1
|
Nourazarian A, Aghaei-Zarch SM, Panahi Y. Delayed complications of sulfur mustard poisoning: a focus on inflammation and telomere footprint. Arch Toxicol 2025:10.1007/s00204-025-04033-z. [PMID: 40335638 DOI: 10.1007/s00204-025-04033-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 03/19/2025] [Indexed: 05/09/2025]
Abstract
Sulfur mustard (SM), a potent alkylating agent, has been widely used in chemical warfare, causing severe acute and long-term health complications. While its immediate toxic effects are well documented, the late-onset complications remain poorly understood. Chronic exposure to SM has been linked to persistent oxidative stress, inflammation, and genomic instability, contributing to the progression of various diseases, including pulmonary fibrosis, chronic obstructive pulmonary disease (COPD), and cancer. This review explores the emerging role of telomere biology in the delayed pathophysiology of SM exposure. Evidence suggests that telomere shortening and dysregulation of telomeric repeat-containing RNA (TERRA) may serve as key molecular indicators of SM-induced aging and cellular dysfunction. Furthermore, inflammatory pathways, particularly NF-κB and TGF-β signaling, appear to be closely associated with telomere attrition, perpetuating chronic inflammation and fibrosis. By integrating oxidative stress, inflammation, and telomere dynamics, we propose a novel model linking telomere biology to SM-induced late complications. Understanding these mechanisms could pave the way for targeted therapeutic strategies, including antioxidant and epigenetic interventions, to mitigate long-term effects. Future research should focus on validating telomere-based biomarkers for early detection and exploring novel interventions to alleviate SM-induced chronic health conditions.
Collapse
Affiliation(s)
- Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasin Panahi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, 58147-43343, Iran.
| |
Collapse
|
2
|
Rivosecchi J, Jurikova K, Cusanelli E. Telomere-specific regulation of TERRA and its impact on telomere stability. Semin Cell Dev Biol 2024; 157:3-23. [PMID: 38088000 DOI: 10.1016/j.semcdb.2023.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/02/2023] [Indexed: 01/08/2024]
Abstract
TERRA is a class of telomeric repeat-containing RNAs that are expressed from telomeres in multiple organisms. TERRA transcripts play key roles in telomere maintenance and their physiological levels are essential to maintain the integrity of telomeric DNA. Indeed, deregulated TERRA expression or its altered localization can impact telomere stability by multiple mechanisms including fueling transcription-replication conflicts, promoting resection of chromosome ends, altering the telomeric chromatin, and supporting homologous recombination. Therefore, a fine-tuned control of TERRA is important to maintain the integrity of the genome. Several studies have reported that different cell lines express substantially different levels of TERRA. Most importantly, TERRA levels markedly vary among telomeres of a given cell type, indicating the existence of telomere-specific regulatory mechanisms which may help coordinate TERRA functions. TERRA molecules contain distinct subtelomeric sequences, depending on their telomere of origin, which may instruct specific post-transcriptional modifications or mediate distinct functions. In addition, all TERRA transcripts share a repetitive G-rich sequence at their 3' end which can form DNA:RNA hybrids and fold into G-quadruplex structures. Both structures are involved in TERRA functions and can critically affect telomere stability. In this review, we examine the mechanisms controlling TERRA levels and the impact of their telomere-specific regulation on telomere stability. We compare evidence obtained in different model organisms, discussing recent advances as well as controversies in the field. Furthermore, we discuss the importance of DNA:RNA hybrids and G-quadruplex structures in the context of TERRA biology and telomere maintenance.
Collapse
Affiliation(s)
- Julieta Rivosecchi
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Katarina Jurikova
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy; Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, 84215 Bratislava, Slovakia
| | - Emilio Cusanelli
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy.
| |
Collapse
|
3
|
Rivosecchi J, Cusanelli E. TERRA beyond cancer: the biology of telomeric repeat-containing RNAs in somatic and germ cells. FRONTIERS IN AGING 2023; 4:1224225. [PMID: 37636218 PMCID: PMC10448526 DOI: 10.3389/fragi.2023.1224225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023]
Abstract
The telomeric noncoding RNA TERRA is a key component of telomeres and it is widely expressed in normal as well as cancer cells. In the last 15 years, several publications have shed light on the role of TERRA in telomere homeostasis and cell survival in cancer cells. However, only few studies have investigated the regulation or the functions of TERRA in normal tissues. A better understanding of the biology of TERRA in non-cancer cells may provide unexpected insights into how these lncRNAs are transcribed and operate in cells, and their potential role in physiological processes, such as aging, age-related pathologies, inflammatory processes and human genetic diseases. In this review we aim to discuss the findings that have advanced our understanding of the biology of TERRA using non-cancer mammalian cells as a model system.
Collapse
Affiliation(s)
- Julieta Rivosecchi
- Laboratory of Cell Biology and Molecular Genetics, Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, Trento, Italy
| | | |
Collapse
|
4
|
Biswas U, Deb Mallik T, Pschirer J, Lesche M, Sameith K, Jessberger R. Cohesin SMC1β promotes closed chromatin and controls TERRA expression at spermatocyte telomeres. Life Sci Alliance 2023; 6:e202201798. [PMID: 37160312 PMCID: PMC10172765 DOI: 10.26508/lsa.202201798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/11/2023] Open
Abstract
Previous data showed that meiotic cohesin SMC1β protects spermatocyte telomeres from damage. The underlying reason, however, remained unknown as the expressions of telomerase and shelterin components were normal in Smc1β -/- spermatocytes. Here. we report that SMC1β restricts expression of the long noncoding RNA TERRA (telomeric repeat containing RNA) in spermatocytes. In somatic cell lines increased TERRA was reported to cause telomere damage through altering telomere chromatin structure. In Smc1β -/- spermatocytes, we observed strongly increased levels of TERRA which accumulate on damaged chromosomal ends, where enhanced R-loop formation was found. This suggested a more open chromatin configuration near telomeres in Smc1β -/- spermatocytes, which was confirmed by ATAC-seq. Telomere-distal regions were not affected by the absence of SMC1β but RNA-seq revealed increased transcriptional activity in telomere-proximal regions. Thus, SMC1β promotes closed chromatin specifically near telomeres and limits TERRA expression in spermatocytes.
Collapse
Affiliation(s)
- Uddipta Biswas
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Tanaya Deb Mallik
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Johannes Pschirer
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Matthias Lesche
- Center for Molecular and Cellular Bioengineering, Genome Center Technology Platform, Dresden, Germany
| | - Katrin Sameith
- Center for Molecular and Cellular Bioengineering, Genome Center Technology Platform, Dresden, Germany
| | - Rolf Jessberger
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
5
|
Gong Y, Liu Y. R-Loops at Chromosome Ends: From Formation, Regulation, and Cellular Consequence. Cancers (Basel) 2023; 15:cancers15072178. [PMID: 37046839 PMCID: PMC10093737 DOI: 10.3390/cancers15072178] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Telomeric repeat containing RNA (TERRA) is transcribed from subtelomeric regions to telomeres. TERRA RNA can invade telomeric dsDNA and form telomeric R-loop structures. A growing body of evidence suggests that TERRA-mediated R-loops are critical players in telomere length homeostasis. Here, we will review current knowledge on the regulation of R-loop levels at telomeres. In particular, we will discuss how the central player TERRA and its binding proteins modulate R-loop levels through various mechanisms. We will further provide an overview of the consequences of TERRA-mediated persistent or unscheduled R-loops at telomeres in human ALT cancers and other organisms, with a focus on telomere length regulation after replication interference-induced damage and DNA homologous recombination-mediated repair.
Collapse
Affiliation(s)
- Yi Gong
- Laboratory of Genetics and Genomics, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Yie Liu
- Laboratory of Genetics and Genomics, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| |
Collapse
|
6
|
Telomere Transcription in MLL-Rearranged Leukemia Cell Lines: Increased Levels of TERRA Associate with Lymphoid Lineage and Are Independent of Telomere Length and Ploidy. Biomedicines 2023; 11:biomedicines11030925. [PMID: 36979904 PMCID: PMC10046226 DOI: 10.3390/biomedicines11030925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023] Open
Abstract
Telomere transcription into telomeric repeat-containing RNA (TERRA) is an integral component of all aspects of chromosome end protection consisting of telomerase- or recombination-dependent telomere elongation, telomere capping, and the preservation of the (sub)telomeric heterochromatin structure. The chromatin modifier and transcriptional regulator MLL binds to telomeres and regulates TERRA transcription in telomere length homeostasis and response to telomere dysfunction. MLL fusion proteins (MLL-FPs), the product of MLL rearrangements in leukemia, also bind to telomeric chromatin. However, an effect on telomere transcription in MLL-rearranged (MLL-r) leukemia has not yet been evaluated. Here, we show increased UUAGGG repeat-containing RNA levels in MLL-r acute lymphoblastic leukemia (ALL) when compared to non-MLL-r ALL and myeloid leukemia. MLL rearrangements do not affect telomere length and UUAGGG repeat-containing RNA levels correlate with mean telomere length and reflect increased levels of TERRA. Furthermore, high levels of TERRA in MLL-r ALL occur in the presence of telomerase activity and are independent of ploidy, an underestimated source of variation on the overall transcriptome size in a cell. This MLL rearrangement-dependent and lymphoid lineage-associated increase in levels of TERRA supports a sustained telomere transcription by MLL-FPs that correlates with marked genomic stability previously reported in pediatric MLL-r ALL.
Collapse
|
7
|
Zhang Y, Fan F, Zhang Q, Luo Y, Liu Q, Gao J, Liu J, Chen G, Zhang H. Identification and Functional Analysis of Long Non-Coding RNA (lncRNA) in Response to Seed Aging in Rice. PLANTS (BASEL, SWITZERLAND) 2022; 11:3223. [PMID: 36501265 PMCID: PMC9737669 DOI: 10.3390/plants11233223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Many lncRNAs have been shown to play a vital role in aging processes. However, how lncRNAs regulate seed aging remains unknown. In this study, we performed whole transcriptome strand-specific RNA sequencing of samples from rice embryos, analyzed the differences in expression of rice seed lncRNAs before and after artificial aging treatment (AAT), and systematically screened 6002 rice lncRNAs. During the AAT period, the expression levels of most lncRNAs (454) were downregulated and only four were upregulated among the 458 differentially expressed lncRNAs (DELs). Cis- or trans-regulated target genes of the four upregulated lncRNAs were mainly related to base repair, while 454 downregulated lncRNAs were related to plant-pathogen interaction, plant hormones, energy metabolism, and secondary metabolism. The pathways of DEL target genes were similar with those of differentially expressed mRNAs (DEGs). A competing endogenous RNA (ceRNA) network composed of 34 lncRNAs, 24 microRNAs (miRNA), and 161 mRNAs was obtained. The cDNA sequence of lncRNA LNC_037529 was obtained by rapid amplification of cDNA ends (RACE) cloning with a total length of 1325 bp, a conserved 5' end, and a non-conserved 3' end. Together, our findings indicate that genome-wide selection for lncRNA downregulation was an important mechanism for rice seed aging. LncRNAs can be used as markers of seed aging in rice. These findings provide a future path to decipher the underlying mechanism associated with lncRNAs in seed aging.
Collapse
Affiliation(s)
- Yixin Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Fan Fan
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Qunjie Zhang
- Guangdong Key Lab for Crop Germplasm Resources Preservation and Utilization/Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yongjian Luo
- Guangdong Key Lab for Crop Germplasm Resources Preservation and Utilization/Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qinjian Liu
- Guangdong Key Lab for Crop Germplasm Resources Preservation and Utilization/Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jiadong Gao
- Guangdong Key Lab for Crop Germplasm Resources Preservation and Utilization/Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jun Liu
- Guangdong Key Lab for Crop Germplasm Resources Preservation and Utilization/Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Guanghui Chen
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Haiqing Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
8
|
Swain M, Ageeli AA, Kasprzak W, Li M, Miller JT, Sztuba-Solinska J, Schneekloth J, Koirala D, Piccirili J, Fraboni AJ, Murelli RP, Wlodawer A, Shapiro B, Baird N, Le Grice SFJ. Dynamic bulge nucleotides in the KSHV PAN ENE triple helix provide a unique binding platform for small molecule ligands. Nucleic Acids Res 2021; 49:13179-13193. [PMID: 34871450 PMCID: PMC8682744 DOI: 10.1093/nar/gkab1170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 10/24/2021] [Accepted: 11/18/2021] [Indexed: 11/14/2022] Open
Abstract
Cellular and virus-coded long non-coding (lnc) RNAs support multiple roles related to biological and pathological processes. Several lncRNAs sequester their 3' termini to evade cellular degradation machinery, thereby supporting disease progression. An intramolecular triplex involving the lncRNA 3' terminus, the element for nuclear expression (ENE), stabilizes RNA transcripts and promotes persistent function. Therefore, such ENE triplexes, as presented here in Kaposi's sarcoma-associated herpesvirus (KSHV) polyadenylated nuclear (PAN) lncRNA, represent targets for therapeutic development. Towards identifying novel ligands targeting the PAN ENE triplex, we screened a library of immobilized small molecules and identified several triplex-binding chemotypes, the tightest of which exhibits micromolar binding affinity. Combined biophysical, biochemical, and computational strategies localized ligand binding to a platform created near a dinucleotide bulge at the base of the triplex. Crystal structures of apo (3.3 Å) and ligand-soaked (2.5 Å) ENE triplexes, which include a stabilizing basal duplex, indicate significant local structural rearrangements within this dinucleotide bulge. MD simulations and a modified nucleoside analog interference technique corroborate the role of the bulge and the base of the triplex in ligand binding. Together with recently discovered small molecules that reduce nuclear MALAT1 lncRNA levels by engaging its ENE triplex, our data supports the potential of targeting RNA triplexes with small molecules.
Collapse
MESH Headings
- Base Sequence
- Crystallography, X-Ray
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/metabolism
- Herpesvirus 8, Human/physiology
- Humans
- Ligands
- Molecular Docking Simulation
- Molecular Dynamics Simulation
- Molecular Structure
- Nucleic Acid Conformation
- Nucleotides/genetics
- Nucleotides/metabolism
- Poly A/chemistry
- Poly A/genetics
- Poly A/metabolism
- RNA Stability/genetics
- RNA, Long Noncoding/chemistry
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Sarcoma, Kaposi/virology
- Small Molecule Libraries/chemistry
- Small Molecule Libraries/metabolism
Collapse
Affiliation(s)
- Monalisa Swain
- Basic Research Laboratory, National Cancer Institute, Frederick, MD 21702, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Abeer A Ageeli
- Department of Chemistry & Biochemistry, University of the Sciences, Philadelphia, PA 19104, USA
- Chemistry Department, Faculty of Science (Female Section), Jazan University, Jazan 82621, Saudi Arabia
| | - Wojciech K Kasprzak
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mi Li
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
| | - Jennifer T Miller
- Basic Research Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | | | - John S Schneekloth
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Deepak Koirala
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Joseph Piccirili
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Americo J Fraboni
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, NY, 11210, USA
| | - Ryan P Murelli
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, NY, 11210, USA
- PhD Program in Chemistry, The Graduate Center, City University of New York, New York, NY 10016, USA
- PhD Program in Biochemistry, The Graduate Center, City University of New York, New York, NY 10016, USA
| | - Alexander Wlodawer
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
| | - Bruce A Shapiro
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Nathan Baird
- Department of Chemistry & Biochemistry, University of the Sciences, Philadelphia, PA 19104, USA
| | - Stuart F J Le Grice
- Basic Research Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
9
|
Samra N, Toubiana S, Yttervik H, Tzur-Gilat A, Morani I, Itzkovich C, Giladi L, Abu Jabal K, Cao JZ, Godley LA, Mory A, Baris Feldman H, Tveten K, Selig S, Weiss K. RBL2 bi-allelic truncating variants cause severe motor and cognitive impairment without evidence for abnormalities in DNA methylation or telomeric function. J Hum Genet 2021; 66:1101-1112. [PMID: 33980986 DOI: 10.1038/s10038-021-00931-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 02/01/2023]
Abstract
RBL2/p130, a member of the retinoblastoma family of proteins, is a key regulator of cell division and propagates irreversible senescence. RBL2/p130 is also involved in neuronal differentiation and survival, and eliminating Rbl2 in certain mouse strains leads to embryonic lethality accompanied by an abnormal central nervous system (CNS) phenotype. Conflicting reports exist regarding a role of RBL2/p130 in transcriptional regulation of DNA methyltransferases (DNMTs), as well as the control of telomere length. Here we describe the phenotype of three patients carrying bi-allelic RBL2-truncating variants. All presented with infantile hypotonia, severe developmental delay and microcephaly. Malignancies were not reported in carriers or patients. Previous studies carried out on mice and human cultured cells, associated RBL2 loss to DNA methylation and telomere length dysregulation. Here, we investigated whether patient cells lacking RBL2 display related abnormalities. The study of primary patient fibroblasts did not detect abnormalities in expression of DNMTs. Furthermore, methylation levels of whole genome DNA, and specifically of pericentromeric repeats and subtelomeric regions, were unperturbed. RBL2-null fibroblasts show no evidence for abnormal elongation by telomeric recombination. Finally, gradual telomere shortening, and normal onset of senescence were observed following continuous culturing of RBL2-mutated fibroblasts. Thus, this study resolves uncertainties regarding a potential non-redundant role for RBL2 in DNA methylation and telomere length regulation, and indicates that loss of function variants in RBL2 cause a severe autosomal recessive neurodevelopmental disorder in humans.
Collapse
Affiliation(s)
- Nadra Samra
- Genetic Unit, Ziv Medical Center, Tzfat, Israel.,Faculty of Medicine, Bar Ilan University, Tzfat, Israel
| | - Shir Toubiana
- Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hilde Yttervik
- Department of Medical Genetics, University Hospital of North Norway, Tromsø, Norway
| | - Aya Tzur-Gilat
- Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Chen Itzkovich
- The Clinical Research Institute at Rambam Health Care Campus, Haifa, Israel
| | - Liran Giladi
- Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - John Z Cao
- Section of Hematology Oncology, Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Lucy A Godley
- Section of Hematology Oncology, Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Adi Mory
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel.,The Genetics Institute, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hagit Baris Feldman
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,The Genetics Institute, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kristian Tveten
- Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway
| | - Sara Selig
- Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel. .,Laboratory of Molecular Medicine, Rambam Health Care Campus, Haifa, Israel.
| | - Karin Weiss
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
10
|
Toubiana S, Tzur-Gilat A, Selig S. Epigenetic Characteristics of Human Subtelomeres Vary in Cells Utilizing the Alternative Lengthening of Telomeres (ALT) Pathway. Life (Basel) 2021; 11:life11040278. [PMID: 33810393 PMCID: PMC8065733 DOI: 10.3390/life11040278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/26/2022] Open
Abstract
Most human cancers circumvent senescence by activating a telomere length maintenance mechanism, most commonly involving telomerase activation. A minority of cancers utilize the recombination-based alternative lengthening of telomeres (ALT) pathway. The exact requirements for unleashing normally repressed recombination at telomeres are yet unclear. Epigenetic modifications at telomeric regions were suggested to be pivotal for activating ALT; however, conflicting data exist regarding their exact nature and necessity. To uncover common ALT-positive epigenetic characteristics, we performed a comprehensive analysis of subtelomeric DNA methylation, histone modifications, and TERRA expression in several ALT-positive and ALT-negative cell lines. We found that subtelomeric DNA methylation does not differentiate between the ALT-positive and ALT-negative groups, and most of the analyzed subtelomeres within each group do not share common DNA methylation patterns. Additionally, similar TERRA levels were measured in the ALT-positive and ALT-negative groups, and TERRA levels varied significantly among the members of the ALT-positive group. Subtelomeric H3K4 and H3K9 trimethylation also differed significantly between samples in the ALT-positive group. Our findings do not support a common route by which epigenetic modifications activate telomeric recombination in ALT-positive cells, and thus, different therapeutic approaches will be necessary to overcome ALT-dependent cellular immortalization.
Collapse
Affiliation(s)
- Shir Toubiana
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel; (S.T.); (A.T.-G.)
| | - Aya Tzur-Gilat
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel; (S.T.); (A.T.-G.)
| | - Sara Selig
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel; (S.T.); (A.T.-G.)
- Laboratory of Molecular Medicine, Rambam Health Care Campus, Haifa 31096, Israel
- Correspondence:
| |
Collapse
|
11
|
Morea EGO, Vasconcelos EJR, Alves CDS, Giorgio S, Myler PJ, Langoni H, Azzalin CM, Cano MIN. Exploring TERRA during Leishmania major developmental cycle and continuous in vitro passages. Int J Biol Macromol 2021; 174:573-586. [PMID: 33548324 DOI: 10.1016/j.ijbiomac.2021.01.192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 12/22/2022]
Abstract
Telomeres from different eukaryotes, including trypanosomatids, are transcribed into TERRA noncoding RNAs, crucial in regulating chromatin deposition and telomere length. TERRA is transcribed from the C-rich subtelomeric strand towards the 3'-ends of the telomeric array. Using bioinformatics, we confirmed the presence of subtelomeric splice acceptor sites at all L. major chromosome ends. Splice leader sequences positioned 5' upstream of L. major chromosomes subtelomeres were then mapped using SL-RNA-Seq libraries constructed from three independent parasite life stages and helped confirm TERRA expression from several chromosomes ends. Northern blots and RT-qPCR validated the results showing that L. major TERRA is processed by trans-splicing and polyadenylation coupled reactions. The number of transcripts varied with the parasite's life stage and continuous passages, being more abundant in the infective forms. However, no putative subtelomeric promoters involved in TERRA's transcriptional regulation were detected. In contrast, the observed changes in parasite's telomere length during development, suggest that differences in telomeric base J levels may control TERRA transcription in L. major. Also, TERRA-R loops' detection, mainly in the infective forms, was suggestive of TERRA's involvement in telomere protection. Therefore, Leishmania TERRA shares conserved features with other eukaryotes and advances new telomere specific functions in a Public Health-impacting parasite.
Collapse
Affiliation(s)
- Edna Gicela Ortiz Morea
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
| | | | - Cristiane de Santis Alves
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
| | - Selma Giorgio
- Department of Animal Biology, Biology Institute, State University of Campinas, UNICAMP, Brazil
| | - Peter J Myler
- Department of Global Health and Department of Biomedical Informatics & Medical Education, University of Washington, Seattle, WA, United States of America
| | - Helio Langoni
- Department of Public Health, Veterinary Medical School, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
| | | | - Maria Isabel Nogueira Cano
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil.
| |
Collapse
|
12
|
Toubiana S, Larom G, Smoom R, Duszynski RJ, Godley LA, Francastel C, Velasco G, Selig S. Regulation of telomeric function by DNA methylation differs between humans and mice. Hum Mol Genet 2020; 29:3197-3210. [PMID: 32916696 DOI: 10.1093/hmg/ddaa206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 11/13/2022] Open
Abstract
The most distal 2 kb region in the majority of human subtelomeres contains CpG-rich promoters for TERRA, a long non-coding RNA. When the function of the de novo DNA methyltransferase DNMT3B is disrupted, as in ICF1 syndrome, subtelomeres are abnormally hypomethylated, subtelomeric heterochromatin acquires open chromatin characteristics, TERRA is highly expressed, and telomeres shorten rapidly. In this study, we explored whether the regulation of subtelomeric epigenetic characteristics by DNMT3B is conserved between humans and mice. Studying the DNA sequence of the distal 30 kb of the majority of murine q-arm subtelomeres indicated that these regions are relatively CpG-poor and do not contain TERRA promoters similar to those present in humans. Despite the lack of human-like TERRA promoters, we clearly detected TERRA expression originating from at least seven q-arm subtelomeres, and at higher levels in mouse pluripotent stem cells in comparison with mouse embryonic fibroblasts (MEFs). However, these differences in TERRA expression could not be explained by differential methylation of CpG islands present in the TERRA-expressing murine subtelomeres. To determine whether Dnmt3b regulates the expression of TERRA in mice, we characterized subtelomeric methylation and associated telomeric functions in cells derived from ICF1 model mice. Littermate-derived WT and ICF1 MEFs demonstrated no significant differences in subtelomeric DNA methylation, chromatin modifications, TERRA expression levels, telomere sister chromatid exchange or telomere length. We conclude that the epigenetic characteristics of murine subtelomeres differ substantially from their human counterparts and that TERRA transcription in mice is regulated by factors others than Dnmt3b.
Collapse
Affiliation(s)
- Shir Toubiana
- Department of Genetics, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Gal Larom
- Department of Genetics, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Riham Smoom
- Department of Genetics, The Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Robert J Duszynski
- Department of Medicine, Section of Hematology Oncology, The University of Chicago, Chicago 60637, USA
| | - Lucy A Godley
- Department of Medicine, Section of Hematology Oncology, The University of Chicago, Chicago 60637, USA
| | - Claire Francastel
- Université de Paris, Epigénétique et Destin Cellulaire, CNRS, Paris 75013, France
| | - Guillaume Velasco
- Université de Paris, Epigénétique et Destin Cellulaire, CNRS, Paris 75013, France
| | - Sara Selig
- Department of Genetics, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
- Laboratory of Molecular Medicine, Rambam Health Care Campus, Haifa 31096, Israel
| |
Collapse
|
13
|
Aguado J, d’Adda di Fagagna F, Wolvetang E. Telomere transcription in ageing. Ageing Res Rev 2020; 62:101115. [PMID: 32565330 DOI: 10.1016/j.arr.2020.101115] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 02/08/2023]
Abstract
Telomeres, the ends of eukaryotic chromosomes, play a central role in the control of cellular senescence and organismal ageing and need to be protected in order to avoid being recognised as damaged DNA and activate DNA damage response pathways. Dysfunctional telomeres arise from critically short telomeres or altered telomere structures, which ultimately lead to replicative cellular senescence and chromosome instability: both hallmarks of ageing. The observation that telomeres are transcribed led to the discovery that telomeric transcripts play important roles in chromosome end protection and genome stability maintenance. Recent evidence indicates that particular long non-coding (nc)RNAs transcribed at telomeres, namely TElomeric Repeat-containing RNA (TERRA) and telomeric damage-induced long ncRNAs (tdilncRNA), play key roles in age-related pathways by actively orchestrating the mechanisms known to regulate telomere length, chromosome end protection and DNA damage signalling. Here, we provide a comprehensive overview of the telomere transcriptome, outlining how it functions as a regulatory platform with essential functions in safeguarding telomere integrity and stability. We next review emerging antisense oligonucleotides therapeutic strategies that target telomeric ncRNAs and discuss their potential for ameliorating ageing and age-related diseases. Altogether, this review provides insights on the biological relevance of telomere transcription mechanisms in human ageing physiology and pathology.
Collapse
|
14
|
Kordowitzki P, López de Silanes I, Guío-Carrión A, Blasco MA. Dynamics of telomeric repeat-containing RNA expression in early embryonic cleavage stages with regards to maternal age. Aging (Albany NY) 2020; 12:15906-15917. [PMID: 32860669 PMCID: PMC7485725 DOI: 10.18632/aging.103922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022]
Abstract
Telomeres are transcribed into long non-coding RNAs known as Telomeric Repeat-Containing RNA (TERRA). They have been shown to be essential regulators of telomeres and to act as epigenomic modulators at extra-telomeric sites. However the role of TERRA during early embryonic development has never been investigated. Here, we show that TERRA is expressed in murine and bovine early development following a wave pattern. It starts at 4-cell stage, reaching a maximum at the 16-cell followed by a decline at the morula and blastocyst stages. Moreover, TERRA expression is not affected by increasing oocyte donor age whereas telomere length does. This indicates that TERRA expression is independent of the telomere length in early development. Our findings anticipate an essential role of TERRA in early stages of development and this might be useful in the future for a better understanding of age related female infertility.
Collapse
Affiliation(s)
- Paweł Kordowitzki
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland.,Institute for Veterinary Medicine, Nicolaus Copernicus University, Torun, Poland
| | - Isabel López de Silanes
- Telomeres and Telomerase Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Guío-Carrión
- Telomeres and Telomerase Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
15
|
Vahidi S, Norollahi SE, Agah S, Samadani AA. DNA Methylation Profiling of hTERT Gene Alongside with the Telomere Performance in Gastric Adenocarcinoma. J Gastrointest Cancer 2020; 51:788-799. [PMID: 32617831 DOI: 10.1007/s12029-020-00427-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE Epigenetic modification including of DNA methylation, histone acetylation, histone methylation, histon phosphorylation and non-coding RNA can impress the gene expression and genomic stability and cause different types of malignancies and also main human disorder. Conspicuously, the epigenetic alteration special DNA methylation controls telomere length, telomerase activity and also function of different genes particularly hTERT expression. Telomeres are important in increasing the lifespan, health, aging, and the development and progression of some diseases like cancer. METHODS This review provides an assessment of the epigenetic alterations of telomeres, telomerase and repression of its catalytic subunit, hTERT and function of long non-coding RNAs such as telomeric-repeat containing RNA (TERRA) in carcinogenesis and tumorgenesis of gastric cancer. RESULTS hTERT expression is essential and indispensable in telomerase activation through immortality and malignancies and also plays an important role in maintaining telomere length. Telomeres and telomerase have been implicated in regulating epigenetic factors influencing certain gene expression. Correspondingly, these changes in the sub telomere and telomere regions are affected by the shortening of telomere length and increased telomerase activity and hTERT gene expression have been observed in many cancers, remarkably in gastric cancer. CONCLUSION Epigenetic alteration and regulation of hTERT gene expression are critical in controlling telomerase activity and its expression. Graphical Abstract.
Collapse
Affiliation(s)
- Sogand Vahidi
- Clinical Research Development Unit of Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyedeh Elham Norollahi
- Clinical Research Development Unit of Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Samadani
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
16
|
Mir SM, Samavarchi Tehrani S, Goodarzi G, Jamalpoor Z, Asadi J, Khelghati N, Qujeq D, Maniati M. Shelterin Complex at Telomeres: Implications in Ageing. Clin Interv Aging 2020; 15:827-839. [PMID: 32581523 PMCID: PMC7276337 DOI: 10.2147/cia.s256425] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
Different factors influence the development and control of ageing. It is well known that progressive telomere shorting is one of the molecular mechanisms underlying ageing. The shelterin complex consists of six telomere-specific proteins which are involved in the protection of chromosome ends. More particularly, this vital complex protects the telomeres from degradation, prevents from activation of unwanted repair systems, regulates the activity of telomerase, and has a crucial role in cellular senescent and ageing-related pathologies. This review explores the organization and function of telomeric DNA along with the mechanism of telomeres during ageing, followed by a discussion of the critical role of shelterin components and their changes during ageing.
Collapse
Affiliation(s)
- Seyed Mostafa Mir
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran.,Student Research Committee, Babol University of Medical Sciences, Babol, Iran.,Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Jamalpoor
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Jahanbakhsh Asadi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Nafiseh Khelghati
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Durdi Qujeq
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.,Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mahmood Maniati
- School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
17
|
Brieño-Enríquez MA, Moak SL, Abud-Flores A, Cohen PE. Characterization of telomeric repeat-containing RNA (TERRA) localization and protein interactions in primordial germ cells of the mouse†. Biol Reprod 2020; 100:950-962. [PMID: 30423030 DOI: 10.1093/biolre/ioy243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/10/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022] Open
Abstract
Telomeres are dynamic nucleoprotein structures capping the physical ends of linear eukaryotic chromosomes. They consist of telomeric DNA repeats (TTAGGG), the shelterin protein complex, and telomeric repeat-containing RNA (TERRA). Proposed TERRA functions are wide ranging and include telomere maintenance, telomerase inhibition, genomic stability, and alternative lengthening of telomere. However, the presence and role of TERRA in primordial germ cells (PGCs), the embryonic precursors of germ cells, is unknown. Using RNA-fluorescence in situ hybridization, we identify TERRA transcripts in female PGCs at 11.5, 12.5, and 13.5 days postcoitum. In male PGCs, the earliest detection TERRA was at 12.5 dpc where we observed cells with either zero or one TERRA focus. Using qRT-PCR, we evaluated chromosome-specific TERRA expression. Female PGCs showed TERRA expression at 11.5 dpc from eight different chromosome subtelomeric regions (chromosomes 1, 2, 7, 9, 11, 13, 17, and 18) while in male PGCs, TERRA expression was confined to the chromosome 17. Most TERRA transcription in 13.5 dpc male PGCs arose from chromosomes 2 and 6. TERRA interacting proteins were evaluated using identification of direct RNA interacting proteins (iDRiP), which identified 48 in female and 26 in male protein interactors from PGCs at 13.5 dpc. We validated two different proteins: the splicing factor, proline- and glutamine-rich (SFPQ) in PGCs and non-POU domain-containing octamer-binding protein (NONO) in somatic cells. Taken together, our data indicate that TERRA expression and interactome during PGC development are regulated in a dynamic fashion that is dependent on gestational age and sex.
Collapse
Affiliation(s)
- Miguel A Brieño-Enríquez
- Department of Biomedical Sciences and the Cornell Center for Reproductive Genomics, Cornell University, Ithaca, New York, USA
| | - Steffanie L Moak
- Department of Biomedical Sciences and the Cornell Center for Reproductive Genomics, Cornell University, Ithaca, New York, USA
| | - Anyul Abud-Flores
- Department of Biomedical Sciences and the Cornell Center for Reproductive Genomics, Cornell University, Ithaca, New York, USA
| | - Paula E Cohen
- Department of Biomedical Sciences and the Cornell Center for Reproductive Genomics, Cornell University, Ithaca, New York, USA
| |
Collapse
|
18
|
Catana CS, Crișan CA, Opre D, Berindan-Neagoe I. Implications of Long Non-Coding RNAs in Age-Altered Proteostasis. Aging Dis 2020; 11:692-704. [PMID: 32489713 PMCID: PMC7220293 DOI: 10.14336/ad.2019.0814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/14/2019] [Indexed: 12/15/2022] Open
Abstract
This review aims to summarize the current knowledge on how lncRNAs are influencing aging and cancer metabolism. Recent research has shown that senescent cells re-enter cell-cycle depending on intrinsic or extrinsic factors, thus restoring tissue homeostasis in response to age-related diseases (ARDs). Furthermore, maintaining proteostasis or cellular protein homeostasis requires a correct quality control (QC) of protein synthesis, folding, conformational stability, and degradation. Long non-coding RNAs (lncRNAs), transcripts longer than 200 nucleotides, regulate gene expression through RNA-binding protein (RBP) interaction. Their association is linked to aging, an event of proteostasis collapse. The current review examines approaches that lead to recognition of senescence-associated lncRNAs, current methodologies, potential challenges that arise from studying these molecules, and their crucial implications in clinical practice.
Collapse
Affiliation(s)
- Cristina-Sorina Catana
- Department of Medical Biochemistry, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Catalina-Angela Crișan
- Department of Neurosciences, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Dana Opre
- Department of Psychology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- MEDFUTURE - Research Center for Advanced Medicine, Cluj-Napoca, Romania
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Institute of Doctoral Studies, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Experimental Pathology, “Prof. Dr. Ion Chiricuta” Oncology Institute, Cluj-Napoca, Romania
| |
Collapse
|
19
|
Rossi M, Gorospe M. Noncoding RNAs Controlling Telomere Homeostasis in Senescence and Aging. Trends Mol Med 2020; 26:422-433. [PMID: 32277935 DOI: 10.1016/j.molmed.2020.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/23/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
Aging is a universal and time-dependent biological decline associated with progressive deterioration of cells, tissues, and organs. Age-related decay can eventually lead to pathology such as cardiovascular and neurodegenerative diseases, cancer, and diabetes. A prominent molecular process underlying aging is the progressive shortening of telomeres, the structures that protect the ends of chromosomes, eventually triggering cellular senescence. Noncoding (nc)RNAs are emerging as major regulators of telomere length homeostasis. In this review, we describe the impact of ncRNAs on telomere function and discuss their implications in senescence and age-related diseases. We discuss emerging therapeutic strategies targeting telomere-regulatory ncRNAs in aging pathology.
Collapse
Affiliation(s)
- Martina Rossi
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA.
| |
Collapse
|
20
|
Human subtelomeric DNA methylation: regulation and roles in telomere function. Curr Opin Genet Dev 2020; 60:9-16. [PMID: 32109830 DOI: 10.1016/j.gde.2020.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/21/2020] [Accepted: 02/02/2020] [Indexed: 12/26/2022]
Abstract
Subtelomeres are the regions at chromosome ends, immediately adjacent to the terminal telomeric repeats. The majority of human subtelomeres are CpG-rich in their distal two kilobases, and are methylated during early embryonic development by the de novo DNA methyltransferase DNMT3B. The biological relevance of subtelomeric DNA methylation is highlighted by the presence of promoters for the long non-coding TERRA transcripts in these CpG-rich regions. Indeed, deviant subtelomeric methylation has been linked with abnormal telomeric phenotypes, as most strikingly found in ICF syndrome. Here we review recent studies that explore new aspects of subtelomeric methylation regulation and demonstrate the significance of maintaining proper DNA methylation at the extreme distal human subtelomeric regions.
Collapse
|
21
|
Young E, Abid HZ, Kwok PY, Riethman H, Xiao M. Comprehensive Analysis of Human Subtelomeres by Whole Genome Mapping. PLoS Genet 2020; 16:e1008347. [PMID: 31986135 PMCID: PMC7004388 DOI: 10.1371/journal.pgen.1008347] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/06/2020] [Accepted: 10/15/2019] [Indexed: 12/03/2022] Open
Abstract
Detailed comprehensive knowledge of the structures of individual long-range telomere-terminal haplotypes are needed to understand their impact on telomere function, and to delineate the population structure and evolution of subtelomere regions. However, the abundance of large evolutionarily recent segmental duplications and high levels of large structural variations have complicated both the mapping and sequence characterization of human subtelomere regions. Here, we use high throughput optical mapping of large single DNA molecules in nanochannel arrays for 154 human genomes from 26 populations to present a comprehensive look at human subtelomere structure and variation. The results catalog many novel long-range subtelomere haplotypes and determine the frequencies and contexts of specific subtelomeric duplicons on each chromosome arm, helping to clarify the currently ambiguous nature of many specific subtelomere structures as represented in the current reference sequence (HG38). The organization and content of some duplicons in subtelomeres appear to show both chromosome arm and population-specific trends. Based upon these trends we estimate a timeline for the spread of these duplication blocks.
Collapse
Affiliation(s)
- Eleanor Young
- School of Biomedical Engineering, Drexel University, Philadelphia, PA, United States of America
| | - Heba Z. Abid
- School of Biomedical Engineering, Drexel University, Philadelphia, PA, United States of America
| | - Pui-Yan Kwok
- Cardiovascular Research Institute, University of California–San Francisco, San Francisco, CA, United States of America
- Department of Dermatology, University of California–San Francisco, San Francisco, CA, United States of America
- Institute for Human Genetics, University of California–San Francisco, San Francisco, CA, United States of America
| | - Harold Riethman
- Medical Diagnostic & Translational Sciences, Old Dominium University, Norfolk, VA, United States of America
| | - Ming Xiao
- School of Biomedical Engineering, Drexel University, Philadelphia, PA, United States of America
- Institute of Molecular Medicine and Infectious Disease in the School of Medicine, Drexel University, Philadelphia, PA, United States of America
| |
Collapse
|
22
|
Vukic M, Daxinger L. DNA methylation in disease: Immunodeficiency, Centromeric instability, Facial anomalies syndrome. Essays Biochem 2019; 63:773-783. [PMID: 31724723 PMCID: PMC6923317 DOI: 10.1042/ebc20190035] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 12/19/2022]
Abstract
DNA methylation is an epigenetic modification essential for normal mammalian development. Initially associated with gene silencing, more diverse roles for DNA methylation in the regulation of gene expression patterns are increasingly being recognized. Some of these insights come from studying the function of genes that are mutated in human diseases characterized by abnormal DNA methylation landscapes. The first disorder to be associated with congenital defects in DNA methylation was Immunodeficiency, Centromeric instability, Facial anomalies syndrome (ICF). The hallmark of this syndrome is hypomethylation of pericentromeric satellite repeats, with mutations in four genes: DNMT3B, ZBTB24, CDCA7 and HELLS, being linked to the disease. Here, we discuss recent progress in understanding the molecular interactions between these genes and consider current evidence for how aberrant DNA methylation may contribute to the abnormal phenotype present in ICF syndrome patients.
Collapse
Affiliation(s)
- Maja Vukic
- Department of Human Genetics, Leiden University Medical Centre (LUMC), Leiden 2300, RC, The Netherlands
| | - Lucia Daxinger
- Department of Human Genetics, Leiden University Medical Centre (LUMC), Leiden 2300, RC, The Netherlands
| |
Collapse
|
23
|
Toubiana S, Gagliardi M, Papa M, Manco R, Tzukerman M, Matarazzo MR, Selig S. Persistent epigenetic memory impedes rescue of the telomeric phenotype in human ICF iPSCs following DNMT3B correction. eLife 2019; 8:e47859. [PMID: 31738163 PMCID: PMC6897513 DOI: 10.7554/elife.47859] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 11/17/2019] [Indexed: 12/15/2022] Open
Abstract
DNA methyltransferase 3B (DNMT3B) is the major DNMT that methylates mammalian genomes during early development. Mutations in human DNMT3B disrupt genome-wide DNA methylation patterns and result in ICF syndrome type 1 (ICF1). To study whether normal DNA methylation patterns may be restored in ICF1 cells, we corrected DNMT3B mutations in induced pluripotent stem cells from ICF1 patients. Focusing on repetitive regions, we show that in contrast to pericentromeric repeats, which reacquire normal methylation, the majority of subtelomeres acquire only partial DNA methylation and, accordingly, the ICF1 telomeric phenotype persists. Subtelomeres resistant to de novo methylation were characterized by abnormally high H3K4 trimethylation (H3K4me3), and short-term reduction of H3K4me3 by pharmacological intervention partially restored subtelomeric DNA methylation. These findings demonstrate that the abnormal epigenetic landscape established in ICF1 cells restricts the recruitment of DNMT3B, and suggest that rescue of epigenetic diseases with genome-wide disruptions will demand further manipulation beyond mutation correction.
Collapse
Affiliation(s)
- Shir Toubiana
- Molecular Medicine LaboratoryRappaport Faculty of Medicine, TechnionHaifaIsrael
- Rambam Health Care CampusHaifaIsrael
| | | | | | - Roberta Manco
- Institute of Genetics and Biophysics, ABT CNRNaplesItaly
| | - Maty Tzukerman
- Molecular Medicine LaboratoryRappaport Faculty of Medicine, TechnionHaifaIsrael
- Rambam Health Care CampusHaifaIsrael
| | | | - Sara Selig
- Molecular Medicine LaboratoryRappaport Faculty of Medicine, TechnionHaifaIsrael
- Rambam Health Care CampusHaifaIsrael
| |
Collapse
|
24
|
Cubiles MD, Barroso S, Vaquero-Sedas MI, Enguix A, Aguilera A, Vega-Palas MA. Epigenetic features of human telomeres. Nucleic Acids Res 2019; 46:2347-2355. [PMID: 29361030 PMCID: PMC5861411 DOI: 10.1093/nar/gky006] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/09/2018] [Indexed: 01/02/2023] Open
Abstract
Although subtelomeric regions in humans are heterochromatic, the epigenetic nature of human telomeres remains controversial. This controversy might have been influenced by the confounding effect of subtelomeric regions and interstitial telomeric sequences (ITSs) on telomeric chromatin structure analyses. In addition, different human cell lines might carry diverse epigenetic marks at telomeres. We have developed a reliable procedure to study the chromatin structure of human telomeres independently of subtelomeres and ITSs. This procedure is based on the statistical analysis of multiple ChIP-seq experiments. We have found that human telomeres are not enriched in the heterochromatic H3K9me3 mark in most of the common laboratory cell lines, including embryonic stem cells. Instead, they are labeled with H4K20me1 and H3K27ac, which might be established by p300. These results together with previously published data argue that subtelomeric heterochromatin might control human telomere functions. Interestingly, U2OS cells that exhibit alternative lengthening of telomeres have heterochromatic levels of H3K9me3 in their telomeres.
Collapse
Affiliation(s)
- María D Cubiles
- Departamento de Estadística e Investigación Operativa, Facultad de Matemáticas, Universidad de Sevilla, 41012 Seville, Spain
| | - Sonia Barroso
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Avd. Américo Vespucio s/n, 41092 Seville, Spain
| | - María I Vaquero-Sedas
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, IBVF (CSIC-US), Avd. Américo Vespucio n° 49, 41092 Seville, Spain
| | - Alicia Enguix
- Departamento de Estadística e Investigación Operativa, Facultad de Matemáticas, Universidad de Sevilla, 41012 Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Avd. Américo Vespucio s/n, 41092 Seville, Spain
| | - Miguel A Vega-Palas
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, IBVF (CSIC-US), Avd. Américo Vespucio n° 49, 41092 Seville, Spain
| |
Collapse
|
25
|
LncRNAs Regulatory Networks in Cellular Senescence. Int J Mol Sci 2019; 20:ijms20112615. [PMID: 31141943 PMCID: PMC6600251 DOI: 10.3390/ijms20112615] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/19/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are a class of transcripts longer than 200 nucleotides with no open reading frame. They play a key role in the regulation of cellular processes such as genome integrity, chromatin organization, gene expression, translation regulation, and signal transduction. Recent studies indicated that lncRNAs are not only dysregulated in different types of diseases but also function as direct effectors or mediators for many pathological symptoms. This review focuses on the current findings of the lncRNAs and their dysregulated signaling pathways in senescence. Different functional mechanisms of lncRNAs and their downstream signaling pathways are integrated to provide a bird’s-eye view of lncRNA networks in senescence. This review not only highlights the role of lncRNAs in cell fate decision but also discusses how several feedback loops are interconnected to execute persistent senescence response. Finally, the significance of lncRNAs in senescence-associated diseases and their therapeutic and diagnostic potentials are highlighted.
Collapse
|
26
|
The Emerging Roles of TERRA in Telomere Maintenance and Genome Stability. Cells 2019; 8:cells8030246. [PMID: 30875900 PMCID: PMC6468625 DOI: 10.3390/cells8030246] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
The finding that transcription occurs at chromosome ends has opened new fields of study on the roles of telomeric transcripts in chromosome end maintenance and genome stability. Indeed, the ends of chromosomes are required to be protected from activation of DNA damage response and DNA repair pathways. Chromosome end protection is achieved by the activity of specific proteins that associate with chromosome ends, forming telomeres. Telomeres need to be constantly maintained as they are in a heterochromatic state and fold into specific structures (T-loops), which may hamper DNA replication. In addition, in the absence of maintenance mechanisms, chromosome ends shorten at every cell division due to limitations in the DNA replication machinery, which is unable to fully replicate the extremities of chromosomes. Altered telomere structure or critically short chromosome ends generate dysfunctional telomeres, ultimately leading to replicative senescence or chromosome instability. Telomere biology is thus implicated in multiple human diseases, including cancer. Emerging evidence indicates that a class of long noncoding RNAs transcribed at telomeres, known as TERRA for “TElomeric Repeat-containing RNA,” actively participates in the mechanisms regulating telomere maintenance and chromosome end protection. However, the molecular details of TERRA activities remain to be elucidated. In this review, we discuss recent findings on the emerging roles of TERRA in telomere maintenance and genome stability and their implications in human diseases.
Collapse
|
27
|
Targeting Cancer through the Epigenetic Features of Telomeric Regions. Trends Cell Biol 2019; 29:281-290. [PMID: 30660503 DOI: 10.1016/j.tcb.2018.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 12/16/2022]
Abstract
The integrity of the chromatin associated with telomeric regions, which include telomeres and subtelomeres, is essential for telomeres function and cell viability. Whereas human subtelomeres are heterochromatic, telomeres are labeled with euchromatic marks like H4K20me1 and H3K27ac in most commonly studied human cell lines. The epigenetic marks of human telomeric regions influence oncogenic processes. Indeed, different drugs that decrease their genome-wide levels are currently being used or tested in specific cancer therapies. These drugs can challenge cancer by altering the function of key cellular proteins. However, they should also compromise oncogenic processes by modifying the epigenetic landscape of telomeric regions. We believe that studies of telomeric chromatin structure and telomeres dysfunction should help to design epigenetic therapies for cancer treatment.
Collapse
|
28
|
Laberthonnière C, Magdinier F, Robin JD. Bring It to an End: Does Telomeres Size Matter? Cells 2019; 8:E30. [PMID: 30626097 PMCID: PMC6356554 DOI: 10.3390/cells8010030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/01/2019] [Accepted: 01/04/2019] [Indexed: 12/22/2022] Open
Abstract
Telomeres are unique nucleoprotein structures. Found at the edge of each chromosome, their main purpose is to mask DNA ends from the DNA-repair machinery by formation of protective loops. Through life and cell divisions, telomeres shorten and bring cells closer to either cell proliferation crisis or senescence. Beyond this mitotic clock role attributed to the need for telomere to be maintained over a critical length, the very tip of our DNA has been shown to impact transcription by position effect. TPE and a long-reach counterpart, TPE-OLD, are mechanisms recently described in human biology. Still in infancy, the mechanism of action of these processes and their respective genome wide impact remain to be resolved. In this review, we will discuss recent findings on telomere dynamics, TPE, TPE-OLD, and lessons learnt from model organisms.
Collapse
Affiliation(s)
| | - Frédérique Magdinier
- Aix Marseille Univ, MMG, Marseille Medical Genetics U1251, 13385 Marseille, France.
| | - Jérôme D Robin
- Aix Marseille Univ, MMG, Marseille Medical Genetics U1251, 13385 Marseille, France.
| |
Collapse
|
29
|
Gagliardi M, Strazzullo M, Matarazzo MR. DNMT3B Functions: Novel Insights From Human Disease. Front Cell Dev Biol 2018; 6:140. [PMID: 30406101 PMCID: PMC6204409 DOI: 10.3389/fcell.2018.00140] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/02/2018] [Indexed: 11/13/2022] Open
Abstract
DNA methylation plays important roles in gene expression regulation and chromatin structure. Its proper establishment and maintenance are essential for mammalian development and cellular differentiation. DNMT3B is the major de novo DNA methyltransferase expressed and active during the early stage of embryonic development, including implantation. In addition to its well-known role to methylate centromeric, pericentromeric, and subtelomeric repeats, recent observations suggest that DNMT3B acts as the main enzyme methylating intragenic regions of active genes. Although largely studied, much remains unknown regarding how these specific patterns of de novo CpG methylation are established in mammalian cells, and which are the rules governing DNMT3B recruitment and activity. Latest evidence indicates that DNMT3B recruitment is regulated by numerous mechanisms including chromatin modifications, transcription levels, non-coding RNAs, and the presence of DNA-binding factors. DNA methylation abnormalities are a common mark of human diseases involving chromosomal and genomic instabilities, such as inherited disease and cancer. The autosomal recessive Immunodeficiency, Centromeric instability and Facial anomalies syndrome, type I (ICF-1), is associated to hypomorphic mutations in DNMT3B gene, while its altered expression has been correlated with the development of tumors. In both cases, this implies that abnormal DNA hypomethylation and hypermethylation patterns affect gene expression and genomic architecture contributing to the pathological states. We will provide an overview of the most recent research aimed at deciphering the molecular mechanisms by which DNMT3B abnormalities are associated with the onset and progression of these pathologies.
Collapse
Affiliation(s)
- Miriam Gagliardi
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR, Naples, Italy.,Max Planck Institute of Psychiatry, Munich, Germany
| | - Maria Strazzullo
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR, Naples, Italy
| | - Maria R Matarazzo
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR, Naples, Italy
| |
Collapse
|
30
|
Toubiana S, Velasco G, Chityat A, Kaindl AM, Hershtig N, Tzur-Gilat A, Francastel C, Selig S. Subtelomeric methylation distinguishes between subtypes of Immunodeficiency, Centromeric instability and Facial anomalies syndrome. Hum Mol Genet 2018; 27:3568-3581. [PMID: 30010917 DOI: 10.1093/hmg/ddy265] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 07/11/2018] [Indexed: 12/16/2022] Open
Abstract
Human telomeres and adjacent subtelomeres are packaged as heterochromatin. Subtelomeric DNA undergoes methylation during development by DNA methyltransferase 3B (DNMT3B), including the CpG-rich promoters of the long non-coding RNA (TERRA) embedded in these regions. The factors that direct DNMT3B methylation to human subtelomeres and maintain this methylation throughout lifetime are yet unknown. The importance of subtelomeric methylation is manifested through the abnormal telomeric phenotype in Immunodeficiency, Centromeric instability and Facial anomalies (ICF) syndrome type 1 patients carrying mutations in DNMT3B. Patient cells demonstrate subtelomeric hypomethylation, accompanied by elevated TERRA transcription, accelerated telomere shortening and premature senescence of fibroblasts. ICF syndrome can arise due to mutations in at least three additional genes, ZBTB24 (ICF2), CDCA7 (ICF3) and HELLS (ICF4). While pericentromeric repeat hypomethylation is evident in all ICF syndrome subtypes, the status of subtelomeric DNA methylation had not been described for patients of subtypes 2-4. Here we explored the telomeric phenotype in cells derived from ICF2-4 patients with the aim to determine whether ZBTB24, CDCA7 and HELLS also play a role in establishing and/or maintaining human subtelomeric methylation. We found normal subtelomeric methylation in ICF2-4 and accordingly low TERRA levels and unperturbed telomere length. Moreover, depleting the ICF2-4-related proteins in normal fibroblasts did not influence subtelomeric methylation. Thus, these gene products are not involved in establishing or maintaining subtelomeric methylation. Our findings indicate that human subtelomeric heterochromatin has specialized methylation regulation and highlight the telomeric phenotype as a characteristic that distinguishes ICF1 from ICF2-4.
Collapse
Affiliation(s)
- Shir Toubiana
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Guillaume Velasco
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, CNRS, Paris Cedex, France
| | - Adi Chityat
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Angela M Kaindl
- Charité - Universitätsmedizin Berlin, Department of Pediatric Neurology, Center for Chronically Sick Children, Institute of Cell Biology and Neurobiology, Augustenburger Platz 1, Berlin, Germany
| | | | - Aya Tzur-Gilat
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Claire Francastel
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, CNRS, Paris Cedex, France
| | - Sara Selig
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
31
|
He J, Tu C, Liu Y. Role of lncRNAs in aging and age-related diseases. Aging Med (Milton) 2018; 1:158-175. [PMID: 31942494 PMCID: PMC6880696 DOI: 10.1002/agm2.12030] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 01/10/2023] Open
Abstract
Aging is progressive physiological degeneration and consequently declined function, which is linked to senescence on both cellular and organ levels. Accumulating studies indicate that long noncoding RNAs (lncRNAs) play important roles in cellular senescence at all levels-transcriptional, post-transcriptional, translational, and post-translational. Understanding the molecular mechanism of lncRNAs underlying senescence could facilitate interpretation and intervention of aging and age-related diseases. In this review, we describe categories of known and novel lncRNAs that have been involved in the progression of senescence. We also identify the lncRNAs implicated in diseases arising from age-driven degeneration or dysfunction in some representative organs and systems (brains, liver, muscle, cardiovascular system, bone pancreatic islets, and immune system). Improved comprehension of lncRNAs in the aging process on all levels, from cell to organismal, may provide new insights into the amelioration of age-related pathologies and prolonged healthspan.
Collapse
Affiliation(s)
- Jieyu He
- Department of GeriatricsThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Chao Tu
- Department of OrthopedicsThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Youshuo Liu
- Department of GeriatricsThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
32
|
Xu Y. Recent progress in human telomere RNA structure and function. Bioorg Med Chem Lett 2018; 28:2577-2584. [DOI: 10.1016/j.bmcl.2018.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/15/2018] [Accepted: 06/12/2018] [Indexed: 11/16/2022]
|
33
|
Toubiana S, Selig S. DNA:RNA hybrids at telomeres - when it is better to be out of the (R) loop. FEBS J 2018; 285:2552-2566. [PMID: 29637701 DOI: 10.1111/febs.14464] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/11/2018] [Accepted: 04/03/2018] [Indexed: 01/31/2023]
Abstract
R-loops (RLs) are three-stranded nucleic acid structures that contain a DNA:RNA hybrid and a displaced DNA strand. Genomic regions with GC skew and a G-rich transcript are particularly prone to form RLs. RLs play important physiological roles in cells; however, when present at abnormally high levels, they may threaten genome stability. The perfect GC skew of telomeric repeats and the discovery of telomeric repeat-containing RNA (TERRA), a long noncoding transcript that consists of the G-rich telomeric sequence, make telomeric sequences the perfect candidates for generating RLs. Indeed, in the past 5 years, telomere R-loops (TRLs) have been demonstrated in Saccharomyces cerevisiae, Trypanosoma brucei, and human cells. The presence of TRLs in normal human cells that transcribe low levels of TERRA, suggests a physiological role for these nucleic structures in telomere maintenance. Abnormally enhanced TERRA transcription, as found in several human pathological conditions, leads to high TRL levels and various cellular outcomes, depending on the recombinogenic capabilities of the cells. Study of TRLs in various organisms highlights the necessity for tight regulation of these structures, which can switch from beneficial to detrimental under different conditions. Here, we review the current state of knowledge on TRLs, describe several means by which TRLs are regulated, and discuss how findings from yeast are relevant to human pathological scenarios in which TRLs are deregulated.
Collapse
Affiliation(s)
- Shir Toubiana
- Molecular Medicine Laboratory, Rappaport Faculty of Medicine, Rambam Health Care Campus, Technion, Haifa, Israel
| | - Sara Selig
- Molecular Medicine Laboratory, Rappaport Faculty of Medicine, Rambam Health Care Campus, Technion, Haifa, Israel
| |
Collapse
|
34
|
Investigation of higher-order RNA G-quadruplex structures in vitro and in living cells by 19F NMR spectroscopy. Nat Protoc 2018. [PMID: 29517770 DOI: 10.1038/nprot.2017.156] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Growing evidence indicates that RNA G-quadruplexes have important roles in various processes such as transcription, translation, regulation of telomere length, and formation of telomeric heterochromatin. Investigation of RNA G-quadruplex structures associated with biological events is therefore essential to understanding the functions of these RNA molecules. We recently demonstrated that the sensitivity and simplicity of 19F NMR can be used to directly observe higher-order telomeric G-quadruplexes of labeled RNA molecules in vitro and in living cells, as well as their interactions with ligands and proteins. This protocol describes detailed procedures for preparing 19F-labeled RNA, the evaluation of 19F-labeled RNA G-quadruplexes in vitro and in living Xenopus laevis oocytes by 19F NMR spectroscopy, the quantitative characterization of thermodynamic properties of the G-quadruplexes, and monitoring of RNA G-quadruplex interactions with ligand molecules and proteins. This approach has several advantages over existing techniques. First, it is relatively easy to prepare 19F-labeled RNA molecules by introducing a 3,5-bis(trifluoromethyl) benzene moiety into its 5' terminus. Second, the absence of any natural fluorine background signal in RNA and cells results in a simple and clear 19F NMR spectrum and does not suffer from high background signals as does 1H NMR. Finally, the simplicity and sensitivity of 19F NMR can be used to easily distinguish different RNA G-quadruplex conformations under various conditions, even in living cells, and to obtain the precise thermodynamic parameters of higher-order G-quadruplexes. This protocol can be completed in 2 weeks.
Collapse
|
35
|
Sagie S, Edni O, Weinberg J, Toubiana S, Kozlovski T, Frostig T, Katzin N, Bar-Am I, Selig S. Non-random length distribution of individual telomeres in immunodeficiency, centromeric instability and facial anomalies syndrome, type I. Hum Mol Genet 2017; 26:4244-4256. [PMID: 28973513 DOI: 10.1093/hmg/ddx313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/03/2017] [Indexed: 12/30/2022] Open
Abstract
Mutations in the de novo DNA methyltransferase DNMT3B lead to Immunodeficiency, Centromeric Instability and Facial anomalies (ICF) syndrome, type I. This syndrome is characterized, among other hypomethylated genomic loci, by severe subtelomeric hypomethylation that is associated with abnormally short telomere length. While it was demonstrated that the mean telomere length is significantly shorter in ICF type I cells, it is unknown whether all telomeres are equally vulnerable to shortening. To study this question we determined by combined telomere-FISH and spectral karyotyping the relative length of each individual telomere in lymphoblastoid cell lines (LCLs) generated from multiple ICF syndrome patients and control individuals. Here we confirm the short telomere lengths, and demonstrate that telomere length variance in the ICF patient group is much larger than in the control group, suggesting that not all telomeres shorten in a uniform manner. We identified a subgroup of telomeres whose relatively short lengths can distinguish with a high degree of certainty between a control and an ICF metaphase, proposing that in ICF syndrome cells, certain individual telomeres are consistently at greater risk to shorten than others. The majority of these telomeres display high sequence identity at the distal 2 kb of their subtelomeres, suggesting that the attenuation in DNMT3B methylation capacity affects individual telomeres to different degrees based, at least in part, on the adjacent subtelomeric sequence composition.
Collapse
Affiliation(s)
- Shira Sagie
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Omer Edni
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Joseph Weinberg
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Shir Toubiana
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Tal Kozlovski
- Department of Statistics and Operations Research, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 39040, Israel
| | - Tzviel Frostig
- Department of Statistics and Operations Research, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 39040, Israel
| | - Nirit Katzin
- Applied Spectral Imaging Ltd., Yokneam 2069200, Israel
| | - Irit Bar-Am
- Applied Spectral Imaging Ltd., Yokneam 2069200, Israel
| | - Sara Selig
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| |
Collapse
|
36
|
Young E, Pastor S, Rajagopalan R, McCaffrey J, Sibert J, Mak ACY, Kwok PY, Riethman H, Xiao M. High-throughput single-molecule mapping links subtelomeric variants and long-range haplotypes with specific telomeres. Nucleic Acids Res 2017; 45:e73. [PMID: 28180280 PMCID: PMC5605236 DOI: 10.1093/nar/gkx017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 02/07/2017] [Indexed: 01/22/2023] Open
Abstract
Accurate maps and DNA sequences for human subtelomere regions, along with detailed knowledge of subtelomere variation and long-range telomere-terminal haplotypes in individuals, are critical for understanding telomere function and its roles in human biology. Here, we use a highly automated whole genome mapping technology in nano-channel arrays to analyze large terminal human chromosome segments extending from chromosome-specific subtelomere sequences through subtelomeric repeat regions to terminal (TTAGGG)n repeat tracts. We establish detailed maps for subtelomere gap regions in the human reference sequence, detect many new large subtelomeric variants and demonstrate the feasibility of long-range haplotyping through segmentally duplicated subtelomere regions. These features make the method a uniquely valuable new tool for improving the quality of genome assemblies in complex DNA regions. Based on single molecule mapping of telomere-terminal DNA fragments, we provide proof of principle for a novel method to estimate telomere lengths linked to distinguishable telomeric haplotypes; this single-telomere genotyping method may ultimately enable delineation of human cis elements involved in telomere length regulation.
Collapse
Affiliation(s)
- Eleanor Young
- Drexel University, School of Biomedical Engineering, Philadelphia, PA, 19104 USA
| | - Steven Pastor
- Drexel University, School of Biomedical Engineering, Philadelphia, PA, 19104 USA
| | | | - Jennifer McCaffrey
- Drexel University, School of Biomedical Engineering, Philadelphia, PA, 19104 USA
| | - Justin Sibert
- Drexel University, School of Biomedical Engineering, Philadelphia, PA, 19104 USA
| | - Angel C Y Mak
- Cardiovascular Research Institute, University of California, San Francisco, CA, 94158 USA
| | - Pui-Yan Kwok
- Cardiovascular Research Institute, University of California, San Francisco, CA, 94158 USA
| | - Harold Riethman
- Old Dominion University, Medical Diagnostic and Translational Sciences, Norfolk, VA, 23529 USA
| | - Ming Xiao
- Drexel University, School of Biomedical Engineering, Philadelphia, PA, 19104 USA.,Institute of Molecular Medicine and Infectious Disease, School of Medicine, Drexel University, Philadelphia, PA, 19102 USA
| |
Collapse
|
37
|
Liu X, Ishizuka T, Bao HL, Wada K, Takeda Y, Iida K, Nagasawa K, Yang D, Xu Y. Structure-Dependent Binding of hnRNPA1 to Telomere RNA. J Am Chem Soc 2017; 139:7533-7539. [PMID: 28510424 DOI: 10.1021/jacs.7b01599] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Telomeric repeat-containing RNA is a new noncoding RNA molecule that performs various biofunctions. Heterogeneous nuclear ribonucleoprotein (hnRNP) A1 is an RNA-binding protein involved in the telomere maintenance machinery. To date, little is known about how hnRNPA1 binds to telomeric RNA. In this study, we investigated the binding affinity and recognition mechanism of telomere RNA with the RNA recognition motif of hnRNPA1. Using the photochemical cross-linking method, we showed that the telomere RNA G-quadruplex with loops is important in the interaction of telomere RNA with hnRNPA1. Using small-molecule probes, we directly visualized the complex formed by the telomere RNA G-quadruplex and hnRNPA1 in vitro and in live cells. The results suggested that the structure-dependent binding of hnRNPA1 to telomere RNA regulates the telomere function. Therefore, our study provides new insights into the interactions between the RNA G-quadruplex and proteins at the telomere.
Collapse
Affiliation(s)
- Xiao Liu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki , 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Takumi Ishizuka
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki , 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Hong-Liang Bao
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki , 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Kei Wada
- Organization for Promotion of Tenure Track, University of Miyazaki , 1-1 Gakuenkibanadai-nishi, Kiyotake, Miyazaki 889-2192, Japan
| | - Yuma Takeda
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki , 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Keisuke Iida
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology , 2-24-16 Naka-cho, Koganei City, Tokyo 184-8588, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology , 2-24-16 Naka-cho, Koganei City, Tokyo 184-8588, Japan
| | - Danzhou Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University , 201 South University Street, West Lafayette, Indiana 47907, United States
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki , 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
38
|
Sagie S, Toubiana S, Hartono SR, Katzir H, Tzur-Gilat A, Havazelet S, Francastel C, Velasco G, Chédin F, Selig S. Telomeres in ICF syndrome cells are vulnerable to DNA damage due to elevated DNA:RNA hybrids. Nat Commun 2017; 8:14015. [PMID: 28117327 PMCID: PMC5286223 DOI: 10.1038/ncomms14015] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022] Open
Abstract
DNA:RNA hybrids, nucleic acid structures with diverse physiological functions, can disrupt genome integrity when dysregulated. Human telomeres were shown to form hybrids with the lncRNA TERRA, yet the formation and distribution of these hybrids among telomeres, their regulation and their cellular effects remain elusive. Here we predict and confirm in several human cell types that DNA:RNA hybrids form at many subtelomeric and telomeric regions. We demonstrate that ICF syndrome cells, which exhibit short telomeres and elevated TERRA levels, are enriched for hybrids at telomeric regions throughout the cell cycle. Telomeric hybrids are associated with high levels of DNA damage at chromosome ends in ICF cells, which are significantly reduced with overexpression of RNase H1. Our findings suggest that abnormally high TERRA levels in ICF syndrome lead to accumulation of telomeric hybrids that, in turn, can result in telomeric dysfunction. ICF syndrome cells exhibit shortened telomeres and elevated levels of the noncoding RNA TERRA. Here the authors show this is associated with high levels of DNA damage, suggesting an increase in telomere dysfunction due to the formation of DNA: RNA hybrids
Collapse
Affiliation(s)
- Shira Sagie
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Shir Toubiana
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Stella R Hartono
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, California 95616, USA
| | - Hagar Katzir
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Aya Tzur-Gilat
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Shany Havazelet
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Claire Francastel
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, CNRS UMR7216, Paris Cedex 75205, France
| | - Guillaume Velasco
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, CNRS UMR7216, Paris Cedex 75205, France
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, California 95616, USA
| | - Sara Selig
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| |
Collapse
|
39
|
Novakovic B, Napier CE, Vryer R, Dimitriadis E, Manuelpillai U, Sharkey A, Craig JM, Reddel RR, Saffery R. DNA methylation mediated up-regulation of TERRA non-coding RNA is coincident with elongated telomeres in the human placenta. Mol Hum Reprod 2016; 22:791-799. [PMID: 27604461 DOI: 10.1093/molehr/gaw053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/01/2016] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION What factors regulate elongated telomere length in the human placenta? SUMMARY ANSWER Hypomethylation of TERRA promoters in the human placenta is associated with high TERRA expression, however, no clear mechanistic link between these phenomena and elongated telomere length in the human placenta was found. WHAT IS KNOWN ALREADY Human placenta tissue and trophoblasts show longer telomere lengths compared to gestational age-matched somatic cells. However, telomerase (hTERT) expression and activity in the placenta is low, suggesting a role for an alternative lengthening of telomeres (ALT). While ALT is observed in 10-15% of human cancers and in some mouse stem cells, ALT has never been reported in non-cancerous human tissues. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Human term placental tissue and matched cord blood mononuclear cells (CBMCs) were collected as part of the Peri/Postnatal Epigenetic Twins study (PETS). In addition, first trimester placental villi, purified cytotrophoblasts, choriocarcinoma cell lines and a panel of ALT-positive cancer cell lines were tested. Telomere length was determined using the Terminal Restriction Fragment (TRF) assay and a relative quantitative PCR method. DNA methylation levels at several CpG rich subtelomeric TERRA promoters were determined using bisulfite conversion and the SEQUENOM EpiTYPER platform. Expression of TERRA and hTERT was determined using quantitative RT-PCR. ALT was assessed using the C-circle assay (CCA). MAIN RESULTS AND THE ROLE OF CHANCE The human placenta tissue and purified first trimester trophoblasts showed low subtelomeric (TERRA) DNA methylation compared to matched CBMCs and other somatic cells. Interestingly placental TERRA methylation was lower than ALT-cancer cell lines, previously reported to be hypomethylated at these loci. Low TERRA methylation was associated with higher expression of TERRA RNA in placenta compared to matched CBMCs. Detectable levels of C-circles were observed in first trimester placental villi, but not term placenta, suggesting that the ALT mechanism may be active in specific placental cells in early gestation. C-circle analysis of purified first trimester trophoblasts and ALT-associated PML bodies (APB) staining of first trimester villi cross-sections failed to identify this specific cell type population. LIMITATIONS, REASONS FOR CAUTION While first trimester villi showed detectable levels of C-circles, these levels were very low compared with those observed in ALT-positive tumours and cell lines. This is consistent with a small sub-population of ALT-positive cells but this requires further investigation. Finally, no mechanistic link was established between TERRA DNA methylation, the presence of C-circles and longer telomere length. WIDER IMPLICATIONS OF THE FINDINGS Given the previously described role of TERRA ncRNA as a negative regulator of telomerase, the finding of elevated TERRA and long telomeres is counterintutive. ALT as a mechanism for telomere length maintenance has only been reported in certain human cancers, and recently in mouse embryonic stem cells and embryos. As with many aspects of cancer, it appears that ALT activity in tumours may be the inappropriate activation of a pathway found in very specific cell types in human development. Our data are the first supportive evidence for ALT in a non-cancerous human tissue, a result that requires further investigation and replication. The level of TERRA methylation in the human placenta is significantly lower than found in ALT cancer cell lines and somatic cells, raising the possibility of a novel mechanism in maintaining low methylation at subtelomeric regions. LARGE SCALE DATA Not applicable. STUDY FUNDING AND COMPETING INTERESTS This study was supported by NHMRC early career fellowship (B.N.), NHMRC Senior Research Fellowship (R.S.) and the Victoria Government Infrastructure Grant. R.R. holds a patent for the C-circle assay. No other conflicts declared.
Collapse
Affiliation(s)
- Boris Novakovic
- Murdoch Childrens Research Institute-Cancer and Disease Epigenetics, Royal Children's Hospital Flemington Road, Parkville, Melbourne, Victoria 3052, Australia
| | - Christine E Napier
- Cancer Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Regan Vryer
- Murdoch Childrens Research Institute-Cancer and Disease Epigenetics, Royal Children's Hospital Flemington Road, Parkville, Melbourne, Victoria 3052, Australia.,Department of Paediatrics, University of Melbourne, Parkville VIC 305 2
| | - Eva Dimitriadis
- Embryo Implantation Laboratory, Hudson Institute for Medical Research, Monash University, Clayton VIC 3168, Australia
| | - Ursula Manuelpillai
- Pregnancy Research Centre, Department of Perinatal Medicine, Royal Women's Hospital , Parkville, Victoria 3052, Australia.,Centre for Genetic Diseases, Hudson Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia
| | - Andrew Sharkey
- Department of Pathology and Centre for Trophoblast Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Jeffrey M Craig
- Department of Paediatrics, University of Melbourne, Parkville VIC 305 2.,Early Life Epigenetics, Murdoch Childrens Research Institute, Royal Children's Hospital , Parkville VIC 3052, Australia
| | - Roger R Reddel
- Cancer Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Richard Saffery
- Murdoch Childrens Research Institute-Cancer and Disease Epigenetics, Royal Children's Hospital Flemington Road, Parkville, Melbourne, Victoria 3052, Australia .,Department of Paediatrics, University of Melbourne, Parkville VIC 305 2
| |
Collapse
|
40
|
Wang Z, Lieberman PM. The crosstalk of telomere dysfunction and inflammation through cell-free TERRA containing exosomes. RNA Biol 2016; 13:690-5. [PMID: 27351774 DOI: 10.1080/15476286.2016.1203503] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Telomeric repeats-containing RNA (TERRA) are telomere-derived non-coding RNAs that contribute to telomere function in protecting chromosome ends. We recently identified a cell-free form of TERRA (cfTERRA) enriched in extracellular exosomes. These cfTERRA-containing exosomes stimulate inflammatory cytokines when incubated with immune responsive cells. Here, we report that cfTERRA levels were increased in exosomes during telomere dysfunction induced by the expression of the dominant negative TRF2. The exosomes from these damaged cells also enriched with DNA damage marker γH2AX and fragmented telomere repeat DNA. Purified cfTERRA stimulated inflammatory cytokines, but the intact membrane-associated nucleoprotein complexes produced a more robust cytokine activation. Therefore, we propose cfTERRA-containing exosomes transport a telomere-associated molecular pattern (TAMP) and telomere-specific alarmin from dysfunctional telomeres to the extracellular environment to elicit an inflammatory response. Since cfTERRA can be readily detected in human serum it may provide a useful biomarker for the detection of telomere dysfunction in the early stage of cancers and aging-associated inflammatory disease.
Collapse
Affiliation(s)
- Zhuo Wang
- a The Wistar Institute , Philadelphia , PA , USA.,b University of the Sciences in Philadelphia , Philadelphia , PA , USA
| | | |
Collapse
|
41
|
Ichikawa Y, Nishimura Y, Kurumizaka H, Shimizu M. Nucleosome organization and chromatin dynamics in telomeres. Biomol Concepts 2016; 6:67-75. [PMID: 25720088 DOI: 10.1515/bmc-2014-0035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/01/2014] [Indexed: 11/15/2022] Open
Abstract
Telomeres are DNA-protein complexes located at the ends of linear eukaryotic chromosomes, and are essential for chromosome stability and maintenance. In most organisms, telomeres consist of tandemly repeated sequences of guanine-clusters. In higher eukaryotes, most of the telomeric repeat regions are tightly packaged into nucleosomes, even though telomeric repeats act as nucleosome-disfavoring sequences. Although telomeres were considered to be condensed heterochromatin structures, recent studies revealed that the chromatin structures in telomeres are actually dynamic. The dynamic properties of telomeric chromatin are considered to be important for the structural changes between the euchromatic and heterochromatic states during the cell cycle and in cellular differentiation. We propose that the nucleosome-disfavoring property of telomeric repeats is a crucial determinant for the lability of telomeric nucleosomes, and provides a platform for chromatin dynamics in telomeres. Furthermore, we discuss the influences of telomeric components on the nucleosome organization and chromatin dynamics in telomeres.
Collapse
|
42
|
Kour S, Rath PC. Long noncoding RNAs in aging and age-related diseases. Ageing Res Rev 2016; 26:1-21. [PMID: 26655093 DOI: 10.1016/j.arr.2015.12.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/08/2015] [Accepted: 12/01/2015] [Indexed: 12/14/2022]
Abstract
Aging is the universal, intrinsic, genetically-controlled, evolutionarily-conserved and time-dependent intricate biological process characterised by the cumulative decline in the physiological functions and their coordination in an organism after the attainment of adulthood resulting in the imbalance of neurological, immunological and metabolic functions of the body. Various biological processes and mechanisms along with altered levels of mRNAs and proteins have been reported to be involved in the progression of aging. It is one of the major risk factors in the patho-physiology of various diseases and disorders. Recently, the discovery of pervasive transcription of a vast pool of heterogeneous regulatory noncoding RNAs (ncRNAs), including small ncRNAs (sncRNAs) and long ncRNAs (lncRNAs), in the mammalian genome have provided an alternative way to study and explore the missing links in the aging process, its mechanism(s) and related diseases in a whole new dimension. The involvement of small noncoding RNAs in aging and age-related diseases have been extensively studied and recently reviewed. However, lncRNAs, whose function is far less explored in relation to aging, have emerged as a class of major regulators of genomic functions. Here, we have described some examples of known as well as novel lncRNAs that have been implicated in the progression of the aging process and age-related diseases. This may further stimulate research on noncoding RNAs and the aging process.
Collapse
Affiliation(s)
- Sukhleen Kour
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pramod C Rath
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
43
|
Zhang F, Zhang L, Zhang C. Long noncoding RNAs and tumorigenesis: genetic associations, molecular mechanisms, and therapeutic strategies. Tumour Biol 2015; 37:163-75. [PMID: 26586396 DOI: 10.1007/s13277-015-4445-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/13/2015] [Indexed: 01/17/2023] Open
Abstract
The human genome contains a large number of nonprotein-coding sequences. Recently, new discoveries in the functions of nonprotein-coding sequences have demonstrated that the "Dark Genome" significantly contributes to human diseases, especially with regard to cancer. Of particular interest in this review are long noncoding RNAs (lncRNAs), which comprise a class of nonprotein-coding transcripts that are longer than 200 nucleotides. Accumulating evidence indicates that a large number of lncRNAs exhibit genetic associations with tumorigenesis, tumor progression, and metastasis. Our current understanding of the molecular bases of these lncRNAs that are associated with cancer indicate that they play critical roles in gene transcription, translation, and chromatin modification. Therapeutic strategies based on the targeting of lncRNAs to disrupt their expression or their functions are being developed. In this review, we briefly summarize and discuss the genetic associations and the aberrant expression of lncRNAs in cancer, with a particular focus on studies that have revealed the molecular mechanisms of lncRNAs in tumorigenesis. In addition, we also discuss different therapeutic strategies that involve the targeting of lncRNAs.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Orthopedics, The first Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Liang Zhang
- Hong-Hui Hospital, Xi'an Jiaotong University, College of Medicine, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Caiguo Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
44
|
Telomere homeostasis in mammalian germ cells: a review. Chromosoma 2015; 125:337-51. [DOI: 10.1007/s00412-015-0555-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 02/03/2023]
|
45
|
Abdelmohsen K, Gorospe M. Noncoding RNA control of cellular senescence. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:615-29. [PMID: 26331977 DOI: 10.1002/wrna.1297] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 12/23/2022]
Abstract
Senescent cells accumulate in normal tissues with advancing age and arise by long-term culture of primary cells. Senescence develops following exposure to a range of stress-causing agents and broadly influences the physiology and pathology of tissues, organs, and systems in the body. While many proteins are known to control senescence, numerous noncoding (nc)RNAs are also found to promote or repress the senescent phenotype. Here, we review the regulatory ncRNAs (primarily microRNAs and lncRNAs) identified to-date as key modulators of senescence. We highlight the major senescent pathways (p53/p21 and pRB/p16), as well as the senescence-associated secretory phenotype (SASP) and other senescence-associated events governed by ncRNAs, and discuss the importance of understanding comprehensively the ncRNAs implicated in cell senescence.
Collapse
Affiliation(s)
- Kotb Abdelmohsen
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
46
|
Grammatikakis I, Panda AC, Abdelmohsen K, Gorospe M. Long noncoding RNAs(lncRNAs) and the molecular hallmarks of aging. Aging (Albany NY) 2015; 6:992-1009. [PMID: 25543668 PMCID: PMC4298369 DOI: 10.18632/aging.100710] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During aging, progressive deleterious changes increase the risk of disease and death. Prominent molecular hallmarks of aging are genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, cellular senescence, stem cell exhaustion, and altered intercellular communication. Long noncoding RNAs (lncRNAs) play important roles in a wide range of biological processes, including age-related diseases like cancer, cardiovascular pathologies, and neurodegenerative disorders. Evidence is emerging that lncRNAs influence the molecular processes that underlie age-associated phenotypes. Here, we review our current understanding of lncRNAs that control the development of aging traits.
Collapse
Affiliation(s)
- Ioannis Grammatikakis
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Amaresh C Panda
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
47
|
Cusanelli E, Chartrand P. Telomeric repeat-containing RNA TERRA: a noncoding RNA connecting telomere biology to genome integrity. Front Genet 2015; 6:143. [PMID: 25926849 PMCID: PMC4396414 DOI: 10.3389/fgene.2015.00143] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/25/2015] [Indexed: 12/15/2022] Open
Abstract
Telomeres are dynamic nucleoprotein structures that protect the ends of chromosomes from degradation and activation of DNA damage response. For this reason, telomeres are essential to genome integrity. Chromosome ends are enriched in heterochromatic marks and proper organization of telomeric chromatin is important to telomere stability. Despite their heterochromatic state, telomeres are transcribed giving rise to long noncoding RNAs (lncRNA) called TERRA (telomeric repeat-containing RNA). TERRA molecules play critical roles in telomere biology, including regulation of telomerase activity and heterochromatin formation at chromosome ends. Emerging evidence indicate that TERRA transcripts form DNA-RNA hybrids at chromosome ends which can promote homologous recombination among telomeres, delaying cellular senescence and sustaining genome instability. Intriguingly, TERRA RNA-telomeric DNA hybrids are involved in telomere length homeostasis of telomerase-negative cancer cells. Furthermore, TERRA transcripts play a role in the DNA damage response (DDR) triggered by dysfunctional telomeres. We discuss here recent developments on TERRA's role in telomere biology and genome integrity, and its implication in cancer.
Collapse
Affiliation(s)
- Emilio Cusanelli
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna Vienna, Austria
| | - Pascal Chartrand
- Department of Biochemistry and Molecular Medicine, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
48
|
Wang C, Zhao L, Lu S. Role of TERRA in the regulation of telomere length. Int J Biol Sci 2015; 11:316-23. [PMID: 25678850 PMCID: PMC4323371 DOI: 10.7150/ijbs.10528] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/25/2014] [Indexed: 01/08/2023] Open
Abstract
Telomere dysfunction is closely associated with human diseases such as cancer and ageing. Inappropriate changes in telomere length and/or structure result in telomere dysfunction. Telomeres have been considered to be transcriptionally silent, but it was recently demonstrated that mammalian telomeres are transcribed into telomeric repeat-containing RNA (TERRA). TERRA, a long non-coding RNA, participates in the regulation of telomere length, telomerase activity and heterochromatinization. The correct regulation of telomere length may be crucial to telomeric homeostasis and functions. Here, we summarize recent advances in our understanding of the crucial role of TERRA in the maintenance of telomere length, with focus on the variety of mechanisms by which TERRA is involved in the regulation of telomere length. This review aims to enable further understanding of how TERRA-targeted drugs can target telomere-related diseases.
Collapse
Affiliation(s)
- Caiqin Wang
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, China, Women's Hospital, School of Medicine, Zhejiang University, Xueshi Road 1#, Hangzhou 310006, China
| | - Li Zhao
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, China, Women's Hospital, School of Medicine, Zhejiang University, Xueshi Road 1#, Hangzhou 310006, China
| | - Shiming Lu
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, China, Women's Hospital, School of Medicine, Zhejiang University, Xueshi Road 1#, Hangzhou 310006, China
| |
Collapse
|
49
|
Sagie S, Ellran E, Katzir H, Shaked R, Yehezkel S, Laevsky I, Ghanayim A, Geiger D, Tzukerman M, Selig S. Induced pluripotent stem cells as a model for telomeric abnormalities in ICF type I syndrome. Hum Mol Genet 2014; 23:3629-40. [PMID: 24549038 DOI: 10.1093/hmg/ddu071] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Human telomeric regions are packaged as constitutive heterochromatin, characterized by extensive subtelomeric DNA methylation and specific histone modifications. ICF (immunodeficiency, centromeric instability, facial anomalies) type I patients carry mutations in DNA methyltransferase 3B (DNMT3B) that methylates de novo repetitive sequences during early embryonic development. ICF type I patient fibroblasts display hypomethylated subtelomeres, abnormally short telomeres and premature senescence. In order to study the molecular mechanism by which the failure to de novo methylate subtelomeres results in accelerated telomere shortening, we generated induced pluripotent stem cells (iPSCs) from 3 ICF type I patients. Telomeres were elongated in ICF-iPSCs during reprogramming, and the senescence phenotype was abolished despite sustained subtelomeric hypomethylation and high TERRA levels. Fibroblast-like cells (FLs) isolated from differentiated ICF-iPSCs maintained abnormally high TERRA levels, and telomeres in these cells shortened at an accelerated rate, leading to early senescence, thus recapitulating the telomeric phenotype of the parental fibroblasts. These findings demonstrate that the abnormal telomere phenotype associated with subtelomeric hypomethylation is overridden in cells expressing telomerase, therefore excluding telomerase inhibition by TERRA as a central mechanism responsible for telomere shortening in ICF syndrome. The data in the current study lend support to the use of ICF-iPSCs for modeling of phenotypic and molecular defects in ICF syndrome and for unraveling the mechanism whereby subtelomeric hypomethylation is linked to accelerated telomeric loss in this syndrome.
Collapse
Affiliation(s)
- Shira Sagie
- Laboratory of Molecular Medicine, Rambam Health Care Campus and Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Erika Ellran
- Laboratory of Molecular Medicine, Rambam Health Care Campus and Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Hagar Katzir
- Laboratory of Molecular Medicine, Rambam Health Care Campus and Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Rony Shaked
- Laboratory of Molecular Medicine, Rambam Health Care Campus and Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Shiran Yehezkel
- Laboratory of Molecular Medicine, Rambam Health Care Campus and Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Ilana Laevsky
- The Sohnis and Forman Families Stem Cell Center, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Alaa Ghanayim
- Computer Science Department, Technion, Haifa 32000, Israel
| | - Dan Geiger
- Computer Science Department, Technion, Haifa 32000, Israel
| | - Maty Tzukerman
- Laboratory of Molecular Medicine, Rambam Health Care Campus and Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Sara Selig
- Laboratory of Molecular Medicine, Rambam Health Care Campus and Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel,
| |
Collapse
|
50
|
Maicher A, Lockhart A, Luke B. Breaking new ground: digging into TERRA function. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:387-94. [PMID: 24698720 DOI: 10.1016/j.bbagrm.2014.03.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 03/21/2014] [Accepted: 03/25/2014] [Indexed: 11/30/2022]
Abstract
Despite the fact that telomeres carry chromatin marks typically associated with silent heterochromatin, they are actively transcribed into TElomeric Repeat containing RNA (TERRA). TERRA transcription is conserved from yeast to man, initiates in the subtelomeric region and proceeds through the telomeric tract of presumably each individual telomere. TERRA levels are increased in yeast survivors and in cancer cells employing ALT as a telomere maintenance mechanism (TMM). Thus, TERRA may be a promising biomarker and potential target in anti-cancer therapy. Interestingly, several recent publications implicate TERRA in regulatory processes including telomere end protection and the establishment of the heterochromatic state at telomeres. A picture is emerging whereby TERRA acts as a regulator of telomere length and hence the associated onset of replicative senescence in a cell. In this review we will summarize the latest results regarding TERRA transcription, localization and related function. A special focus will be set on the potential role of TERRA in the regulation of telomere length and replicative senescence. Possible implications of increased TERRA levels in yeast survivors and in ALT cancer cells will be discussed.
Collapse
Affiliation(s)
- André Maicher
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Arianna Lockhart
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Brian Luke
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|