1
|
Zaccai NR, Kadlecova Z, Dickson VK, Korobchevskaya K, Kamenicky J, Kovtun O, Umasankar PK, Wrobel AG, Kaufman JGG, Gray SR, Qu K, Evans PR, Fritzsche M, Sroubek F, Höning S, Briggs JAG, Kelly BT, Owen DJ, Traub LM. FCHO controls AP2's initiating role in endocytosis through a PtdIns(4,5)P 2-dependent switch. SCIENCE ADVANCES 2022; 8:eabn2018. [PMID: 35486718 PMCID: PMC9054013 DOI: 10.1126/sciadv.abn2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Clathrin-mediated endocytosis (CME) is the main mechanism by which mammalian cells control their cell surface proteome. Proper operation of the pivotal CME cargo adaptor AP2 requires membrane-localized Fer/Cip4 homology domain-only proteins (FCHO). Here, live-cell enhanced total internal reflection fluorescence-structured illumination microscopy shows that FCHO marks sites of clathrin-coated pit (CCP) initiation, which mature into uniform-sized CCPs comprising a central patch of AP2 and clathrin corralled by an FCHO/Epidermal growth factor potential receptor substrate number 15 (Eps15) ring. We dissect the network of interactions between the FCHO interdomain linker and AP2, which concentrates, orients, tethers, and partially destabilizes closed AP2 at the plasma membrane. AP2's subsequent membrane deposition drives its opening, which triggers FCHO displacement through steric competition with phosphatidylinositol 4,5-bisphosphate, clathrin, cargo, and CME accessory factors. FCHO can now relocate toward a CCP's outer edge to engage and activate further AP2s to drive CCP growth/maturation.
Collapse
Affiliation(s)
- Nathan R. Zaccai
- CIMR, University of Cambridge, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Zuzana Kadlecova
- CIMR, University of Cambridge, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | | | - Kseniya Korobchevskaya
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | - Jan Kamenicky
- Czech Academy of Sciences, Institute of Information Theory and Automation, Pod Vodarenskou vezi 4, 182 08 Prague 8, Czech Republic
| | - Oleksiy Kovtun
- MRC LMB Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Perunthottathu K. Umasankar
- Intracellular Trafficking Laboratory, Transdisciplinary Biology Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Antoni G. Wrobel
- CIMR, University of Cambridge, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | | | - Sally R. Gray
- CIMR, University of Cambridge, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Kun Qu
- MRC LMB Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | | | - Marco Fritzsche
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
- Rosalind Franklin Institute, Harwell Campus, Didcot, UK
| | - Filip Sroubek
- Czech Academy of Sciences, Institute of Information Theory and Automation, Pod Vodarenskou vezi 4, 182 08 Prague 8, Czech Republic
| | - Stefan Höning
- Institute for Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Straße 52, 50931 Cologne, Germany
| | - John A. G. Briggs
- MRC LMB Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Bernard T. Kelly
- CIMR, University of Cambridge, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - David J. Owen
- CIMR, University of Cambridge, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Linton M. Traub
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Phospho-NHE3 forms membrane patches and interacts with beta-actin to sense and maintain constant direction during cell migration. Exp Cell Res 2014; 324:13-29. [PMID: 24657527 DOI: 10.1016/j.yexcr.2014.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 02/28/2014] [Accepted: 03/02/2014] [Indexed: 01/14/2023]
Abstract
The Na(+)/H(+) exchanger NHE3 colocalizes with beta-actin at the leading edge of directionally migrating cells. Using human osteosarcoma cells (SaOS-2), rat osteoblasts (calvaria), and human embryonic kidney (HEK) cells, we identified a novel role for NHE3 via beta-actin in anode and cathode directed motility, during electrotaxis. NHE3 knockdown by RNAi revealed that NHE3 expression is required to achieve constant directionality and polarity in migrating cells. Phosphorylated NHE3 (pNHE3) and beta-actin complex formation was impaired by the NHE3 inhibitor S3226 (IC50 0.02µM). Fluorescence cross-correlation spectroscopy (FCCS) revealed that the molecular interactions between NHE3 and beta-actin in membrane protrusions increased 1.7-fold in the presence of a directional cue and decreased 3.3-fold in the presence of cytochalasin D. Data from flow cytometric analysis showed that membrane potential of cells (Vmem) decreases in directionally migrating, NHE3-deficient osteoblasts and osteosarcoma cells whereas only Vmem of wild type osteoblasts is affected during directional migration. These findings suggest that pNHE3 has a mechanical function via beta-actin that is dependent on its physiological activity and Vmem. Furthermore, phosphatidylinositol 3,4,5-trisphosphate (PIP3) levels increase while PIP2 remains stable when cells have persistent directionality. Both PI3 kinase (PI3K) and Akt expression levels change proportionally to NHE3 levels. Interestingly, however, the content of pNHE3 level does not change when PI3K/Akt is inhibited. Therefore, we conclude that NHE3 can act as a direction sensor for cells and that NHE3 phosphorylation in persistent directional cell migration does not involve PI3K/Akt during electrotaxis.
Collapse
|
3
|
Mertz KD, Pathria G, Wagner C, Saarikangas J, Sboner A, Romanov J, Gschaider M, Lenz F, Neumann F, Schreiner W, Nemethova M, Glassmann A, Lappalainen P, Stingl G, Small JV, Fink D, Chin L, Wagner SN. MTSS1 is a metastasis driver in a subset of human melanomas. Nat Commun 2014; 5:3465. [PMID: 24632752 DOI: 10.1038/ncomms4465] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 02/18/2014] [Indexed: 12/21/2022] Open
Abstract
In cancers with a highly altered genome, distinct genetic alterations drive subsets rather than the majority of individual tumours. Here we use a sequential search across human tumour samples for transcript outlier data points with associated gene copy number variations that correlate with patient's survival to identify genes with pro-invasive functionality. Employing loss and gain of function approaches in vitro and in vivo, we show that one such gene, MTSS1, promotes the ability of melanocytic cells to metastasize and engages actin dynamics via Rho-GTPases and cofilin in this process. Indeed, high MTSS1 expression defines a subgroup of primary melanomas with unfavourable prognosis. These data underscore the biological, clinical and potential therapeutic implications of molecular subsets within genetically complex cancers.
Collapse
Affiliation(s)
- Kirsten D Mertz
- 1] Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria [2] [3]
| | - Gaurav Pathria
- 1] Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria [2]
| | - Christine Wagner
- 1] Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria [2]
| | - Juha Saarikangas
- 1] Institute of Biotechnology, University of Helsinki, 00100 Helsinki, Finland [2]
| | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York 10021, USA
| | - Julia Romanov
- Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Melanie Gschaider
- Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Florian Lenz
- Section for Biosimulation and Bioinformatics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, 1090 Vienna, Austria
| | - Friederike Neumann
- Section for Biosimulation and Bioinformatics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang Schreiner
- Section for Biosimulation and Bioinformatics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, 1090 Vienna, Austria
| | - Maria Nemethova
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | | | - Pekka Lappalainen
- Institute of Biotechnology, University of Helsinki, 00100 Helsinki, Finland
| | - Georg Stingl
- Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - J Victor Small
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Dieter Fink
- Institute for Laboratory Animal Sciences, Department of Biomedical Sciences, University for Veterinary Medicine, 1210 Vienna, Austria
| | - Lynda Chin
- Department of Genomic Medicine and Institute for Applied Cancer Science, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Stephan N Wagner
- 1] Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria [2] Center for Molecular Medicine (CeMM), Austrian Academy of Sciences, 1090 Vienna, Austria
| |
Collapse
|
4
|
Simionescu-Bankston A, Leoni G, Wang Y, Pham PP, Ramalingam A, DuHadaway JB, Faundez V, Nusrat A, Prendergast GC, Pavlath GK. The N-BAR domain protein, Bin3, regulates Rac1- and Cdc42-dependent processes in myogenesis. Dev Biol 2013; 382:160-71. [PMID: 23872330 DOI: 10.1016/j.ydbio.2013.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/01/2013] [Accepted: 07/05/2013] [Indexed: 11/28/2022]
Abstract
Actin dynamics are necessary at multiple steps in the formation of multinucleated muscle cells. BAR domain proteins can regulate actin dynamics in several cell types, but have been little studied in skeletal muscle. Here, we identify novel functions for the N-BAR domain protein, Bridging integrator 3 (Bin3), during myogenesis in mice. Bin3 plays an important role in regulating myofiber size in vitro and in vivo. During early myogenesis, Bin3 promotes migration of differentiated muscle cells, where it colocalizes with F-actin in lamellipodia. In addition, Bin3 forms a complex with Rac1 and Cdc42, Rho GTPases involved in actin polymerization, which are known to be essential for myotube formation. Importantly, a Bin3-dependent pathway is a major regulator of Rac1 and Cdc42 activity in differentiated muscle cells. Overall, these data classify N-BAR domain proteins as novel regulators of actin-dependent processes in myogenesis, and further implicate BAR domain proteins in muscle growth and repair.
Collapse
Affiliation(s)
- Adriana Simionescu-Bankston
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Maddugoda MP, Stefani C, Gonzalez-Rodriguez D, Saarikangas J, Torrino S, Janel S, Munro P, Doye A, Prodon F, Aurrand-Lions M, Goossens PL, Lafont F, Bassereau P, Lappalainen P, Brochard F, Lemichez E. cAMP signaling by anthrax edema toxin induces transendothelial cell tunnels, which are resealed by MIM via Arp2/3-driven actin polymerization. Cell Host Microbe 2012; 10:464-74. [PMID: 22100162 DOI: 10.1016/j.chom.2011.09.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 07/19/2011] [Accepted: 09/14/2011] [Indexed: 12/22/2022]
Abstract
RhoA-inhibitory bacterial toxins, such as Staphylococcus aureus EDIN toxin, induce large transendothelial cell macroaperture (TEM) tunnels that rupture the host endothelium barrier and promote bacterial dissemination. Host cells repair these tunnels by extending actin-rich membrane waves from the TEM edges. We reveal that cyclic-AMP signaling produced by Bacillus anthracis edema toxin (ET) also induces TEM formation, which correlates with increased vascular permeability. We show that ET-induced TEM formation resembles liquid dewetting, a physical process of nucleation and growth of holes within a thin liquid film. We also identify the cellular mechanisms of tunnel closure and reveal that the I-BAR domain protein Missing in Metastasis (MIM) senses de novo membrane curvature generated by the TEM, accumulates at the TEM edge, and triggers Arp2/3-dependent actin polymerization, which induces actin-rich membrane waves that close the TEM. Thus, the balance between ET-induced TEM formation and resealing likely determines the integrity of the host endothelium barrier.
Collapse
Affiliation(s)
- Madhavi P Maddugoda
- INSERM, U, Université de Nice-Sophia-Antipolis, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Yu D, Zhan XH, Zhao XF, Williams MS, Carey GB, Smith E, Scott D, Zhu J, Guo Y, Cherukuri S, Civin CI, Zhan X. Mice deficient in MIM expression are predisposed to lymphomagenesis. Oncogene 2011; 31:3561-8. [PMID: 22081072 DOI: 10.1038/onc.2011.509] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Missing in metastasis (MIM) is a member of newly emerged inverse Bin-Amphiphysin-Rvs (BAR) domain protein family and a putative metastasis suppressor. Although reduced MIM expression has been associated with bladder, breast and gastric cancers, evidence for the role of MIM in tumor progression remains scarce and controversial. Herein we characterized a MIM knockout mouse strain and observed that MIM-deficient mice often developed enlarged spleens. Autopsy and histological analysis revealed that nearly 78% of MIM(-/-) mice developed tumors with features similar to diffuse large B lymphoma during a period from 1 to 2 years. MIM(-/-) mice also exhibited abnormal distribution of B cells in lymphoid organs with decrease in the spleen but increase in the bone marrow and the peripheral blood. Furthermore, the bone marrow of MIM(-/-) mice contained a higher percentage of pre-B2 cells but fewer immature B-cells than wild-type mice. In response to CXCL13, a B-cell chemokine released from splenic stromal cells, MIM-deficient B-cells did not undergo chemotaxis or morphological changes in response to the chemokine and also did not internalize CXCR5, the receptor of CXCL13. Microarray analyses demonstrated that MIM is the only member of the I-BAR domain family that was highly expressed in human B cells. However, low or absent MIM expression was common in either primary B-cell malignancies or established B-cell acute lymphocytic leukemia or lymphomas. Thus, our data demonstrate for the first time an important role for MIM in B-cell development and suggest that predisposition of MIM-null mice to lymphomagenesis may involve aberrant interactions between B lineage cells and the lymphoid microenvironment.
Collapse
Affiliation(s)
- D Yu
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Liu W, Komiya Y, Mezzacappa C, Khadka DK, Runnels L, Habas R. MIM regulates vertebrate neural tube closure. Development 2011; 138:2035-47. [PMID: 21471152 DOI: 10.1242/dev.058800] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neural tube closure is a critical morphogenetic event that is regulated by dynamic changes in cell shape and behavior. Although previous studies have uncovered a central role for the non-canonical Wnt signaling pathway in neural tube closure, the underlying mechanism remains poorly resolved. Here, we show that the missing in metastasis (MIM; Mtss1) protein, previously identified as a Hedgehog response gene and actin and membrane remodeling protein, specifically binds to Daam1 and couples non-canonical Wnt signaling to neural tube closure. MIM binds to a conserved domain within Daam1, and this interaction is positively regulated by Wnt stimulation. Spatial expression of MIM is enriched in the anterior neural plate and neural folds, and depletion of MIM specifically inhibits anterior neural fold closure without affecting convergent extension movements or mesoderm cell fate specification. Particularly, we find that MIM is required for neural fold elevation and apical constriction along with cell polarization and elongation in both the superficial and deep layers of the anterior neural plate. The function of MIM during neural tube closure requires both its membrane-remodeling domain and its actin-binding domain. Finally, we show that the effect of MIM on neural tube closure is not due to modulation of Hedgehog signaling in the Xenopus embryo. Together, our studies define a morphogenetic pathway involving Daam1 and MIM that transduces non-canonical Wnt signaling for the cytoskeletal changes and membrane dynamics required for vertebrate neural tube closure.
Collapse
Affiliation(s)
- Wei Liu
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | | | | | | | | | | |
Collapse
|