1
|
Xu M, Zhu J, Liu S, Wang C, Shi Q, Kuang Y, Fang X, Hu X. FOXD3, frequently methylated in colorectal cancer, acts as a tumor suppressor and induces tumor cell apoptosis under ER stress via p53. Carcinogenesis 2020; 41:1253-1262. [PMID: 31784734 DOI: 10.1093/carcin/bgz198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/25/2019] [Accepted: 11/28/2019] [Indexed: 01/05/2023] Open
Abstract
Forkhead box D3 (FOXD3), an important member of the forkhead box transcription factor family, has many biological functions. However, the role and signaling pathways of FOXD3 in colorectal cancer (CRC) are still unclear. We examined FOXD3 expression and methylation in normal colon mucosa, CRC cell lines and primary tumors by reverse transcription-polymerase chain reaction, methylation-specific PCR and bisulfite genomic sequencing. We also evaluated its tumor-suppressive function by examining its modulation of apoptosis under endoplasmic reticulum (ER) stress in CRC cells. The FOXD3 target signal pathway was identified by western blotting, immunofluorescence and chromatin immunoprecipitation. We found that FOXD3 was frequently methylated and silenced in CRC cell lines and was downregulated in CRC tissues compared with paired adjacent non-tumor tissues. Meanwhile, low FOXD3 protein expression was significantly correlated with poor histopathological grading, lymph node metastasis and poor prognosis of patients, indicating its potential as a tumor marker that may be of potential value as a therapeutic target for CRC. Moreover, restoration of FOXD3 expression inhibited the proliferation and migration of tumor cells. FOXD3 also increased mitochondrial apoptosis through the unfolded protein response under ER stress. Furthermore, we found that FOXD3 could bind directly to the promoter of p53 and enhance its expression. Knockdown of p53 impaired the effect of apoptosis induced by FOXD3. In conclusion, we showed for the first time that FOXD3, which is frequently methylated in CRC, acted as a tumor suppressor inducing tumor cell apoptosis under ER stress via p53.
Collapse
Affiliation(s)
- Ming Xu
- Department of General Surgery and Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jing Zhu
- Department of Oncology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuiping Liu
- Department of Cancer Pharmacology, Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Chan Wang
- Department of Pathology and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Qinglan Shi
- Department of Pathology and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yeye Kuang
- Department of Pathology and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xiao Fang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xiaotong Hu
- Department of Pathology and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Dong S, Harrington BK, Hu EY, Greene JT, Lehman AM, Tran M, Wasmuth RL, Long M, Muthusamy N, Brown JR, Johnson AJ, Byrd JC. PI3K p110δ inactivation antagonizes chronic lymphocytic leukemia and reverses T cell immune suppression. J Clin Invest 2018; 129:122-136. [PMID: 30457982 DOI: 10.1172/jci99386] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 10/02/2018] [Indexed: 12/20/2022] Open
Abstract
Targeted therapy with small molecules directed at essential survival pathways in leukemia represents a major advance, including the phosphatidylinositol-3'-kinase (PI3K) p110δ inhibitor idelalisib. Here, we found that genetic inactivation of p110δ (p110δD910A/D910A) in the Eμ-TCL1 murine chronic lymphocytic leukemia (CLL) model impaired B cell receptor signaling and B cell migration, and significantly delayed leukemia pathogenesis. Regardless of TCL1 expression, p110δ inactivation led to rectal prolapse in mice resembling autoimmune colitis in patients receiving idelalisib. Moreover, we showed that p110δ inactivation in the microenvironment protected against CLL and acute myeloid leukemia. After receiving higher numbers of TCL1 leukemia cells, half of p110δD910A/D910A mice spontaneously recovered from high disease burden and resisted leukemia rechallenge. Despite disease resistance, p110δD910A/D910A mice exhibited compromised CD4+ and CD8+ T cell response, and depletion of CD4+ or CD8+ T cells restored leukemia. Interestingly, p110δD910A/D910A mice showed significantly impaired Treg expansion that associated with disease clearance. Reconstitution of p110δD910A/D910A mice with p110δWT/WT Tregs reversed leukemia resistance. Our findings suggest that p110δ inhibitors may have direct antileukemic and indirect immune-activating effects, further supporting that p110δ blockade may have a broader immune-modulatory role in types of leukemia that are not sensitive to p110δ inhibition.
Collapse
Affiliation(s)
- Shuai Dong
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy.,Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center
| | - Bonnie K Harrington
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center.,College of Veterinary Medicine
| | - Eileen Y Hu
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center.,Medical Scientist Training Program
| | - Joseph T Greene
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center.,Molecular, Cellular, and Developmental Biology Program, and
| | - Amy M Lehman
- Center for Biostatistics, The Ohio State University, Columbus, Ohio, USA
| | - Minh Tran
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center
| | - Ronni L Wasmuth
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center
| | - Meixiao Long
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center
| | - Natarajan Muthusamy
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center
| | - Jennifer R Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Amy J Johnson
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center.,Janssen Research and Development LLC, Spring House, Pennsylvania, USA
| | - John C Byrd
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy.,Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center
| |
Collapse
|
3
|
Mansouri L, Wierzbinska JA, Plass C, Rosenquist R. Epigenetic deregulation in chronic lymphocytic leukemia: Clinical and biological impact. Semin Cancer Biol 2018; 51:1-11. [PMID: 29427646 DOI: 10.1016/j.semcancer.2018.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 12/12/2017] [Accepted: 02/05/2018] [Indexed: 01/01/2023]
Abstract
Deregulated transcriptional control caused by aberrant DNA methylation and/or histone modifications is a hallmark of cancer cells. In chronic lymphocytic leukemia (CLL), the most common adult leukemia, the epigenetic 'landscape' has added a new layer of complexity to our understanding of this clinically and biologically heterogeneous disease. Early studies identified aberrant DNA methylation, often based on single gene promoter analysis with both biological and clinical impact. Subsequent genome-wide profiling studies revealed differential DNA methylation between CLLs and controls and in prognostics subgroups of the disease. From these studies, it became apparent that DNA methylation in regions outside of promoters, such as enhancers, is important for the regulation of coding genes as well as for the regulation of non-coding RNAs. Although DNA methylation profiles are reportedly stable over time and in relation to therapy, a higher epigenetic heterogeneity or 'burden' is seen in more aggressive CLL subgroups, albeit as non-recurrent 'passenger' events. More recently, DNA methylation profiles in CLL analyzed in relation to differentiating normal B-cell populations revealed that the majority of the CLL epigenome reflects the epigenomes present in the cell of origin and that only a small fraction of the epigenetic alterations represents truly CLL-specific changes. Furthermore, CLL patients can be grouped into at least three clinically relevant epigenetic subgroups, potentially originating from different cells at various stages of differentiation and associated with distinct outcomes. In this review, we summarize the current understanding of the DNA methylome in CLL, the role of histone modifying enzymes, highlight insights derived from animal models and attempts made to target epigenetic regulators in CLL along with the future directions of this rapidly advancing field.
Collapse
Affiliation(s)
- Larry Mansouri
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Sweden
| | - Justyna Anna Wierzbinska
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christoph Plass
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Richard Rosenquist
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Sweden.
| |
Collapse
|
4
|
Haney SL, Upchurch GM, Opavska J, Klinkebiel D, Hlady RA, Suresh A, Pirruccello SJ, Shukla V, Lu R, Costinean S, Rizzino A, Karpf AR, Joshi S, Swanson P, Opavsky R. Promoter Hypomethylation and Expression Is Conserved in Mouse Chronic Lymphocytic Leukemia Induced by Decreased or Inactivated Dnmt3a. Cell Rep 2016; 15:1190-201. [PMID: 27134162 DOI: 10.1016/j.celrep.2016.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/18/2016] [Accepted: 03/28/2016] [Indexed: 01/06/2023] Open
Abstract
DNA methyltransferase 3a (DNMT3A) catalyzes the formation of 5-methyl-cytosine in mammalian genomic DNA, and it is frequently mutated in human hematologic malignancies. Bi-allelic loss of Dnmt3a in mice results in leukemia and lymphoma, including chronic lymphocytic leukemia (CLL). Here, we investigate whether mono-allelic loss of Dnmt3a is sufficient to induce disease. We show that, by 16 months of age, 65% of Dnmt3a(+/-) mice develop a CLL-like disease, and 15% of mice develop non-malignant myeloproliferation. Genome-wide methylation analysis reveals that reduced Dnmt3a levels induce promoter hypomethylation at similar loci in Dnmt3a(+/-) and Dnmt3a(Δ/Δ) CLL, suggesting that promoters are particularly sensitive to Dnmt3a levels. Gene expression analysis identified 26 hypomethylated and overexpressed genes common to both Dnmt3a(+/-) and Dnmt3a(Δ/Δ) CLL as putative oncogenic drivers. Our data provide evidence that Dnmt3a is a haplo-insufficient tumor suppressor in CLL and highlights the importance of deregulated molecular events in disease pathogenesis.
Collapse
Affiliation(s)
- Staci L Haney
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - G Michael Upchurch
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jana Opavska
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David Klinkebiel
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ryan A Hlady
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Abhinav Suresh
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Samuel J Pirruccello
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Center for Leukemia and Lymphoma Research, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vipul Shukla
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Runqing Lu
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Stefan Costinean
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Angie Rizzino
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Adam R Karpf
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shantaram Joshi
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA; Center for Leukemia and Lymphoma Research, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Patrick Swanson
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68102, USA
| | - Rene Opavsky
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Center for Leukemia and Lymphoma Research, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
5
|
Bresin A, D'Abundo L, Narducci MG, Fiorenza MT, Croce CM, Negrini M, Russo G. TCL1 transgenic mouse model as a tool for the study of therapeutic targets and microenvironment in human B-cell chronic lymphocytic leukemia. Cell Death Dis 2016; 7:e2071. [PMID: 26821067 PMCID: PMC4816192 DOI: 10.1038/cddis.2015.419] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/22/2015] [Accepted: 12/27/2015] [Indexed: 01/13/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is a B-cell malignancy with a mature phenotype. In spite of its relatively indolent nature, no radical cure is as yet available. CLL is not associated with either a unique cytogenetic or a molecular defect, which might have been a potential therapeutic target. Instead, several factors are involved in disease development, such as environmental signals which interact with genetic abnormalities to promote survival, proliferation and an immune surveillance escape. Among these, PI3-Kinase signal pathway alterations are nowadays considered to be clearly important. The TCL1 gene, an AKT co-activator, is the cause of a mature T-cell leukemia, as well as being highly expressed in all B-CLL. A TCL1 transgenic mouse which reproduces leukemia with a distinct immunophenotype and similar to the course of the human B-CLL was developed several years ago and is widely used by many groups. This is a review of the CLL biology arising from work of many independent investigators who have used TCL1 transgenic mouse model focusing on pathogenetic, microenviroment and therapeutic targets.
Collapse
Affiliation(s)
- A Bresin
- Laboratorio di Oncologia Molecolare, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - L D'Abundo
- Dipartimento di Morfologia, Chirurgia e Medicina Sperimentale, Università di Ferrara, Ferrara, Italy
| | - M G Narducci
- Laboratorio di Oncologia Molecolare, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - M T Fiorenza
- Dipartimento di Psicologia, Sezione di Neuroscienze, Università La Sapienza di Roma, Rome, Italy
| | - C M Croce
- Human Cancer Genetics Program and Department of Molecular Virology, Immunology and Medical Genetics, OSU School of Medicine, Ohio State University, Columbus, OH, USA
| | - M Negrini
- Dipartimento di Morfologia, Chirurgia e Medicina Sperimentale, Università di Ferrara, Ferrara, Italy
| | - G Russo
- Laboratorio di Oncologia Molecolare, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| |
Collapse
|
6
|
Oldreive CE, Skowronska A, Davies NJ, Parry H, Agathanggelou A, Krysov S, Packham G, Rudzki Z, Cronin L, Vrzalikova K, Murray P, Odintsova E, Pratt G, Taylor AMR, Moss P, Stankovic T. T-cell number and subtype influence the disease course of primary chronic lymphocytic leukaemia xenografts in alymphoid mice. Dis Model Mech 2015; 8:1401-12. [PMID: 26398941 PMCID: PMC4631786 DOI: 10.1242/dmm.021147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/10/2015] [Indexed: 01/28/2023] Open
Abstract
Chronic lymphocytic leukaemia (CLL) cells require microenvironmental support for their proliferation. This can be recapitulated in highly immunocompromised hosts in the presence of T cells and other supporting cells. Current primary CLL xenograft models suffer from limited duration of tumour cell engraftment coupled with gradual T-cell outgrowth. Thus, a greater understanding of the interaction between CLL and T cells could improve their utility. In this study, using two distinct mouse xenograft models, we investigated whether xenografts recapitulate CLL biology, including natural environmental interactions with B-cell receptors and T cells, and whether manipulation of autologous T cells can expand the duration of CLL engraftment. We observed that primary CLL xenografts recapitulated both the tumour phenotype and T-cell repertoire observed in patients and that engraftment was significantly shorter for progressive tumours. A reduction in the number of patient T cells that were injected into the mice to 2-5% of the initial number or specific depletion of CD8(+) cells extended the limited xenograft duration of progressive cases to that characteristic of indolent disease. We conclude that manipulation of T cells can enhance current CLL xenograft models and thus expand their utility for investigation of tumour biology and pre-clinical drug assessment.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Cell Proliferation
- Cell Survival
- Cells, Cultured
- Coculture Techniques
- Cytotoxicity, Immunologic
- Graft Survival
- Heterografts
- Humans
- Immunocompromised Host
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphocyte Activation
- Lymphocyte Depletion
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/pathology
- Mice, Inbred NOD
- Mice, SCID
- Neoplasm Transplantation
- Phenotype
- Spleen/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/pathology
- Time Factors
- Tumor Microenvironment
Collapse
Affiliation(s)
- Ceri E Oldreive
- School of Cancer Sciences, Department of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Anna Skowronska
- School of Cancer Sciences, Department of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Nicholas J Davies
- School of Cancer Sciences, Department of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Helen Parry
- School of Cancer Sciences, Department of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Angelo Agathanggelou
- School of Cancer Sciences, Department of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Sergey Krysov
- CRUK Centre, Cancer Sciences Unit, University of Southampton, Southampton, SO16 6YD, UK
| | - Graham Packham
- CRUK Centre, Cancer Sciences Unit, University of Southampton, Southampton, SO16 6YD, UK
| | - Zbigniew Rudzki
- Department of Pathology, Heart of England Hospital, Birmingham, B9 5SS, UK
| | - Laura Cronin
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Katerina Vrzalikova
- School of Cancer Sciences, Department of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Paul Murray
- School of Cancer Sciences, Department of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Elena Odintsova
- School of Cancer Sciences, Department of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Guy Pratt
- School of Cancer Sciences, Department of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - A Malcolm R Taylor
- School of Cancer Sciences, Department of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Paul Moss
- School of Cancer Sciences, Department of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Tatjana Stankovic
- School of Cancer Sciences, Department of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
7
|
Du W, Pang C, Wang D, Zhang Q, Xue Y, Jiao H, Zhan L, Ma Q, Wei X. Decreased FOXD3 Expression Is Associated with Poor Prognosis in Patients with High-Grade Gliomas. PLoS One 2015; 10:e0127976. [PMID: 26011451 PMCID: PMC4444112 DOI: 10.1371/journal.pone.0127976] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 04/21/2015] [Indexed: 01/19/2023] Open
Abstract
Background The transcription factor forkhead box D3 (FOXD3) plays important roles in the development of neural crest and has been shown to suppress the development of various cancers. However, the expression and its potential biological roles of FOXD3 in high-grade gliomas (HGGs) remain unknown. Methods The mRNA and protein expression levels of FOXD3 were examined using real-time quantitative PCR and western blotting in 23 HGG and 13 normal brain samples, respectively. Immunohistochemistry was used to validate the expression FOXD3 protein in 184 HGG cases. The association between FOXD3 expression and the prognosis of HGG patients were analyzed using Kaplan-Meier survival curves and Cox proportional hazards regression models. In addition, we further examined the effects of FOXD3 on the proliferation and serum starvation-induced apoptosis of glioma cells. Results In comparison to normal brain tissues, FOXD3 expression was significantly decreased in HGG tissues at both mRNA and protein levels. Immunohistochemistry further validated the expression of FOXD3 in HGG tissues. Moreover, low FOXD3 expression was significantly associated with poor prognosis in HGG patients. Depletion of FOXD3 expression promoted glioma cell proliferation and inhibited serum starvation-induced apoptosis, whereas overexpression of FOXD3 inhibited glioma cell proliferation and promoted serum starvation-induced apoptosis. Conclusions Our results indicated that FOXD3 might serve as an independent prognostic biomarker and a potential therapeutic target for HGGs, which warrant further investigation.
Collapse
Affiliation(s)
- Wei Du
- Department of Neurosurgery, the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Changhe Pang
- Department of Neurosurgery, the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Dongliang Wang
- Department of Neurosurgery, Peking University People’s Hospital, Beijing, 100044, China
| | - Qingjun Zhang
- Department of Neurosurgery, Peking University People’s Hospital, Beijing, 100044, China
| | - Yake Xue
- Department of Neurosurgery, the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Hongliang Jiao
- Department of Neurosurgery, the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Lei Zhan
- Department of Gastroenterology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Qian Ma
- Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Xinting Wei
- Department of Neurosurgery, the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
- * E-mail:
| |
Collapse
|
8
|
Shen Y, Fu YK, Zhu YM, Lou YJ, Gu ZH, Shi JY, Chen B, Chen C, Zhu HH, Hu J, Zhao WL, Mi JQ, Chen L, Zhu HM, Shen ZX, Jin J, Wang ZY, Li JM, Chen Z, Chen SJ. Mutations of Epigenetic Modifier Genes as a Poor Prognostic Factor in Acute Promyelocytic Leukemia Under Treatment With All-Trans Retinoic Acid and Arsenic Trioxide. EBioMedicine 2015; 2:563-71. [PMID: 26285909 PMCID: PMC4535155 DOI: 10.1016/j.ebiom.2015.04.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Acute promyelocytic leukemia (APL) is a model for synergistic target cancer therapy using all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), which yields a very high 5-year overall survival (OS) rate of 85 to 90%. Nevertheless, about 15% of APL patients still get early death or relapse. We performed this study to address the possible impact of additional gene mutations on the outcome of APL. METHODS We included a consecutive series of 266 cases as training group, and then validated the results in a testing group of 269 patients to investigate the potential prognostic gene mutations, including FLT3-ITD or -TKD, N-RAS, C-KIT, NPM1, CEPBA, WT1, ASXL1, DNMT3A, MLL (fusions and PTD), IDH1, IDH2 and TET2. RESULTS More high-risk patients (50.4%) carried additional mutations, as compared with intermediate- and low-risk ones. The mutations of epigenetic modifier genes were associated with poor prognosis in terms of disease-free survival in both training (HR = 6.761, 95% CI 2.179-20.984; P = 0.001) and validation (HR = 4.026, 95% CI 1.089-14.878; P = 0.037) groups. Sanz risk stratification was associated with CR induction and OS. CONCLUSION In an era of ATRA/ATO treatment, both molecular markers and clinical parameter based stratification systems should be used as prognostic factors for APL.
Collapse
Affiliation(s)
- Yang Shen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine and Collaborative Innovation Center of Systems Biomedicine, SJTU, Shanghai, China
| | - Ya-Kai Fu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine and Collaborative Innovation Center of Systems Biomedicine, SJTU, Shanghai, China
| | - Yong-Mei Zhu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine and Collaborative Innovation Center of Systems Biomedicine, SJTU, Shanghai, China
| | - Yin-Jun Lou
- Zhejiang Institute of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine Peking, China
| | - Zhao-Hui Gu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine and Collaborative Innovation Center of Systems Biomedicine, SJTU, Shanghai, China
| | - Jing-Yi Shi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine and Collaborative Innovation Center of Systems Biomedicine, SJTU, Shanghai, China
| | - Bing Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine and Collaborative Innovation Center of Systems Biomedicine, SJTU, Shanghai, China
| | - Chao Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine and Collaborative Innovation Center of Systems Biomedicine, SJTU, Shanghai, China
| | | | - Jiong Hu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine and Collaborative Innovation Center of Systems Biomedicine, SJTU, Shanghai, China
| | - Wei-Li Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine and Collaborative Innovation Center of Systems Biomedicine, SJTU, Shanghai, China
| | - Jian-Qing Mi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine and Collaborative Innovation Center of Systems Biomedicine, SJTU, Shanghai, China
| | - Li Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine and Collaborative Innovation Center of Systems Biomedicine, SJTU, Shanghai, China
| | - Hong-Ming Zhu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine and Collaborative Innovation Center of Systems Biomedicine, SJTU, Shanghai, China
| | - Zhi-Xiang Shen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine and Collaborative Innovation Center of Systems Biomedicine, SJTU, Shanghai, China
| | - Jie Jin
- Zhejiang Institute of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine Peking, China
| | - Zhen-Yi Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine and Collaborative Innovation Center of Systems Biomedicine, SJTU, Shanghai, China
| | - Jun-Min Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine and Collaborative Innovation Center of Systems Biomedicine, SJTU, Shanghai, China
| | - Zhu Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine and Collaborative Innovation Center of Systems Biomedicine, SJTU, Shanghai, China
| | - Sai-Juan Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine and Collaborative Innovation Center of Systems Biomedicine, SJTU, Shanghai, China
| |
Collapse
|
9
|
Shahjahani M, Mohammadiasl J, Noroozi F, Seghatoleslami M, Shahrabi S, Saba F, Saki N. Molecular basis of chronic lymphocytic leukemia diagnosis and prognosis. Cell Oncol (Dordr) 2015; 38:93-109. [PMID: 25563586 DOI: 10.1007/s13402-014-0215-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUNDS Chronic lymphocytic leukemia (CLL) is the most common type of leukemia in adults and is characterized by a clonal accumulation of mature apoptosis-resistant neoplastic cells. It is also a heterogeneous disease with a variable clinical outcome. Here, we present a review of currently known (epi)genetic alterations that are related to the etiology, progression and chemo-refractoriness of CLL. Relevant literature was identified through a PubMed search (1994-2014) of English-language papers using the terms CLL, signaling pathway, cytogenetic abnormality, somatic mutation, epigenetic alteration and micro-RNA. RESULTS CLL is characterized by the presence of gross chromosomal abnormalities, epigenetic alterations, micro-RNA expression alterations, immunoglobulin heavy chain gene mutations and other genetic lesions. The expression of unmutated immunoglobulin heavy chain variable region (IGHV) genes, ZAP-70 and CD38 proteins, the occurrence of chromosomal abnormalities such as 17p and 11q deletions and mutations of the NOTCH1, SF3B1 and BIRC3 genes have been associated with a poor prognosis. In addition, mutations in tumor suppressor genes, such as TP53 and ATM, have been associated with refractoriness to conventional chemotherapeutic agents. Micro-RNA expression alterations and aberrant methylation patterns in genes that are specifically deregulated in CLL, including the BCL-2, TCL1 and ZAP-70 genes, have also been encountered and linked to distinct clinical parameters. CONCLUSIONS Specific chromosomal abnormalities and gene mutations may serve as diagnostic and prognostic indicators for disease progression and survival. The identification of these anomalies by state-of-the-art molecular (cyto)genetic techniques such as fluorescence in situ hybridization (FISH), comparative genomic hybridization (CGH), single nucleotide polymorphism (SNP) microarray-based genomic profiling and next-generation sequencing (NGS) can be of paramount help for the clinical management of these patients, including optimal treatment design. The efficacy of novel therapeutics should to be tested according to the presence of these molecular lesions in CLL patients.
Collapse
Affiliation(s)
- Mohammad Shahjahani
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Mouse models that recapitulate human malignancy are valuable tools for the elucidation of the underlying pathogenetic mechanisms and for preclinical studies. Several genetically engineered mouse models have been generated, either mimicking genetic aberrations or deregulated gene expression in chronic lymphocytic leukemia (CLL). The usefulness of such models in the study of the human disease may potentially be hampered by species-specific biological differences in the target cell of the oncogenic transformation. Specifically, do the genetic lesions or the deregulated expression of leukemia-associated genes faithfully recapitulate the spectrum of lymphoproliferations in humans? Do the CLL-like lymphoproliferations in the mouse have the phenotypic, histological, genetic, and clinical features of the human disease? Here we compare the various CLL mouse models with regard to disease phenotype, penetrance, and severity. We discuss similarities and differences of the murine lymphoproliferations compared with human CLL. We propose that the Eμ-TCL1 transgenic and 13q14-deletion models that have been comprehensively studied at the levels of leukemia phenotype, antigen-receptor repertoire, and disease course show close resemblance to the human disease. We conclude that modeling CLL-associated genetic dysregulations in mice can provide important insights into the molecular mechanisms of disease pathogenesis and generate valuable tools for the development of novel therapies.
Collapse
|
11
|
Cahill N, Rosenquist R. Uncovering the DNA methylome in chronic lymphocytic leukemia. Epigenetics 2013; 8:138-48. [PMID: 23321535 DOI: 10.4161/epi.23439] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Over the past two decades, aberrant DNA methylation has emerged as a key player in the pathogenesis of chronic lymphocytic leukemia (CLL), and knowledge regarding its biological and clinical consequences in this disease has evolved rapidly. Since the initial studies relating DNA hypomethylation to genomic instability in CLL, a plethora of reports have followed showing the impact of DNA hypermethylation in silencing vital single gene promoters and the reversible nature of DNA methylation through inhibitor drugs. With the recognition that DNA hypermethylation events could potentially act as novel prognostic and treatment targets in CLL, the search for aberrantly methylated genes, gene families and pathways has ensued. Subsequently, the advent of microarray and next-generation sequencing technologies has supported the hunt for such targets, allowing exploration of the methylation landscape in CLL at an unprecedented scale. In light of these analyses, we now understand that different CLL prognostic subgroups are characterized by differential methylation profiles; we recognize DNA methylation of a number of signaling pathways genes to be altered in CLL, and acknowledge the role of DNA methylation outside of traditional CpG island promoters as fundamental players in the regulation of gene expression. Today, the significance and timing of altered DNA methylation within the complex epigenetic network of concomitant epigenetic messengers such as histones and miRNAs is an intensive area of research. In CLL, it appears that DNA methylation is a rather stable epigenetic mark occurring rather early in the disease pathogenesis. However, other consequences, such as how and why aberrant methylation marks occur, are less explored. In this review, we will not only provide a comprehensive summary of the current literature within the epigenetics field of CLL, but also highlight some of the novel findings relating to when, where, why and how altered DNA methylation materializes in CLL.
Collapse
Affiliation(s)
- Nicola Cahill
- Department of Immunology, Genetics and Pathology; Uppsala University; Uppsala, Sweden
| | | |
Collapse
|
12
|
Gene expression and epigenetic deregulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 792:133-50. [PMID: 24014295 DOI: 10.1007/978-1-4614-8051-8_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The last decade resulted in many scientific discoveries illuminating epigenetic mechanisms of gene regulation and genome organization. DNA methylation emerged as playing a pivotal role in development and cancer. Genome-wide changes in DNA methylation, including hypermethylation of tumor suppressor genes and genome-wide loss of methylation, are two dominant mechanisms that deregulate gene expression and contribute to chromosomal instability. In this chapter we give an overview of how methylation patterns are established during B-cell development and what machinery is necessary to maintain those patterns. We summarize the current state of knowledge of aberrant changes taking place during and contributing to lymphoid transformation in general and to the development of CLL in particular. We discuss key deregulated biomarkers extensively studied using single-gene approaches and give an overview of a wealth of data that became available from genome-wide approaches, focusing on pathways that are critical for lymphomagenesis. We also highlight epigenetic differences between known prognostic groups of CLL.
Collapse
|
13
|
Blagosklonny MV. Molecular damage in cancer: an argument for mTOR-driven aging. Aging (Albany NY) 2011; 3:1130-41. [PMID: 22246147 PMCID: PMC3273893 DOI: 10.18632/aging.100422] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 12/31/2011] [Indexed: 12/12/2022]
Abstract
Despite common belief, accumulation of molecular damage does not play a key role in aging. Still, cancer (an age-related disease) is initiated by molecular damage. Cancer and aging share a lot in common including the activation of the TOR pathway. But the role of molecular damage distinguishes cancer and aging. Furthermore, an analysis of the role of both damage and aging in cancer argues against "a decline, caused by accumulation of molecular damage" as a cause of aging. I also discuss how random molecular damage, via rounds of multiplication and selection, brings about non-random hallmarks of cancer.
Collapse
Affiliation(s)
- Mikhail V Blagosklonny
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| |
Collapse
|
14
|
Abstract
The transcription factor Runt-related transcription factor 1 (RUNX1) is critical for the earliest steps of hematopoiesis. RUNX1 was originally identified as a gene fusion in acute myeloid leukemia (AML) and thus has garnered heavy attention as a tumor suppressor in hematopoietic malignancies. However, RUNX1 is also strongly expressed in breast epithelia and may be misregulated during tumorigenesis. Here, I discuss our recent work implicating RUNX1 in proliferation control during breast epithelial-acinar morphogenesis. My goal is to place these findings in the context of a handful of other reports, which together argue that RUNX1 could act as a tumor suppressor gene in breast cancer. Testing this hypothesis requires focused in vivo studies, because the major commercial platform for global mRNA expression profiling does not reliably reflect RUNX1 levels. Our in vitro results indicate that hyperproliferation in RUNX1-deficient breast epithelia relies on another family of transcription factors, the Forkhead box O (FOXO) proteins. FOXOs could, therefore, represent a synthetic-lethal target for RUNX1-deficient tumors if the hypothesized link to breast cancer is correct.
Collapse
Affiliation(s)
- Kevin A Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
15
|
Hofbauer JP, Heyder C, Denk U, Kocher T, Holler C, Trapin D, Asslaber D, Tinhofer I, Greil R, Egle A. Development of CLL in the TCL1 transgenic mouse model is associated with severe skewing of the T-cell compartment homologous to human CLL. Leukemia 2011; 25:1452-8. [PMID: 21606964 DOI: 10.1038/leu.2011.111] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic lymphocytic leukemia (CLL) cells require complex microenvironmental and immunologic interactions to survive and proliferate. Such interactions might be best recreated in animal models; however, this needs extensive verification. We therefore investigated the composition of the T-cell compartment in the Eμ-TCL1 transgenic mouse, currently the most widely used murine model for CLL. Immunophenotyping and transplant approaches were used to define T-cell subsets at various stages of CLL. Analogous to human CLL, we observed a skewing of T-cell subsets from naive to antigen-experienced memory T cells that was more pronounced in lymph nodes than in blood. Transplantation of CLL into non-transgenic recipients was feasible without immunosuppression in a pure C57BL/6 background and resulted in the prominent skewing of the T cells of the recipient mice. Both in spontaneously developed CLL and in the transplantation setting, a loss in T-cell receptor diversity was observed, with a relevant number of clonal T-cell populations arising. This suggests that antigen-dependent differentiation toward the T memory pool is initiated by murine CLL cells. In summary, we validate the TCL1 transgenic mouse model for analysis of T-cell phenotypes and suggest a CLL-dependent antigen-driven skewing of T cells in these mice.
Collapse
Affiliation(s)
- J Piñón Hofbauer
- Laboratory for Immunological and Molecular Cancer Research, 3rd Medical Department for Hematology, Federal Hospital of Salzburg and Paracelsus Medical Private University, Salzburg, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Silencing of the inhibitor of DNA binding protein 4 (ID4) contributes to the pathogenesis of mouse and human CLL. Blood 2010; 117:862-71. [PMID: 21098398 DOI: 10.1182/blood-2010-05-284638] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inhibitor of DNA binding protein 4 (ID4) is a member of the dominant-negative basic helix-loop-helix transcription factor family that lacks DNA binding activity and has tumor suppressor function. ID4 promoter methylation has been reported in acute myeloid leukemia and chronic lymphocytic leukemia (CLL), although the expression, function, and clinical relevance of this gene have not been characterized in either disease. We demonstrate that the promoter of ID4 is consistently methylated to various degrees in CLL cells, and increased promoter methylation in a univariable analysis correlates with shortened patient survival. However, ID4 mRNA and protein expression is uniformly silenced in CLL cells irrespective of the degree of promoter methylation. The crossing of ID4(+/-) mice with Eμ-TCL1 mice triggers a more aggressive murine CLL as measured by lymphocyte count and inferior survival. Hemizygous loss of ID4 in nontransformed TCL1-positive B cells enhances cell proliferation triggered by CpG oligonucleotides and decreases sensitivity to dexamethasone-mediated apoptosis. Collectively, this study confirms the importance of the silencing of ID4 in murine and human CLL pathogenesis.
Collapse
|