cardiovasc Disord 2020; 20:250. [PMID: 32460775 PMCID: PMC7251862 DOI: 10.1186/s12872-020-01527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/13/2020] [Indexed: 11/29/2022] Open
Abstract
Background Heart failure is one of leading cause of death worldwide. However, the transcriptional profiling of heart failure is unclear. Moreover, the signaling pathways and transcription factors involving the heart failure development also are largely unknown. Using published Gene Expression Omnibus (GEO) datasets, in the present study, we aim to comprehensively analyze the differentially expressed genes in failing heart tissues, and identified the critical signaling pathways and transcription factors involving heart failure development. Methods The transcriptional profiling of heart failure was identified from previously published gene expression datasets deposited in GSE5406, GSE16499 and GSE68316. The enriched signaling pathways and transcription factors were analyzed using Database for Annotation, Visualization and Integrated Discovery (DAVID) website and gene set enrichment analysis (GSEA) assay. The transcriptional networks were created by Cytoscape. Results Compared with the normal heart tissues, 90 genes were particularly differentially expressed in failing heart tissues, and those genes were associated with multiple metabolism signaling pathways and insulin signaling pathway. Metabolism and insulin signaling pathway were both inactivated in failing heart tissues. Transcription factors MYC and C/EBPβ were both negatively associated with the expression profiling of failing heart tissues in GSEA assay. Moreover, compared with normal heart tissues, MYC and C/EBPβ were down regulated in failing heart tissues. Furthermore, MYC and C/EBPβ mediated downstream target genes were also decreased in failing heart tissues. MYC and C/EBPβ were positively correlated with each other. At last, we constructed MYC and C/EBPβ mediated regulatory networks in failing heart tissues, and identified the MYC and C/EBPβ target genes which had been reported involving the heart failure developmental progress. Conclusions Our results suggested that metabolism pathways and insulin signaling pathway, transcription factors MYC and C/EBPβ played critical roles in heart failure developmental progress.
Collapse
Affiliation(s)
- Haiwei Wang
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, FuZhou, 350001, FuJian, China
| | - Xinrui Wang
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, FuZhou, 350001, FuJian, China
| | - Liangpu Xu
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, FuZhou, 350001, FuJian, China
| | - Hua Cao
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, FuZhou, 350001, FuJian, China.
| |
Collapse
|
11
|
Resveratrol Attenuates High Glucose-Induced Vascular Endothelial Cell Injury by Activating the E2F3 Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6173618. [PMID: 32420356 PMCID: PMC7204347 DOI: 10.1155/2020/6173618] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/21/2020] [Accepted: 04/10/2020] [Indexed: 11/22/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is the most common metabolic disease. High glucose-induced macrovascular disease and microangiopathy are major complications of diabetes. E2F3, a member of the E2F transcription factor family, is closely related to cardiovascular diseases. Resveratrol, a nonflavonoid polyphenolic compound widely found in plants, has been shown to have cardiovascular protection. However, there are few studies on whether resveratrol can effectively treat diabetic angiopathy, and the specific mechanism involved needs further study. This study investigated whether E2F3 transcription factors are involved in the process of vascular endothelial injury induced by high glucose and observed its effects on the proliferation of vascular endothelial cells. Then, it analyzed whether resveratrol can inhibit high glucose-induced vascular endothelial cell injury by regulating the E2F3 pathway. We demonstrated that the expression level of the E2F3 transcription factor was significantly inhibited in high glucose state. Resveratrol inhibited high glucose-induced vascular endothelial cell injury by upregulating the E2F3 pathway. High glucose can induce vascular endothelial injury by inhibiting E2F3 gene expression, while resveratrol can inhibit high glucose-induced vascular endothelial injury by activating the E2F3 pathway.
Collapse
|
12
|
Li R, Li B, Shen M, Cao Y, Zhang X, Li W, Tao J, Wu W, Liu H. LncRNA 2310043L19Rik inhibits differentiation and promotes proliferation of myoblast by sponging miR-125a-5p. Aging (Albany NY) 2020; 12:5625-5639. [PMID: 32229708 PMCID: PMC7185117 DOI: 10.18632/aging.102905] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Although many long non-coding RNAs (lncRNAs) have been identified in muscle, some of their physiological functions and regulatory mechanisms remain elusive. Here we report the functional identification and characterization of a novel lncRNA 2310043L19Rik (lnc-231), which is highly expressed in muscle. The expression level of lnc-231 in skeletal muscle of young mice is higher than that in aged mice. Functional analysis showed that overexpression of lnc-231 restrained differentiation and promoted proliferation of myoblast, while inhibition of lnc-231 revealed completely opposite effects in vitro. RNA molecules of lnc-231 acted mechanistically as competing endogenous RNAs (ceRNA) to target miR-125a-5p, whereas miR-125a-5p binds to the 3'-UTR of E2F3 mRNA to inhibit its function. Collectively, lncRNA 2310043L19Rik promotes proliferation and inhibits differentiation of myoblast cells by attenuating the function of miR-125a-5p.
Collapse
Affiliation(s)
- Rongyang Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bojiang Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ming Shen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Cao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weijian Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingli Tao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangjun Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
13
|
Hatzistergos KE, Williams AR, Dykxhoorn D, Bellio MA, Yu W, Hare JM. Tumor Suppressors RB1 and CDKN2a Cooperatively Regulate Cell-Cycle Progression and Differentiation During Cardiomyocyte Development and Repair. Circ Res 2019; 124:1184-1197. [PMID: 30744497 DOI: 10.1161/circresaha.118.314063] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE Although rare cardiomyogenesis is reported in the adult mammalian heart, whether this results from differentiation or proliferation of cardiomyogenic cells remains controversial. The tumor suppressor genes RB1 (retinoblastoma) and CDKN2a (cyclin-dependent kinase inhibitor 2a) are critical cell-cycle regulators, but their roles in human cardiomyogenesis remains unclear. OBJECTIVE We hypothesized that developmental activation of RB1 and CDKN2a cooperatively cause permanent cell-cycle withdrawal of human cardiac precursors (CPCs) driving terminal differentiation into mature cardiomyocytes, and that dual inactivation of these tumor suppressor genes promotes myocyte cell-cycle reentry. METHODS AND RESULTS Directed differentiation of human pluripotent stem cells (hPSCs) into cardiomyocytes revealed that RB1 and CDKN2a are upregulated at the onset of cardiac precursor specification, simultaneously with GATA4 (GATA-binding protein 4) homeobox genes PBX1 (pre-B-cell leukemia transcription factor 1) and MEIS1 (myeloid ecotropic viral integration site 1 homolog), and remain so until terminal cardiomyocyte differentiation. In both GATA4+ hPSC cardiac precursors and postmitotic hPSC-cardiomyocytes, RB1 is hyperphosphorylated and inactivated. Transient, stage-specific, depletion of RB1 during hPSC differentiation enhances cardiomyogenesis at the cardiac precursors stage, but not in terminally differentiated hPSC-cardiomyocytes, by transiently upregulating GATA4 expression through a cell-cycle regulatory pathway involving CDKN2a. Importantly, cytokinesis in postmitotic hPSC-cardiomyocytes can be induced with transient, dual RB1, and CDKN2a silencing. The relevance of this pathway in vivo was suggested by findings in a porcine model of cardiac cell therapy post-MI, whereby dual RB1 and CDKN2a inactivation in adult GATA4+ cells correlates with the degree of scar size reduction and endogenous cardiomyocyte mitosis, particularly in response to combined transendocardial injection of adult human hMSCs (bone marrow-derived mesenchymal stromal cells) and cKit+ cardiac cells. CONCLUSIONS Together these findings reveal an important and coordinated role for RB1 and CDKN2a in regulating cell-cycle progression and differentiation during human cardiomyogenesis. Moreover, transient, dual inactivation of RB1 and CDKN2a in endogenous adult GATA4+ cells and cardiomyocytes mediates, at least in part, the beneficial effects of cell-based therapy in a post-MI large mammalian model, a finding with potential clinical implications.
Collapse
Affiliation(s)
- Konstantinos E Hatzistergos
- From the Interdisciplinary Stem Cell Institute (K.E.H., A.R.W., M.A.B., W.Y., J.M.H.), University of Miami, Miller School of Medicine, FL
- Department of Cell Biology (K.E.H.), University of Miami, Miller School of Medicine, FL
| | - Adam R Williams
- From the Interdisciplinary Stem Cell Institute (K.E.H., A.R.W., M.A.B., W.Y., J.M.H.), University of Miami, Miller School of Medicine, FL
- Department of Surgery (A.R.W.), University of Miami, Miller School of Medicine, FL
- Department of Surgery, Duke University School of Medicine, Durham, NC (A.R.W.)
| | - Derek Dykxhoorn
- Department of Human Genetics (D.D.), University of Miami, Miller School of Medicine, FL
- John P. Hussman Institute for Human Genomics (D.D.), University of Miami, Miller School of Medicine, FL
| | - Michael A Bellio
- From the Interdisciplinary Stem Cell Institute (K.E.H., A.R.W., M.A.B., W.Y., J.M.H.), University of Miami, Miller School of Medicine, FL
| | - Wendou Yu
- From the Interdisciplinary Stem Cell Institute (K.E.H., A.R.W., M.A.B., W.Y., J.M.H.), University of Miami, Miller School of Medicine, FL
- Department of Pediatrics (W.Y.), University of Miami, Miller School of Medicine, FL
| | - Joshua M Hare
- From the Interdisciplinary Stem Cell Institute (K.E.H., A.R.W., M.A.B., W.Y., J.M.H.), University of Miami, Miller School of Medicine, FL
- Department of Molecular and Cellular Pharmacology (J.M.H.), University of Miami, Miller School of Medicine, FL
- Cardiology Division, Department of Medicine (J.M.H.), University of Miami, Miller School of Medicine, FL
| |
Collapse
|
14
|
Kim HR, Rahman FU, Kim KS, Kim EK, Cho SM, Lee K, Moon OS, Seo YW, Yoon WK, Won YS, Kang H, Kim HC, Nam KH. Critical Roles of E2F3 in Growth and Musculo-skeletal Phenotype in Mice. Int J Med Sci 2019; 16:1557-1563. [PMID: 31839743 PMCID: PMC6909802 DOI: 10.7150/ijms.39068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/11/2019] [Indexed: 12/24/2022] Open
Abstract
E2F3, a member of the E2F family, plays a critical role in cell cycle and proliferation by targeting downstream, retinoblastoma (RB) a tumor suppressor family protein. The purpose of this study, was to investigate the role and function of E2F3 in vivo. We examined phenotypic abnormalities, by deletion of the E2f3 gene in mice. Complete ablation of the E2F3 was fully penetrant, in the pure C57BL/6N background. The E2f3+/ - mouse embryo developed normally without fatal disorder. However, they exhibited reduced body weight, growth retardation, skeletal imperfection, and poor grip strength ability. Findings suggest that E2F3 has a pivotal role in muscle and bone development, and affect normal mouse growth.
Collapse
Affiliation(s)
- Hae-Rim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Faiz Ur Rahman
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Kwang-Soo Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea.,Department of Animal Science and Technology, Chung-Ang University, Seodong-daero 4726, Gyeonggi 17546, Korea
| | - Eun-Kyeung Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Sang-Mi Cho
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Kihoon Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Ok-Sung Moon
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Young-Won Seo
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Won-Kee Yoon
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Young-Suk Won
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Hoyoung Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Hyoung-Chin Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| | - Ki-Hoan Nam
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yeonjudanji-ro 30, Chungbuk 28116, Korea
| |
Collapse
|
15
|
Feng C, Song C, Ning Z, Ai B, Wang Q, Xu Y, Li M, Bai X, Zhao J, Liu Y, Li X, Zhang J, Li C. ce-Subpathway: Identification of ceRNA-mediated subpathways via joint power of ceRNAs and pathway topologies. J Cell Mol Med 2018; 23:967-984. [PMID: 30421585 PMCID: PMC6349186 DOI: 10.1111/jcmm.13997] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/28/2018] [Accepted: 10/17/2018] [Indexed: 12/19/2022] Open
Abstract
Competing endogenous RNAs (ceRNAs) represent a novel mechanism of gene regulation that may mediate key subpathway regions and contribute to the altered activities of pathways. However, the classical methods used to identify pathways fail to specifically consider ceRNAs within the pathways and key regions impacted by them. We proposed a powerful strategy named ce-Subpathway for the identification of ceRNA-mediated functional subpathways. It provided an effective level of pathway analysis via integrating ceRNAs, differentially expressed (DE) genes and their key regions within the given pathways. We respectively analysed one pulmonary arterial hypertension (PAH) and one myocardial infarction (MI) data sets and demonstrated that ce-Subpathway could identify many subpathways whose corresponding entire pathways were ignored by those non-ceRNA-mediated pathway identification methods. And these pathways have been well reported to be associated with PAH/MI-related cardiovascular diseases. Further evidence showed reliability of ceRNA interactions and robustness/reproducibility of the ce-Subpathway strategy by several data sets of different cancers, including breast cancer, oesophageal cancer and colon cancer. Survival analysis was finally applied to illustrate the clinical application value of the ceRNA-mediated functional subpathways using another data sets of pancreatic cancer. Comprehensive analyses have shown the power of a joint ceRNAs/DE genes and subpathway strategy based on their topologies.
Collapse
Affiliation(s)
- Chenchen Feng
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Chao Song
- Department of Pharmacology, Daqing Campus, Harbin Medical University, Daqing, China
| | - Ziyu Ning
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Bo Ai
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Qiuyu Wang
- School of Nursing, Daqing Campus, Harbin Medical University, Daqing, China
| | - Yong Xu
- The fifth Affiliated Hospital of Harbin Medical University, Daqing, China
| | - Meng Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Xuefeng Bai
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Jianmei Zhao
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Yuejuan Liu
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Xuecang Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Jian Zhang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Chunquan Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| |
Collapse
|
16
|
E2F6 protein levels modulate drug induced apoptosis in cardiomyocytes. Cell Signal 2017; 40:230-238. [PMID: 28964969 DOI: 10.1016/j.cellsig.2017.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/19/2017] [Accepted: 09/26/2017] [Indexed: 12/18/2022]
Abstract
The E2F/Rb pathway regulates cell growth, differentiation, and death. In particular, E2F1 promotes apoptosis in all cells including those of the heart. E2F6, which represses E2F activity, was found to induce dilated cardiomyopathy in the absence of apoptosis in murine post-natal heart. Here we evaluate the anti-apoptotic potential of E2F6 in neonatal cardiomyocytes (NCM) from E2F6-Tg hearts which showed significantly less caspase-3 cleavage, a lower Bax/Bcl2 ratio, and improved cell viability in response to CoCl2 exposure. This correlated with a decrease in the pro-apoptotic E2F3 protein levels. In contrast, no difference in apoptotic markers or cell viability was observed in response to Doxorubicin (Dox) treatment between Wt and Tg-NCM. Dox caused a rapid and dramatic loss of the E2F6 protein in Tg-NCM within 6h and was undetectable after 12h. The level of e2f6 transcript was unchanged in Wt NCM, but was dramatically decreased in Tg cells in response to both Dox and CoCl2. This was related to an impact of the drugs on the α-myosin heavy chain promoter used to drive the E2F6 transgene. By comparison in HeLa, Dox induced apoptosis through upregulation of endogenous E2F1 involving post-transcriptional mechanisms, while E2F6 was down regulated with induction of the Checkpoint kinase-1 and proteasome degradation. These data imply that E2F6 serves to modulate E2F activity and protect cells including cardiomyocytes from apoptosis and improve survival. Strategies to modulate E2F6 levels may be therapeutically useful to mitigate cell death associated disorders.
Collapse
|
17
|
Gamper I, Burkhart DL, Bywater MJ, Garcia D, Wilson CH, Kreuzaler PA, Arends MJ, Zheng YW, Perfetto A, Littlewood TD, Evan GI. Determination of the physiological and pathological roles of E2F3 in adult tissues. Sci Rep 2017; 7:9932. [PMID: 28855541 PMCID: PMC5577339 DOI: 10.1038/s41598-017-09494-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/27/2017] [Indexed: 11/21/2022] Open
Abstract
While genetically engineered mice have made an enormous contribution towards the elucidation of human disease, it has hitherto not been possible to tune up or down the level of expression of any endogenous gene. Here we describe compound genetically modified mice in which expression of the endogenous E2f3 gene may be either reversibly elevated or repressed in adult animals by oral administration of tetracycline. This technology is, in principle, applicable to any endogenous gene, allowing direct determination of both elevated and reduced gene expression in physiological and pathological processes. Applying this switchable technology to the key cell cycle transcription factor E2F3, we demonstrate that elevated levels of E2F3 drive ectopic proliferation in multiple tissues. By contrast, E2F3 repression has minimal impact on tissue proliferation or homeostasis in the majority of contexts due to redundancy of adult function with E2F1 and E2F2. In the absence of E2F1 and E2F2, however, repression of E2F3 elicits profound reduction of proliferation in the hematopoietic compartments that is rapidly lethal in adult animals.
Collapse
Affiliation(s)
- Ivonne Gamper
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Megan J Bywater
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Daniel Garcia
- The Salk Institute for Biological Sciences, 10010 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | | | | | - Mark J Arends
- Pathology Department, University of Cambridge, Cambridge, UK
- Division of Pathology, Centre for Comparative Pathology, University of Edinburgh, Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh, UK
| | - Yao-Wu Zheng
- Cardiovasular Research Institute, Department of Medicine, University of California, San Francisco, San Francisco, CA, 94158, USA
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | | | | | - Gerard I Evan
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
18
|
Major JL, Dewan A, Salih M, Leddy JJ, Tuana BS. E2F6 Impairs Glycolysis and Activates BDH1 Expression Prior to Dilated Cardiomyopathy. PLoS One 2017; 12:e0170066. [PMID: 28085920 PMCID: PMC5234782 DOI: 10.1371/journal.pone.0170066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/28/2016] [Indexed: 01/07/2023] Open
Abstract
Rationale The E2F pathway plays a critical role in cardiac growth and development, yet its role in cardiac metabolism remains to be defined. Metabolic changes play important roles in human heart failure and studies imply the ketogenic enzyme β-hydroxybutyrate dehydrogenase I (BDH1) is a potential biomarker. Objective To define the role of the E2F pathway in cardiac metabolism and dilated cardiomyopathy (DCM) with a focus on BDH1. Methods and Results We previously developed transgenic (Tg) mice expressing the transcriptional repressor, E2F6, to interfere with the E2F/Rb pathway in post-natal myocardium. These Tg mice present with an E2F6 dose dependent DCM and deregulated connexin-43 (CX-43) levels in myocardium. Using the Seahorse platform, a 22% decrease in glycolysis was noted in neonatal cardiomyocytes isolated from E2F6-Tg hearts. This was associated with a 39% reduction in the glucose transporter GLUT4 and 50% less activation of the regulator of glucose metabolism AKT2. The specific reduction of cyclin B1 (70%) in Tg myocardium implicates its importance in supporting glycolysis in the postnatal heart. No changes in cyclin D expression (known to regulate mitochondrial activity) were noted and lipid metabolism remained unchanged in neonatal cardiomyocytes from Tg hearts. However, E2F6 induced a 40-fold increase of the Bdh1 transcript and 890% increase in its protein levels in hearts from Tg pups implying a potential impact on ketolysis. By contrast, BDH1 expression is not activated until adulthood in normal myocardium. Neonatal cardiomyocytes from Wt hearts incubated with the ketone β-hydroxybutyrate (β-OHB) showed a 100% increase in CX-43 protein levels, implying a role for ketone signaling in gap junction biology. Neonatal cardiomyocyte cultures from Tg hearts exhibited enhanced levels of BDH1 and CX-43 and were not responsive to β-OHB. Conclusions The data reveal a novel role for the E2F pathway in regulating glycolysis in the developing myocardium through a mechanism involving cyclin B1. We reveal BDH1 expression as an early biomarker of heart failure and its potential impact, through ketone signaling, on CX-43 levels in E2F6-induced DCM.
Collapse
Affiliation(s)
| | - Aaraf Dewan
- University of Ottawa, Dept. CMM, Ottawa, Ontario, Canada
| | - Maysoon Salih
- University of Ottawa, Dept. CMM, Ottawa, Ontario, Canada
| | - John J. Leddy
- University of Ottawa, Dept. CMM, Ottawa, Ontario, Canada
| | - Balwant S. Tuana
- University of Ottawa, Dept. CMM, Ottawa, Ontario, Canada
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
19
|
Phenotypic variability of TTR Val122Ile mutation: a Caucasian patient with axonal neuropathy and normal heart. Neurol Sci 2016; 38:525-526. [DOI: 10.1007/s10072-016-2767-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022]
|
20
|
Major JL, Salih M, Tuana BS. Interplay between the E2F pathway and β-adrenergic signaling in the pathological hypertrophic response of myocardium. J Mol Cell Cardiol 2015; 84:179-90. [PMID: 25944088 DOI: 10.1016/j.yjmcc.2015.04.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/15/2015] [Accepted: 04/29/2015] [Indexed: 12/28/2022]
Abstract
The E2F/Pocket protein (Rb) pathway regulates cell growth, differentiation, and death by modulating gene expression. We previously examined this pathway in the myocardium via manipulation of the unique E2F repressor, E2F6, which is believed to repress gene activity independently of Rb. Mice with targeted expression of E2F6 in postnatal myocardium developed dilated cardiomyopathy (DCM) without hypertrophic growth. We assessed the mechanisms of the apparent failure of compensatory hypertrophic growth as well as their response to the β-adrenergic agonist isoproterenol. As early as 2 weeks, E2F6 transgenic (Tg) mice present with dilated thinner left ventricles and significantly reduced ejection fraction and fractional shortening which persists at 6 weeks of age, but with no apparent increase in left ventricle weight: body weight (LVW:BW). E2F6-Tg mice treated with isoproterenol (6.1 mg/kg/day) show double the increase in LVW:BW than their Wt counterparts (32% vs 16%, p-value: 0.007). Western blot analysis revealed the activation of the adrenergic pathway in Tg heart tissue under basal conditions with ~2-fold increase in the level of β2-adrenergic receptors (p-value: 8.9E-05), protein kinase A catalytic subunit (PKA-C) (p-value: 0.0176), activated c-Src tyrosine-protein kinase (p-value: 0.0002), extracellular receptor kinase 2 (ERK2) (p-value: 0.0005), and induction of the anti-apoptotic protein Bcl2 (p-value 0. 0.00001). In contrast, a ~60% decrease in the cardiac growth regulator: AKT1 (p-value 0.0001) and a ~four fold increase in cyclic AMP dependent phosphodiesterase 4D (PDE4D), the negative regulator of PKA activity, were evident in the myocardium of E2F6-Tg mice. The expression of E2F3 was down-regulated by E2F6, but was restored by isoproterenol. Further, Rb expression was down-regulated in Tg mice in response to isoproterenol implying a net activation of the E2F pathway. Thus the unique regulation of E2F activity by E2F6 renders the myocardium hypersensitive to adrenergic stimulus resulting in robust hypertrophic growth. These data reveal a novel interplay between the E2F pathway, β2-adrenergic/PKA/PDE4D, and ERK/c-Src axis in fine tuning the pathological hypertrophic growth response. E2F6 deregulates E2F3 such that pro-hypertrophic growth and survival are enhanced via β2-adrenergic signaling however this response is outweighed by the induction of anti-hypertrophic signals so that left ventricle dilation proceeds without any increase in muscle mass.
Collapse
Affiliation(s)
- Jennifer L Major
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Maysoon Salih
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Balwant S Tuana
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada; University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada.
| |
Collapse
|
21
|
Tissue-specific targeting of cell fate regulatory genes by E2f factors. Cell Death Differ 2015; 23:565-75. [PMID: 25909886 DOI: 10.1038/cdd.2015.36] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 02/03/2015] [Accepted: 03/04/2015] [Indexed: 12/30/2022] Open
Abstract
Cell cycle proteins are important regulators of diverse cell fate decisions, and in this capacity have pivotal roles in neurogenesis and brain development. The mechanisms by which cell cycle regulation is integrated with cell fate control in the brain and other tissues are poorly understood, and an outstanding question is whether the cell cycle machinery regulates fate decisions directly or instead as a secondary consequence of proliferative control. Identification of the genes targeted by E2 promoter binding factor (E2f) transcription factors, effectors of the pRb/E2f cell cycle pathway, will provide essential insights into these mechanisms. We identified the promoter regions bound by three neurogenic E2f factors in neural precursor cells in a genome-wide manner. Through bioinformatic analyses and integration of published genomic data sets we uncovered hundreds of transcriptionally active E2f-bound promoters corresponding to genes that control cell fate processes, including key transcriptional regulators and members of the Notch, fibroblast growth factor, Wnt and Tgf-β signaling pathways. We also demonstrate a striking enrichment of the CCCTC binding factor transcription factor (Ctcf) at E2f3-bound nervous system-related genes, suggesting a potential regulatory co-factor for E2f3 in controlling differentiation. Finally, we provide the first demonstration of extensive tissue specificity among E2f target genes in mammalian cells, whereby E2f3 promoter binding is well conserved between neural and muscle precursors at genes associated with cell cycle processes, but is tissue-specific at differentiation-associated genes. Our findings implicate the cell cycle pathway as a widespread regulator of cell fate genes, and suggest that E2f3 proteins control cell type-specific differentiation programs by regulating unique sets of target genes. This work significantly enhances our understanding of how the cell cycle machinery impacts cell fate and differentiation, and will importantly drive further discovery regarding the mechanisms of cell fate control and transcriptional regulation in the brain, as well as in other tissues.
Collapse
|
22
|
Song C, Wu G, Xiang A, Zhang Q, Li W, Yang G, Shi X, Sun S, Li X. Over-expression of miR-125a-5p inhibits proliferation in C2C12 myoblasts by targeting E2F3. Acta Biochim Biophys Sin (Shanghai) 2015; 47:244-9. [PMID: 25733534 DOI: 10.1093/abbs/gmv006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs of 20-25 nucleotides in length. It has been shown that miRNAs play important roles in the proliferation of many types of cells, including myoblasts. In this study, we used real-time quantitative polymerase chain reaction, western blotting, EdU, flow cytometry, and CCK-8 assay to explore the role of miR-125a-5p during the proliferation of C2C12 myoblasts. It was found that the expression of miR-125a-5p was decreased during C2C12 myoblast proliferation. Over-expression of miR-125a-5p inhibited C2C12 myoblast proliferation as indicated by EdU staining, flow cytometry, and CCK8 assay. It was also found that miR-125a-5p could negatively regulate E2F3 expression at posttranscriptional level, via a specific target site in the 3' untranslated region. Knockdown of E2F3 showed a similar inhibitory effect on C2C12 myoblast proliferation. Thus, our findings suggest that miR-125a-5p may act as a negative regulator of C2C12 myoblast proliferation by targeting E2F3.
Collapse
Affiliation(s)
- Chengchuang Song
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Guofang Wu
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Aoqi Xiang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Qiangling Zhang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Wanhua Li
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xin'e Shi
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Shiduo Sun
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiao Li
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
23
|
Polimanti R, Di Girolamo M, Manfellotto D, Fuciarelli M. Functional variation of the transthyretin gene among human populations and its correlation with amyloidosis phenotypes. Amyloid 2013; 20:256-62. [PMID: 24111657 DOI: 10.3109/13506129.2013.844689] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Heterogeneity in the genotype-phenotype correlation of transthyretin (TTR)-related amyloidosis has been reported, suggesting that other factors may interact with disease-causing mutations. Additional genetic variants in the TTR gene and its surrounding regions may influence disease phenotype. To explore this hypothesis, we analyzed the TTR variation among human populations to identify functional inter-ethnic differences that could influence the TTR-related amyloidosis. METHODS Using the 1000 Genomes Project database, we analyzed a 20 kb region in 1092 apparently healthy individuals who belonged to 14 human populations. In silico analyses were performed to determine the functional impact of genetic variants. RESULTS These analyses showed that significant ethnic differences are present in the TTR gene, and some differences may affect TTR gene function. Specifically, the non-coding variants potentially associated with regulatory function showed a significant diversity between African and non-African individuals. DISCUSSION AND CONCLUSIONS Our results highlighted that cis-regulatory variants may contribute to the cardiac TTR-related amyloidosis observed in patients carrier of Val122Ile mutation, the most common in population with African origin. Indeed, non-coding variants differentiated in Africans are, in some cases, located in binding sites of transcription factors involved in cardiac development and function (i.e. E2F3_2, REST, and TEAD).
Collapse
Affiliation(s)
- Renato Polimanti
- Department of Biology, University of Rome "Tor Vergata" , Rome , Italy and
| | | | | | | |
Collapse
|
24
|
Opposing regulation of Sox2 by cell-cycle effectors E2f3a and E2f3b in neural stem cells. Cell Stem Cell 2013; 12:440-52. [PMID: 23499385 DOI: 10.1016/j.stem.2013.02.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 12/04/2012] [Accepted: 02/13/2013] [Indexed: 01/03/2023]
Abstract
The mechanisms through which cell-cycle control and cell-fate decisions are coordinated in proliferating stem cell populations are largely unknown. Here, we show that E2f3 isoforms, which control cell-cycle progression in cooperation with the retinoblastoma protein (pRb), have critical effects during developmental and adult neurogenesis. Loss of either E2f3 isoform disrupts Sox2 gene regulation and the balance between precursor maintenance and differentiation in the developing cortex. Both isoforms target the Sox2 locus to maintain baseline levels of Sox2 expression but antagonistically regulate Sox2 levels to instruct fate choices. E2f3-mediated regulation of Sox2 and precursor cell fate extends to the adult brain, where E2f3a loss results in defects in hippocampal neurogenesis and memory formation. Our results demonstrate a mechanism by which E2f3a and E2f3b differentially regulate Sox2 dosage in neural precursors, a finding that may have broad implications for the regulation of diverse stem cell populations.
Collapse
|
25
|
Su PH, Lee IC, Yang SF, Ng YY, Liu CS, Chen JY. Nine genes that may contribute to partial trisomy (6)(p22→pter) and unique presentation of persistent hyperplastic primary vitreous with retinal detachment. Am J Med Genet A 2012; 158A:707-12. [DOI: 10.1002/ajmg.a.33943] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 01/22/2011] [Indexed: 11/12/2022]
|
26
|
Westendorp B, Major JL, Nader M, Salih M, Leenen FHH, Tuana BS. The E2F6 repressor activates gene expression in myocardium resulting in dilated cardiomyopathy. FASEB J 2012; 26:2569-79. [PMID: 22403008 DOI: 10.1096/fj.11-203174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The E2F/Rb pathway regulates cardiac growth and development and holds great potential as a therapeutic target. The E2F6 repressor is a unique E2F member that acts independently of pocket proteins. Forced expression of E2F6 in mouse myocardium induced heart failure and mortality, with severity of symptoms correlating to E2F6 levels. Echocardiography demonstrated a 37% increase (P<0.05) in left ventricular end-diastolic diameter and reduced ejection fraction (<40%, P<0.05) in young transgenic (Tg) mice. Microarray and qPCR analysis revealed a paradoxical increase in E2F-responsive genes, which regulate the cell cycle, without changes in cardiomyocyte cell number or size in Tg mice. Young adult Tg mice displayed a 75% (P<0.01) decrease in gap junction protein connexin-43, resulting in abnormal electrocardiogram including a 24% (P<0.05) increase in PR interval. Further, mir-206, which targets connexin-43, was up-regulated 10-fold (P<0.05) in Tg myocardium. The mitogen-activated protein kinase pathway, which regulates the levels of miR-206 and connexin-43, was activated in Tg hearts. Thus, deregulated E2F6 levels evoked abnormal gene expression at transcriptional and post-transcriptional levels, leading to cardiac remodeling and dilated cardiomyopathy. The data highlight an unprecedented role for the strict regulation of the E2F pathway in normal postnatal cardiac function.
Collapse
Affiliation(s)
- Bart Westendorp
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON K1H 8M5, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Porrello ER, Johnson BA, Aurora AB, Simpson E, Nam YJ, Matkovich SJ, Dorn GW, van Rooij E, Olson EN. MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ Res 2011; 109:670-9. [PMID: 21778430 DOI: 10.1161/circresaha.111.248880] [Citation(s) in RCA: 352] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
RATIONALE Mammalian cardiomyocytes withdraw from the cell cycle during early postnatal development, which significantly limits the capacity of the adult mammalian heart to regenerate after injury. The regulatory mechanisms that govern cardiomyocyte cell cycle withdrawal and binucleation are poorly understood. OBJECTIVE Given the potential of microRNAs (miRNAs) to influence large gene networks and modify complex developmental and disease phenotypes, we searched for miRNAs that were regulated during the postnatal switch to terminal differentiation. METHODS AND RESULTS Microarray analysis revealed subsets of miRNAs that were upregulated or downregulated in cardiac ventricles from mice at 1 and 10 days of age (P1 and P10). Interestingly, miR-195 (a member of the miR-15 family) was the most highly upregulated miRNA during this period, with expression levels almost 6-fold higher in P10 ventricles relative to P1. Precocious overexpression of miR-195 in the embryonic heart was associated with ventricular hypoplasia and ventricular septal defects in β-myosin heavy chain-miR-195 transgenic mice. Using global gene profiling and argonaute-2 immunoprecipitation approaches, we showed that miR-195 regulates the expression of a number of cell cycle genes, including checkpoint kinase 1 (Chek1), which we identified as a highly conserved direct target of miR-195. Finally, we demonstrated that knockdown of the miR-15 family in neonatal mice with locked nucleic acid-modified anti-miRNAs was associated with an increased number of mitotic cardiomyocytes and derepression of Chek1. CONCLUSIONS These findings suggest that upregulation of the miR-15 family during the neonatal period may be an important regulatory mechanism governing cardiomyocyte cell cycle withdrawal and binucleation.
Collapse
Affiliation(s)
- Enzo R Porrello
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | | | | | | | | | | | | | | | | |
Collapse
|