1
|
Cameron DP, Sornkom J, Alsahafi S, Drygin D, Poortinga G, McArthur GA, Hein N, Hannan R, Panov KI. CX-5461 Preferentially Induces Top2α-Dependent DNA Breaks at Ribosomal DNA Loci. Biomedicines 2024; 12:1514. [PMID: 39062087 PMCID: PMC11275095 DOI: 10.3390/biomedicines12071514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
While genotoxic chemotherapeutic agents are among the most effective tools to combat cancer, they are often associated with severe adverse effects caused by indiscriminate DNA damage in non-tumor tissue as well as increased risk of secondary carcinogenesis. This study builds on our previous work demonstrating that the RNA Polymerase I (Pol I) transcription inhibitor CX-5461 elicits a non-canonical DNA damage response and our discovery of a critical role for Topoisomerase 2α (Top2α) in the initiation of Pol I-dependent transcription. Here, we identify Top2α as a mediator of CX-5461 response in the murine Eµ-Myc B lymphoma model whereby sensitivity to CX-5461 is dependent on cellular Top2α expression/activity. Most strikingly, and in contrast to canonical Top2α poisons, we found that the Top2α-dependent DNA damage induced by CX-5461 is preferentially localized at the ribosomal DNA (rDNA) promoter region, thereby highlighting CX-5461 as a loci-specific DNA damaging agent. This mechanism underpins the efficacy of CX-5461 against certain types of cancer and can be used to develop effective non-genotoxic anticancer drugs.
Collapse
Affiliation(s)
- Donald P. Cameron
- ACRF Department of Cancer Biology and Therapeutics, Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The College of Health and Medicine, The Australian National University, Canberra, ACT 2601, Australia; (D.P.C.); (N.H.)
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (J.S.); (G.P.)
| | - Jirawas Sornkom
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (J.S.); (G.P.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia;
| | - Sameerh Alsahafi
- School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK;
| | - Denis Drygin
- Pimera Therapeutics, 7875 Highland Village Place, Suite 412, San Diego, CA 92129, USA;
| | - Gretchen Poortinga
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (J.S.); (G.P.)
| | - Grant A. McArthur
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia;
| | - Nadine Hein
- ACRF Department of Cancer Biology and Therapeutics, Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The College of Health and Medicine, The Australian National University, Canberra, ACT 2601, Australia; (D.P.C.); (N.H.)
| | - Ross Hannan
- ACRF Department of Cancer Biology and Therapeutics, Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The College of Health and Medicine, The Australian National University, Canberra, ACT 2601, Australia; (D.P.C.); (N.H.)
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (J.S.); (G.P.)
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3053, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Konstantin I. Panov
- School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK;
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK
| |
Collapse
|
2
|
Akhoundova D, Francica P, Rottenberg S, Rubin MA. DNA Damage Response and Mismatch Repair Gene Defects in Advanced and Metastatic Prostate Cancer. Adv Anat Pathol 2024; 31:61-69. [PMID: 38008971 PMCID: PMC10846598 DOI: 10.1097/pap.0000000000000422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Alterations in DNA damage response (DDR) and related genes are present in up to 25% of advanced prostate cancers (PCa). Most frequently altered genes are involved in the homologous recombination repair, the Fanconi anemia, and the mismatch repair pathways, and their deficiencies lead to a highly heterogeneous spectrum of DDR-deficient phenotypes. More than half of these alterations concern non- BRCA DDR genes. From a therapeutic perspective, poly-ADP-ribose polymerase inhibitors have demonstrated robust clinical efficacy in tumors with BRCA2 and BRCA1 alterations. Mismatch repair-deficient PCa, and a subset of CDK12-deficient PCa, are vulnerable to immune checkpoint inhibitors. Emerging data point to the efficacy of ATR inhibitors in PCa with ATM deficiencies. Still, therapeutic implications are insufficiently clarified for most of the non- BRCA DDR alterations, and no successful targeted treatment options have been established.
Collapse
Affiliation(s)
- Dilara Akhoundova
- Department for BioMedical Research
- Department of Medical Oncology
- Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland
| | - Paola Francica
- Department for BioMedical Research
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern
- Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland
| | - Sven Rottenberg
- Department for BioMedical Research
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern
- Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland
| | - Mark A. Rubin
- Department for BioMedical Research
- Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Milano L, Gautam A, Caldecott KW. DNA damage and transcription stress. Mol Cell 2024; 84:70-79. [PMID: 38103560 DOI: 10.1016/j.molcel.2023.11.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Genome damage and transcription are intimately linked. Tens to hundreds of thousands of DNA lesions arise in each cell each day, many of which can directly or indirectly impede transcription. Conversely, the process of gene expression is itself a source of endogenous DNA lesions as a result of the susceptibility of single-stranded DNA to damage, conflicts with the DNA replication machinery, and engagement by cells of topoisomerases and base excision repair enzymes to regulate the initiation and progression of gene transcription. Although such processes are tightly regulated and normally accurate, on occasion, they can become abortive and leave behind DNA breaks that can drive genome rearrangements, instability, or cell death.
Collapse
Affiliation(s)
- Larissa Milano
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| | - Amit Gautam
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| | - Keith W Caldecott
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| |
Collapse
|
4
|
Pommier Y, Nussenzweig A, Takeda S, Austin C. Human topoisomerases and their roles in genome stability and organization. Nat Rev Mol Cell Biol 2022; 23:407-427. [PMID: 35228717 PMCID: PMC8883456 DOI: 10.1038/s41580-022-00452-3] [Citation(s) in RCA: 213] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
Abstract
Human topoisomerases comprise a family of six enzymes: two type IB (TOP1 and mitochondrial TOP1 (TOP1MT), two type IIA (TOP2A and TOP2B) and two type IA (TOP3A and TOP3B) topoisomerases. In this Review, we discuss their biochemistry and their roles in transcription, DNA replication and chromatin remodelling, and highlight the recent progress made in understanding TOP3A and TOP3B. Because of recent advances in elucidating the high-order organization of the genome through chromatin loops and topologically associating domains (TADs), we integrate the functions of topoisomerases with genome organization. We also discuss the physiological and pathological formation of irreversible topoisomerase cleavage complexes (TOPccs) as they generate topoisomerase DNA–protein crosslinks (TOP-DPCs) coupled with DNA breaks. We discuss the expanding number of redundant pathways that repair TOP-DPCs, and the defects in those pathways, which are increasingly recognized as source of genomic damage leading to neurological diseases and cancer. Topoisomerases have essential roles in transcription, DNA replication, chromatin remodelling and, as recently revealed, 3D genome organization. However, topoisomerases also generate DNA–protein crosslinks coupled with DNA breaks, which are increasingly recognized as a source of disease-causing genomic damage.
Collapse
|
5
|
Marabitti V, Valenzisi P, Lillo G, Malacaria E, Palermo V, Pichierri P, Franchitto A. R-Loop-Associated Genomic Instability and Implication of WRN and WRNIP1. Int J Mol Sci 2022; 23:ijms23031547. [PMID: 35163467 PMCID: PMC8836129 DOI: 10.3390/ijms23031547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
Maintenance of genome stability is crucial for cell survival and relies on accurate DNA replication. However, replication fork progression is under constant attack from different exogenous and endogenous factors that can give rise to replication stress, a source of genomic instability and a notable hallmark of pre-cancerous and cancerous cells. Notably, one of the major natural threats for DNA replication is transcription. Encounters or conflicts between replication and transcription are unavoidable, as they compete for the same DNA template, so that collisions occur quite frequently. The main harmful transcription-associated structures are R-loops. These are DNA structures consisting of a DNA–RNA hybrid and a displaced single-stranded DNA, which play important physiological roles. However, if their homeostasis is altered, they become a potent source of replication stress and genome instability giving rise to several human diseases, including cancer. To combat the deleterious consequences of pathological R-loop persistence, cells have evolved multiple mechanisms, and an ever growing number of replication fork protection factors have been implicated in preventing/removing these harmful structures; however, many others are perhaps still unknown. In this review, we report the current knowledge on how aberrant R-loops affect genome integrity and how they are handled, and we discuss our recent findings on the role played by two fork protection factors, the Werner syndrome protein (WRN) and the Werner helicase-interacting protein 1 (WRNIP1) in response to R-loop-induced genome instability.
Collapse
|
6
|
Ghaleb A, Roa L, Marchenko N. Low-dose but not high-dose γ-irradiation elicits the dominant-negative effect of mutant p53 in vivo. Cancer Lett 2022; 530:128-141. [DOI: 10.1016/j.canlet.2022.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/05/2022] [Accepted: 01/15/2022] [Indexed: 12/17/2022]
|
7
|
Cellular functions of the protein kinase ATM and their relevance to human disease. Nat Rev Mol Cell Biol 2021; 22:796-814. [PMID: 34429537 DOI: 10.1038/s41580-021-00394-2] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
The protein kinase ataxia telangiectasia mutated (ATM) is a master regulator of double-strand DNA break (DSB) signalling and stress responses. For three decades, ATM has been investigated extensively to elucidate its roles in the DNA damage response (DDR) and in the pathogenesis of ataxia telangiectasia (A-T), a human neurodegenerative disease caused by loss of ATM. Although hundreds of proteins have been identified as ATM phosphorylation targets and many important roles for this kinase have been identified, it is still unclear how ATM deficiency leads to the early-onset cerebellar degeneration that is common in all individuals with A-T. Recent studies suggest the existence of links between ATM deficiency and other cerebellum-specific neurological disorders, as well as the existence of broader similarities with more common neurodegenerative disorders. In this Review, we discuss recent structural insights into ATM regulation, and possible aetiologies of A-T phenotypes, including reactive oxygen species, mitochondrial dysfunction, alterations in transcription, R-loop metabolism and alternative splicing, defects in cellular proteostasis and metabolism, and potential pathogenic roles for hyper-poly(ADP-ribosyl)ation.
Collapse
|
8
|
Amani J, Gorjizadeh N, Younesi S, Najafi M, Ashrafi AM, Irian S, Gorjizadeh N, Azizian K. Cyclin-dependent kinase inhibitors (CDKIs) and the DNA damage response: The link between signaling pathways and cancer. DNA Repair (Amst) 2021; 102:103103. [PMID: 33812232 DOI: 10.1016/j.dnarep.2021.103103] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/16/2021] [Indexed: 02/08/2023]
Abstract
At the cellular level, DNA repair mechanisms are crucial in maintaining both genomic integrity and stability. DNA damage appears to be a central culprit in tumor onset and progression. Cyclin-dependent kinases (CDKs) and their regulatory partners coordinate the cell cycle progression. Aberrant CDK activity has been linked to a variety of cancers through deregulation of cell-cycle control. Besides DNA damaging agents and chromosome instability (CIN), disruptions in the levels of cell cycle regulators including cyclin-dependent kinase inhibitors (CDKIs) would result in unscheduled proliferation and cell division. The INK4 and Cip/Kip (CDK interacting protein/kinase inhibitor protein) family of CDKI proteins are involved in cell cycle regulation, transcription regulation, apoptosis, and cell migration. A thorough understanding of how these CDKIs regulate the DNA damage response through multiple signaling pathways may provide an opportunity to design efficient treatment strategies to inhibit carcinogenesis.
Collapse
Affiliation(s)
- Jafar Amani
- Applied Microbiology Research Center, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nassim Gorjizadeh
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Simin Younesi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia
| | - Mojtaba Najafi
- Department of Genetics, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Golestan, Iran
| | - Arash M Ashrafi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Saeed Irian
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Negar Gorjizadeh
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Khalil Azizian
- Department of Clinical Microbiology, Sirjan School of Medical Sciences, Sirjan, Iran.
| |
Collapse
|
9
|
Shiloh Y. The cerebellar degeneration in ataxia-telangiectasia: A case for genome instability. DNA Repair (Amst) 2020; 95:102950. [PMID: 32871349 DOI: 10.1016/j.dnarep.2020.102950] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 02/06/2023]
Abstract
Research on the molecular pathology of genome instability disorders has advanced our understanding of the complex mechanisms that safeguard genome stability and cellular homeostasis at large. Once the culprit genes and their protein products are identified, an ongoing dialogue develops between the research lab and the clinic in an effort to link specific disease symptoms to the functions of the proteins that are missing in the patients. Ataxi A-T elangiectasia (A-T) is a prominent example of this process. A-T's hallmarks are progressive cerebellar degeneration, immunodeficiency, chronic lung disease, cancer predisposition, endocrine abnormalities, segmental premature aging, chromosomal instability and radiation sensitivity. The disease is caused by absence of the powerful protein kinase, ATM, best known as the mobilizer of the broad signaling network induced by double-strand breaks (DSBs) in the DNA. In parallel, ATM also functions in the maintenance of the cellular redox balance, mitochondrial function and turnover and many other metabolic circuits. An ongoing discussion in the A-T field revolves around the question of which ATM function is the one whose absence is responsible for the most debilitating aspect of A-T - the cerebellar degeneration. This review suggests that it is the absence of a comprehensive role of ATM in responding to ongoing DNA damage induced mainly by endogenous agents. It is the ensuing deterioration and eventual loss of cerebellar Purkinje cells, which are very vulnerable to ATM absence due to a unique combination of physiological features, which kindles the cerebellar decay in A-T.
Collapse
Affiliation(s)
- Yosef Shiloh
- The David and Inez Myers Laboratory for Cancer Genetics, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University Medical School, Tel Aviv, 69978, Israel.
| |
Collapse
|
10
|
Marabitti V, Lillo G, Malacaria E, Palermo V, Sanchez M, Pichierri P, Franchitto A. ATM pathway activation limits R-loop-associated genomic instability in Werner syndrome cells. Nucleic Acids Res 2019; 47:3485-3502. [PMID: 30657978 PMCID: PMC6468170 DOI: 10.1093/nar/gkz025] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 01/22/2023] Open
Abstract
Werner syndrome (WS) is a cancer-prone disease caused by deficiency of Werner protein (WRN). WRN maintains genome integrity by promoting replication-fork stability after various forms of replication stress. Under mild replication stress, WS cells show impaired ATR-mediated CHK1 activation. However, it remains unclear if WS cells elicit other repair pathway. We demonstrate that loss of WRN leads to enhanced ATM phosphorylation upon prolonged exposure to aphidicolin, a specific inhibitor of DNA polymerases, resulting in CHK1 activation. Moreover, we find that loss of WRN sensitises cells to replication-transcription collisions and promotes accumulation of R-loops, which undergo XPG-dependent cleavage responsible for ATM signalling activation. Importantly, we observe that ATM pathway limits chromosomal instability in WS cells. Finally, we prove that, in WS cells, genomic instability enhanced upon chemical inhibition of ATM kinase activity is counteracted by direct or indirect suppression of R-loop formation or by XPG abrogation. Together, these findings suggest a potential role of WRN as regulator of R-loop-associated genomic instability, strengthening the notion that conflicts between replication and transcription can affect DNA replication, leading to human disease and cancer.
Collapse
Affiliation(s)
- Veronica Marabitti
- Department of Environment and Health, Section of Mechanisms Biomarkers and Models, Istituto Superiore di Sanita’, Viale Regina Elena 299, Rome 00161, Italy
| | - Giorgia Lillo
- Department of Environment and Health, Section of Mechanisms Biomarkers and Models, Istituto Superiore di Sanita’, Viale Regina Elena 299, Rome 00161, Italy
| | - Eva Malacaria
- Department of Environment and Health, Section of Mechanisms Biomarkers and Models, Istituto Superiore di Sanita’, Viale Regina Elena 299, Rome 00161, Italy
| | - Valentina Palermo
- Department of Environment and Health, Section of Mechanisms Biomarkers and Models, Istituto Superiore di Sanita’, Viale Regina Elena 299, Rome 00161, Italy
| | - Massimo Sanchez
- Department of Cell Biology and Neurosciences, Section of Gene and Cell Therapy, Istituto Superiore di Sanita’, Viale Regina Elena 299, Rome 00161, Italy
| | - Pietro Pichierri
- Department of Environment and Health, Section of Mechanisms Biomarkers and Models, Istituto Superiore di Sanita’, Viale Regina Elena 299, Rome 00161, Italy
| | - Annapaola Franchitto
- Department of Environment and Health, Section of Mechanisms Biomarkers and Models, Istituto Superiore di Sanita’, Viale Regina Elena 299, Rome 00161, Italy
| |
Collapse
|
11
|
Burgos-Morón E, Calderón-Montaño JM, Pastor N, Höglund A, Ruiz-Castizo Á, Domínguez I, López-Lázaro M, Hajji N, Helleday T, Mateos S, Orta ML. The Cockayne syndrome protein B is involved in the repair of 5-AZA-2'-deoxycytidine-induced DNA lesions. Oncotarget 2018; 9:35069-35084. [PMID: 30416680 PMCID: PMC6205548 DOI: 10.18632/oncotarget.26189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 09/10/2018] [Indexed: 12/21/2022] Open
Abstract
The Cockayne Syndrome Protein B (CSB) plays an essential role in Transcription-Coupled Nucleotide Excision Repair (TC-NER) by recruiting repair proteins once transcription is blocked with a DNA lesion. In fact, CSB-deficient cells are unable to recover from transcription-blocking DNA lesions. 5-Aza-2′-deoxycytidine (5-azadC) is a nucleoside analogue that covalently traps DNA methyltransferases (DNMTs) onto DNA. This anticancer drug has a double mechanism of action: it reverts aberrant hypermethylation in tumour-suppressor genes, and it induces DNA damage. We have recently reported that Homologous Recombination and XRCC1/PARP play an important role in the repair of 5-azadC-induced DNA damage. However, the mechanisms involved in the repair of the DNMT adducts induced by azadC remain poorly understood. In this paper, we show for the first time the importance of CSB in the repair of azadC-induced DNA lesions. We propose a model in which CSB initiates a signalling pathway to repair transcription blocks induced by incorporated 5-azadC. Indeed, CSB-deficient cells treated with 5-azadC show a delay in the repair of trapped DNMT1, increased levels of DNA damage and reduced survival.
Collapse
Affiliation(s)
- Estefanía Burgos-Morón
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain
| | | | - Nuria Pastor
- Department of Cell Biology, Faculty of Biology, University of Seville, 41012 Seville, Spain
| | - Andreas Höglund
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21 Stockholm, Sweden.,Present address: Sprint Bioscience AB, 141 57 Huddinge, Sweden
| | - Ángel Ruiz-Castizo
- Department of Cell Biology, Faculty of Biology, University of Seville, 41012 Seville, Spain
| | - Inmaculada Domínguez
- Department of Cell Biology, Faculty of Biology, University of Seville, 41012 Seville, Spain
| | - Miguel López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain
| | - Nabil Hajji
- Department of Medicine, Division of Experimental Medicine, Centre for Pharmacology & Therapeutics, Toxicology Unit, Imperial College London, Hammersmith Campus, London, W12 0NN UK
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21 Stockholm, Sweden
| | - Santiago Mateos
- Department of Cell Biology, Faculty of Biology, University of Seville, 41012 Seville, Spain
| | - Manuel Luis Orta
- Department of Cell Biology, Faculty of Biology, University of Seville, 41012 Seville, Spain
| |
Collapse
|
12
|
Mouly L, Mamouni K, Gence R, Cristini A, Cherier J, Castinel A, Legrand M, Favre G, Sordet O, Monferran S. PARP-1-dependent RND1 transcription induced by topoisomerase I cleavage complexes confers cellular resistance to camptothecin. Cell Death Dis 2018; 9:931. [PMID: 30209297 PMCID: PMC6135836 DOI: 10.1038/s41419-018-0981-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/02/2018] [Accepted: 08/20/2018] [Indexed: 02/02/2023]
Abstract
RHO GTPases regulate essential functions such as the organization of the actin cytoskeleton. The classic members cycle between an active GTP-bound and an inactive GDP-bound conformation whereas atypical members are predominantly GTP-bound. Besides their well-established role, the classic RHO GTPases RHOB and RAC1, are rapidly induced and/or activated by genotoxic stress and contribute to the DNA damage response. Here we used camptothecin, a selective topoisomerase I (TOP1) inhibitor that stabilizes TOP1 cleavage complexes (TOP1cc), to search for other potential early DNA damage-inducible RHO GTPase genes. We identified that an atypical RHO GTPase, RND1, is rapidly induced by camptothecin. RND1 induction is closely associated with the presence of TOP1cc induced by camptothecin or by DNA lesions that elevate TOP1cc levels such as UV and hydrogen peroxide. We further demonstrated that camptothecin increases RND1 gene transcription and mRNA stability. Camptothecin also increases poly(ADP-ribose) polymerase 1 (PARP-1) activity, whose inhibition reduces RND1 transcription. In addition, overexpression of RND1 increases PARP-1, suggesting a cross-talk between PARP-1 and RND1. Finally, RND1 protects cells against camptothecin-induced apoptosis, and hence favors cellular resistance to camptothecin. Together, these findings highlight RND1 as an atypical RHO GTPase early induced by TOP1cc, and show that the TOP1cc-PARP-1-RND1 pathway protects cells against apoptosis induced by camptothecin.
Collapse
Affiliation(s)
- Laetitia Mouly
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, Toulouse, France.,Faculté des Sciences Pharmaceutiques, Université de Toulouse, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Kenza Mamouni
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, Toulouse, France.,Faculté des Sciences Pharmaceutiques, Université de Toulouse, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Remi Gence
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, Toulouse, France.,Faculté des Sciences Pharmaceutiques, Université de Toulouse, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Agnese Cristini
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, Toulouse, France.,Faculté des Sciences Pharmaceutiques, Université de Toulouse, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Julia Cherier
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, Toulouse, France
| | - Adrien Castinel
- Faculté des Sciences Pharmaceutiques, Université de Toulouse, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Morgane Legrand
- Faculté des Sciences Pharmaceutiques, Université de Toulouse, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Gilles Favre
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, Toulouse, France.,Faculté des Sciences Pharmaceutiques, Université de Toulouse, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Olivier Sordet
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, Toulouse, France.
| | - Sylvie Monferran
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, Toulouse, France. .,Faculté des Sciences Pharmaceutiques, Université de Toulouse, Université Toulouse III Paul Sabatier, Toulouse, France.
| |
Collapse
|
13
|
Wang W, Daley JM, Kwon Y, Krasner DS, Sung P. Plasticity of the Mre11-Rad50-Xrs2-Sae2 nuclease ensemble in the processing of DNA-bound obstacles. Genes Dev 2018; 31:2331-2336. [PMID: 29321177 PMCID: PMC5795780 DOI: 10.1101/gad.307900.117] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/07/2017] [Indexed: 11/25/2022]
Abstract
Wang et al. show that the Ku complex shields DNA ends from exonucleolytic digestion but facilitates endonucleolytic scission by MRX with a dependence on ATP and Sae2. The budding yeast Mre11–Rad50–Xrs2 (MRX) complex and Sae2 function together in DNA end resection during homologous recombination. Here we show that the Ku complex shields DNA ends from exonucleolytic digestion but facilitates endonucleolytic scission by MRX with a dependence on ATP and Sae2. The incision site is enlarged into a DNA gap via the exonuclease activity of MRX, which is stimulated by Sae2 without ATP being present. RPA renders a partially resected or palindromic DNA structure susceptible to MRX–Sae2, and internal protein blocks also trigger DNA cleavage. We present models for how MRX–Sae2 creates entry sites for the long-range resection machinery.
Collapse
Affiliation(s)
- Weibin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - James M Daley
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Youngho Kwon
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Danielle S Krasner
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
14
|
Flett FJ, Ruksenaite E, Armstrong LA, Bharati S, Carloni R, Morris ER, Mackay CL, Interthal H, Richardson JM. Structural basis for DNA 3'-end processing by human tyrosyl-DNA phosphodiesterase 1. Nat Commun 2018; 9:24. [PMID: 29295983 PMCID: PMC5750209 DOI: 10.1038/s41467-017-02530-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/06/2017] [Indexed: 11/15/2022] Open
Abstract
Tyrosyl-DNA phosphodiesterase (Tdp1) is a DNA 3'-end processing enzyme that repairs topoisomerase 1B-induced DNA damage. We use a new tool combining site-specific DNA-protein cross-linking with mass spectrometry to identify Tdp1 interactions with DNA. A conserved phenylalanine (F259) of Tdp1, required for efficient DNA processing in biochemical assays, cross-links to defined positions in DNA substrates. Crystal structures of Tdp1-DNA complexes capture the DNA repair machinery after 3'-end cleavage; these reveal how Tdp1 coordinates the 3'-phosphorylated product of nucleosidase activity and accommodates duplex DNA. A hydrophobic wedge splits the DNA ends, directing the scissile strand through a channel towards the active site. The F259 side-chain stacks against the -3 base pair, delimiting the junction of duplexed and melted DNA, and fixes the scissile strand in the channel. Our results explain why Tdp1 cleavage is non-processive and provide a molecular basis for DNA 3'-end processing by Tdp1.
Collapse
Affiliation(s)
- Fiona J Flett
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Roger Land Building, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK
| | - Emilija Ruksenaite
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Lee A Armstrong
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Shipra Bharati
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Roberta Carloni
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Roger Land Building, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK
| | - Elizabeth R Morris
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - C Logan Mackay
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Heidrun Interthal
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Roger Land Building, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK.
| | - Julia M Richardson
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
15
|
Meisenberg C, Ashour ME, El-Shafie L, Liao C, Hodgson A, Pilborough A, Khurram SA, Downs JA, Ward SE, El-Khamisy SF. Epigenetic changes in histone acetylation underpin resistance to the topoisomerase I inhibitor irinotecan. Nucleic Acids Res 2017; 45:1159-1176. [PMID: 28180300 PMCID: PMC5388393 DOI: 10.1093/nar/gkw1026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 10/08/2016] [Accepted: 10/18/2016] [Indexed: 02/06/2023] Open
Abstract
The topoisomerase I (TOP1) inhibitor irinotecan triggers cell death by trapping TOP1 on DNA, generating cytotoxic protein-linked DNA breaks (PDBs). Despite its wide application in a variety of solid tumors, the mechanisms of cancer cell resistance to irinotecan remains poorly understood. Here, we generated colorectal cancer (CRC) cell models for irinotecan resistance and report that resistance is neither due to downregulation of the main cellular target of irinotecan TOP1 nor upregulation of the key TOP1 PDB repair factor TDP1. Instead, the faster repair of PDBs underlies resistance, which is associated with perturbed histone H4K16 acetylation. Subsequent treatment of irinotecan-resistant, but not parental, CRC cells with histone deacetylase (HDAC) inhibitors can effectively overcome resistance. Immunohistochemical analyses of CRC tissues further corroborate the importance of histone H4K16 acetylation in CRC. Finally, the resistant clones exhibit cross-resistance with oxaliplatin but not with ionising radiation or 5-fluoruracil, suggesting that the latter two could be employed following loss of irinotecan response. These findings identify perturbed chromatin acetylation in irinotecan resistance and establish HDAC inhibitors as potential therapeutic means to overcome resistance.
Collapse
Affiliation(s)
- Cornelia Meisenberg
- Mammalian Genome Stability Group, Krebs and Sheffield Institute for Nucleic Acids, University of Sheffield, Western Bank, Sheffield, UK.,The Wellcome Trust DNA Repair Group, University of Sussex, Brighton, UK
| | - Mohamed E Ashour
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City for Science and Technology, Giza, Egypt.,Mammalian Genome Stability Group, Krebs and Sheffield Institute for Nucleic Acids, University of Sheffield, Western Bank, Sheffield, UK
| | - Lamia El-Shafie
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City for Science and Technology, Giza, Egypt
| | - Chunyan Liao
- Mammalian Genome Stability Group, Krebs and Sheffield Institute for Nucleic Acids, University of Sheffield, Western Bank, Sheffield, UK
| | - Adam Hodgson
- Mammalian Genome Stability Group, Krebs and Sheffield Institute for Nucleic Acids, University of Sheffield, Western Bank, Sheffield, UK
| | - Alice Pilborough
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, UK
| | - Syed A Khurram
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, UK
| | - Jessica A Downs
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Simon E Ward
- Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK
| | - Sherif F El-Khamisy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City for Science and Technology, Giza, Egypt.,Mammalian Genome Stability Group, Krebs and Sheffield Institute for Nucleic Acids, University of Sheffield, Western Bank, Sheffield, UK.,The Wellcome Trust DNA Repair Group, University of Sussex, Brighton, UK
| |
Collapse
|
16
|
Khoronenkova SV. Mechanisms of Non-canonical Activation of Ataxia Telangiectasia Mutated. BIOCHEMISTRY (MOSCOW) 2017; 81:1669-1675. [PMID: 28260489 DOI: 10.1134/s0006297916130058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
ATM is a master regulator of the cellular response to DNA damage. The classical mechanism of ATM activation involves its monomerization in response to DNA double-strand breaks, resulting in ATM-dependent phosphorylation of more than a thousand substrates required for cell cycle progression, DNA repair, and apoptosis. Here, new experimental evidence for non-canonical mechanisms of ATM activation in response to stimuli distinct from DNA double-strand breaks is discussed. It includes cytoskeletal changes, chromatin modifications, RNA-DNA hybrids, and DNA single-strand breaks. Noncanonical ATM activation may be important for the pathology of the multisystemic disease Ataxia Telangiectasia.
Collapse
Affiliation(s)
- S V Khoronenkova
- University of Cambridge, Department of Biochemistry, Cambridge, CB2 1GA, UK.
| |
Collapse
|
17
|
Pommier Y, Sun Y, Huang SYN, Nitiss JL. Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat Rev Mol Cell Biol 2016; 17:703-721. [DOI: 10.1038/nrm.2016.111] [Citation(s) in RCA: 540] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Jiang B, Glover JNM, Weinfeld M. Neurological disorders associated with DNA strand-break processing enzymes. Mech Ageing Dev 2016; 161:130-140. [PMID: 27470939 DOI: 10.1016/j.mad.2016.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/21/2016] [Accepted: 07/23/2016] [Indexed: 12/24/2022]
Abstract
The termini of DNA strand breaks induced by reactive oxygen species or by abortive DNA metabolic intermediates require processing to enable subsequent gap filling and ligation to proceed. The three proteins, tyrosyl DNA-phosphodiesterase 1 (TDP1), aprataxin (APTX) and polynucleotide kinase/phosphatase (PNKP) each act on a discrete set of modified strand-break termini. Recently, a series of neurodegenerative and neurodevelopmental disorders have been associated with mutations in the genes coding for these proteins. Mutations in TDP1 and APTX have been linked to Spinocerebellar ataxia with axonal neuropathy (SCAN1) and Ataxia-ocular motor apraxia 1 (AOA1), respectively, while mutations in PNKP are considered to be responsible for Microcephaly with seizures (MCSZ) and Ataxia-ocular motor apraxia 4 (AOA4). Here we present an overview of the mechanisms of these proteins and how their impairment may give rise to their respective disorders.
Collapse
Affiliation(s)
- Bingcheng Jiang
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2, Canada.
| | - J N Mark Glover
- Department of Biochemistry, Medical Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada.
| | - Michael Weinfeld
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2, Canada.
| |
Collapse
|
19
|
Kita K, Sugita K, Sato C, Sugaya S, Sato T, Kaneda A. Extracellular Release of Annexin A2 is Enhanced upon Oxidative Stress Response via the p38 MAPK Pathway after Low-Dose X-Ray Irradiation. Radiat Res 2016; 186:79-91. [DOI: 10.1667/rr14277.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kazuko Kita
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana, Chuou-ku, Chiba 260-8670, Japan and
| | - Katsuo Sugita
- Department of Clinical Medicine, Faculty of Education, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Chihomi Sato
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana, Chuou-ku, Chiba 260-8670, Japan and
| | - Shigeru Sugaya
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana, Chuou-ku, Chiba 260-8670, Japan and
| | - Tetsuo Sato
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana, Chuou-ku, Chiba 260-8670, Japan and
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana, Chuou-ku, Chiba 260-8670, Japan and
| |
Collapse
|
20
|
Kantidze O, Velichko A, Luzhin A, Razin S. Heat Stress-Induced DNA Damage. Acta Naturae 2016; 8:75-8. [PMID: 27437141 PMCID: PMC4947990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Indexed: 11/05/2022] Open
Abstract
Although the heat-stress response has been extensively studied for decades, very little is known about its effects on nucleic acids and nucleic acid-associated processes. This is due to the fact that the research has focused on the study of heat shock proteins and factors (HSPs and HSFs), their involvement in the regulation of transcription, protein homeostasis, etc. Recently, there has been some progress in the study of heat stress effects on DNA integrity. In this review, we summarize and discuss well-known and potential mechanisms of formation of various heat stress-induced DNA damage.
Collapse
Affiliation(s)
- O.L. Kantidze
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, 119334, Moscow, Russia
| | - A.K. Velichko
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, 119334, Moscow, Russia
| | - A.V. Luzhin
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, 119334, Moscow, Russia
| | - S.V. Razin
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, 119334, Moscow, Russia
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1, bldg. 12, 119991, Moscow, Russia
| |
Collapse
|
21
|
Cristini A, Park JH, Capranico G, Legube G, Favre G, Sordet O. DNA-PK triggers histone ubiquitination and signaling in response to DNA double-strand breaks produced during the repair of transcription-blocking topoisomerase I lesions. Nucleic Acids Res 2016; 44:1161-78. [PMID: 26578593 PMCID: PMC4756817 DOI: 10.1093/nar/gkv1196] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 12/12/2022] Open
Abstract
Although defective repair of DNA double-strand breaks (DSBs) leads to neurodegenerative diseases, the processes underlying their production and signaling in non-replicating cells are largely unknown. Stabilized topoisomerase I cleavage complexes (Top1cc) by natural compounds or common DNA alterations are transcription-blocking lesions whose repair depends primarily on Top1 proteolysis and excision by tyrosyl-DNA phosphodiesterase-1 (TDP1). We previously reported that stabilized Top1cc produce transcription-dependent DSBs that activate ATM in neurons. Here, we use camptothecin (CPT)-treated serum-starved quiescent cells to induce transcription-blocking Top1cc and show that those DSBs are generated during Top1cc repair from Top1 peptide-linked DNA single-strand breaks generated after Top1 proteolysis and before excision by TDP1. Following DSB induction, ATM activates DNA-PK whose inhibition suppresses H2AX and H2A ubiquitination and the later assembly of activated ATM into nuclear foci. Inhibition of DNA-PK also reduces Top1 ubiquitination and proteolysis as well as resumption of RNA synthesis suggesting that DSB signaling further enhances Top1cc repair. Finally, we show that co-transcriptional DSBs kill quiescent cells. Together, these new findings reveal that DSB production and signaling by transcription-blocking Top1 lesions impact on non-replicating cell fate and provide insights on the molecular pathogenesis of neurodegenerative diseases such as SCAN1 and AT syndromes, which are caused by TDP1 and ATM deficiency, respectively.
Collapse
Affiliation(s)
- Agnese Cristini
- Cancer Research Center of Toulouse, INSERM UMR1037, Toulouse 31037, France
| | - Joon-Hyung Park
- Cancer Research Center of Toulouse, INSERM UMR1037, Toulouse 31037, France
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Gaëlle Legube
- Université de Toulouse, UPS, LBCMCP, 31062 Toulouse, France CNRS, LBCMCP, 31062 Toulouse, France
| | - Gilles Favre
- Cancer Research Center of Toulouse, INSERM UMR1037, Toulouse 31037, France
| | - Olivier Sordet
- Cancer Research Center of Toulouse, INSERM UMR1037, Toulouse 31037, France
| |
Collapse
|
22
|
Chromatin remodeller SMARCA4 recruits topoisomerase 1 and suppresses transcription-associated genomic instability. Nat Commun 2016; 7:10549. [PMID: 26842758 PMCID: PMC4742980 DOI: 10.1038/ncomms10549] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/25/2015] [Indexed: 02/07/2023] Open
Abstract
Topoisomerase 1, an enzyme that relieves superhelical tension, is implicated in transcription-associated mutagenesis and genome instability-associated with neurodegenerative diseases as well as activation-induced cytidine deaminase. From proteomic analysis of TOP1-associated proteins, we identify SMARCA4, an ATP-dependent chromatin remodeller; FACT, a histone chaperone; and H3K4me3, a transcriptionally active chromatin marker. Here we show that SMARCA4 knockdown in a B-cell line decreases TOP1 recruitment to chromatin, and leads to increases in Igh/c-Myc chromosomal translocations, variable and switch region mutations and negative superhelicity, all of which are also observed in response to TOP1 knockdown. In contrast, FACT knockdown inhibits association of TOP1 with H3K4me3, and severely reduces DNA cleavage and Igh/c-Myc translocations, without significant effect on TOP1 recruitment to chromatin. We thus propose that SMARCA4 is involved in the TOP1 recruitment to general chromatin, whereas FACT is required for TOP1 binding to H3K4me3 at non-B DNA containing chromatin for the site-specific cleavage. Topoisomerase 1 (TOP1) relieves superhelical tension when DNA strands are unwound during transcription. Here, Husain et al. report that SMARCA4, an ATP-dependent chromatin remodeller, is associated with TOP1 and suppresses transcription-associated genomic instability.
Collapse
|
23
|
Marinello J, Bertoncini S, Aloisi I, Cristini A, Malagoli Tagliazucchi G, Forcato M, Sordet O, Capranico G. Dynamic Effects of Topoisomerase I Inhibition on R-Loops and Short Transcripts at Active Promoters. PLoS One 2016; 11:e0147053. [PMID: 26784695 PMCID: PMC4718701 DOI: 10.1371/journal.pone.0147053] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/28/2015] [Indexed: 12/21/2022] Open
Abstract
Topoisomerase I-DNA-cleavage complexes (Top1cc) stabilized by camptothecin (CPT) have specific effects at transcriptional levels. We recently reported that Top1cc increase antisense transcript (aRNAs) levels at divergent CpG-island promoters and, transiently, DNA/RNA hybrids (R-loop) in nuclear and mitochondrial genomes of colon cancer HCT116 cells. However, the relationship between R-loops and aRNAs was not established. Here, we show that aRNAs can form R-loops in N-TERA-2 cells under physiological conditions, and that promoter-associated R-loops are somewhat increased and extended in length immediately upon cell exposure to CPT. In contrast, persistent Top1ccs reduce the majority of R-loops suggesting that CPT-accumulated aRNAs are not commonly involved in R-loops. The enhancement of aRNAs by Top1ccs is present both in human colon cancer HCT116 cells and WI38 fibroblasts suggesting a common response of cancer and normal cells. Although Top1ccs lead to DSB and DDR kinases activation, we do not detect a dependence of aRNA accumulation on ATM or DNA-PK activation. However, we showed that the cell response to persistent Top1ccs can involve an impairment of aRNA turnover rather than a higher synthesis rate. Finally, a genome-wide analysis shows that persistent Top1ccs also determine an accumulation of sense transcripts at 5’-end gene regions suggesting an increased occurrence of truncated transcripts. Taken together, the results indicate that Top1 may regulate transcription initiation by modulating RNA polymerase-generated negative supercoils, which can in turn favor R-loop formation at promoters, and that transcript accumulation at TSS is a response to persistent transcriptional stress by Top1 poisoning.
Collapse
Affiliation(s)
- Jessica Marinello
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Stefania Bertoncini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Iris Aloisi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Agnese Cristini
- Cancer Research Center of Toulouse, INSERM UMR1037, Toulouse, France
| | | | - Mattia Forcato
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Olivier Sordet
- Cancer Research Center of Toulouse, INSERM UMR1037, Toulouse, France
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- * E-mail:
| |
Collapse
|
24
|
Usdin K, Kumari D. Repeat-mediated epigenetic dysregulation of the FMR1 gene in the fragile X-related disorders. Front Genet 2015; 6:192. [PMID: 26089834 PMCID: PMC4452891 DOI: 10.3389/fgene.2015.00192] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/13/2015] [Indexed: 12/13/2022] Open
Abstract
The fragile X-related disorders are members of the Repeat Expansion Diseases, a group of genetic conditions resulting from an expansion in the size of a tandem repeat tract at a specific genetic locus. The repeat responsible for disease pathology in the fragile X-related disorders is CGG/CCG and the repeat tract is located in the 5′ UTR of the FMR1 gene, whose protein product FMRP, is important for the proper translation of dendritic mRNAs in response to synaptic activation. There are two different pathological FMR1 allele classes that are distinguished only by the number of repeats. Premutation alleles have 55–200 repeats and confer risk of fragile X-associated tremor/ataxia syndrome and fragile X-associated primary ovarian insufficiency. Full mutation alleles on the other hand have >200 repeats and result in fragile X syndrome, a disorder that affects learning and behavior. Different symptoms are seen in carriers of premutation and full mutation alleles because the repeat number has paradoxical effects on gene expression: Epigenetic changes increase transcription from premutation alleles and decrease transcription from full mutation alleles. This review will cover what is currently known about the mechanisms responsible for these changes in FMR1 expression and how they may relate to other Repeat Expansion Diseases that also show repeat-mediated changes in gene expression.
Collapse
Affiliation(s)
- Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health , Bethesda, MD, USA
| | - Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|
25
|
Teasley DC, Parajuli S, Nguyen M, Moore HR, Alspach E, Lock YJ, Honaker Y, Saharia A, Piwnica-Worms H, Stewart SA. Flap Endonuclease 1 Limits Telomere Fragility on the Leading Strand. J Biol Chem 2015; 290:15133-45. [PMID: 25922071 DOI: 10.1074/jbc.m115.647388] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Indexed: 01/01/2023] Open
Abstract
The existence of redundant replication and repair systems that ensure genome stability underscores the importance of faithful DNA replication. Nowhere is this complexity more evident than in challenging DNA templates, including highly repetitive or transcribed sequences. Here, we demonstrate that flap endonuclease 1 (FEN1), a canonical lagging strand DNA replication protein, is required for normal, complete leading strand replication at telomeres. We find that the loss of FEN1 nuclease activity, but not DNA repair activities, results in leading strand-specific telomere fragility. Furthermore, we show that FEN1 depletion-induced telomere fragility is increased by RNA polymerase II inhibition and is rescued by ectopic RNase H1 expression. These data suggest that FEN1 limits leading strand-specific telomere fragility by processing RNA:DNA hybrid/flap intermediates that arise from co-directional collisions occurring between the replisome and RNA polymerase. Our data reveal the first molecular mechanism for leading strand-specific telomere fragility and the first known role for FEN1 in leading strand DNA replication. Because FEN1 mutations have been identified in human cancers, our findings raise the possibility that unresolved RNA:DNA hybrid structures contribute to the genomic instability associated with cancer.
Collapse
Affiliation(s)
- Daniel C Teasley
- From the Departments of Cell Biology and Physiology and Integrating Communications within the Cancer Environment Institute, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Shankar Parajuli
- From the Departments of Cell Biology and Physiology and Integrating Communications within the Cancer Environment Institute, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Mai Nguyen
- From the Departments of Cell Biology and Physiology and Integrating Communications within the Cancer Environment Institute, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Hayley R Moore
- From the Departments of Cell Biology and Physiology and Integrating Communications within the Cancer Environment Institute, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Elise Alspach
- From the Departments of Cell Biology and Physiology and Integrating Communications within the Cancer Environment Institute, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Ying Jie Lock
- From the Departments of Cell Biology and Physiology and
| | - Yuchi Honaker
- From the Departments of Cell Biology and Physiology and
| | | | | | - Sheila A Stewart
- From the Departments of Cell Biology and Physiology and Integrating Communications within the Cancer Environment Institute, Washington University School of Medicine, Saint Louis, Missouri 63110 Medicine,
| |
Collapse
|
26
|
Mode and specificity of binding of the small molecule GANT61 to GLI determines inhibition of GLI-DNA binding. Oncotarget 2015; 5:4492-503. [PMID: 24962990 PMCID: PMC4147340 DOI: 10.18632/oncotarget.2046] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The GLI genes, GLI1 and GLI2, are transcription factors that regulate target genes at the distal end of the canonical Hedgehog (HH) signaling pathway (SHH->PTCH->SMO->GLI), tightly regulated in embryonic development, tissue patterning and differentiation. Both GLI1 and GLI2 are oncogenes, constitutively activated in many types of human cancers. In colon cancer cells oncogenic KRAS-GLI signaling circumvents the HH-SMO-GLI axis to channel through and activate GLI in the transcriptional regulation of target genes. We have observed extensive cell death in a panel of 7 human colon carcinoma cell lines using the small molecule GLI inhibitor GANT61. Using computational docking and experimental confirmation by Surface Plasmon Resonance, GANT61 binds to the 5-zinc finger GLI1 protein between zinc fingers 2 and 3 at sites E119 and E167, independent of the GLI-DNA binding region, and conserved between GLI1 and GLI2. GANT61 does not bind to other zinc finger transcription factors (KLF4, TFIIβ). Mutating the predicted GANT61 binding sites in GLI1 significantly inhibits GANT61-GLI binding and GLI-luciferase activity. Data establish the specificity of GANT61 for targeting GLI, and substantiate the critical role of GLI in cancer cell survival. Thus, targeting GLI in cancer therapeutics may be of high impact.
Collapse
|
27
|
Meisenberg C, Gilbert DC, Chalmers A, Haley V, Gollins S, Ward SE, El-Khamisy SF. Clinical and cellular roles for TDP1 and TOP1 in modulating colorectal cancer response to irinotecan. Mol Cancer Ther 2015; 14:575-85. [PMID: 25522766 PMCID: PMC4340569 DOI: 10.1158/1535-7163.mct-14-0762] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Colorectal cancer is the third most common cancer in the world. Despite surgery, up to 50% of patients relapse with incurable disease. First-line chemotherapy uses the topoisomerase 1 (TOP1) poison irinotecan, which triggers cell death by trapping TOP1 on DNA. The removal of TOP1 peptide from TOP1-DNA breaks is conducted by tyrosyl-DNA phosphodiesterase 1 (TDP1). Despite putative roles for TDP1 and TOP1 in colorectal cancer, their role in cellular and clinical responses to TOP1-targeting therapies remains unclear. Here, we show varying expression levels of TOP1 and TDP1 polypeptides in multiple colorectal cancer cell lines and in clinical colorectal cancer samples. TDP1 overexpression or TOP1 depletion is protective. Conversely, TDP1 depletion increases DNA-strand breakage and hypersensitivity to irinotecan in a TOP1-dependent manner, presenting a potential therapeutic opportunity in colorectal cancer. TDP1 protein levels correlate well with mRNA and with TDP1 catalytic activity. However, no correlation is observed between inherent TDP1 or TOP1 levels alone and irinotecan sensitivity, pointing at their limited utility as predictive biomarkers in colorectal cancer. These findings establish TDP1 as a potential therapeutic target for the treatment of colorectal cancer and question the validity of TOP1 or TDP1 on their own as predictive biomarkers for irinotecan response.
Collapse
Affiliation(s)
- Cornelia Meisenberg
- The Wellcome Trust DNA Repair Group, Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Duncan C Gilbert
- Sussex Cancer Centre, Royal Sussex County Hospital, Brighton, United Kingdom
| | - Anthony Chalmers
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Vikki Haley
- Faculty of Science, Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Simon Gollins
- North Wales Cancer Treatment Centre, Betsi Cadwaladr University of Health Board, Ysbty Glan Clwyd, Bodelwyddan, Rhyl, United Kingdom
| | - Simon E Ward
- Translational Drug Discovery Group, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Sherif F El-Khamisy
- The Wellcome Trust DNA Repair Group, Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom. Mammalian Genome Stability Group, Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom. Center of Genomics, Helmy Institute, Zewail City of Science and Technology, Giza, Egypt.
| |
Collapse
|
28
|
Meisenberg C, Ward SE, Schmid P, El-Khamisy SF. TDP1/TOP1 Ratio as a Promising Indicator for the Response of Small Cell Lung Cancer to Topotecan. JOURNAL OF CANCER SCIENCE & THERAPY 2014; 6:258-267. [PMID: 25232464 PMCID: PMC4163653 DOI: 10.4172/1948-5956.1000280] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND AND OBJECTIVE Small cell lung cancer (SCLC) is one of the most challenging tumors to treat due to high proliferation rate, early metastatic dissemination and rapid development of chemotherapy resistance. The current treatment protocols involve the use of topoisomerase 1 (TOP1) poisons such as irinotecan and topotecan in combination with platinum-based compounds. TOP1 poisons kill cancer cells by trapping TOP1 on DNA, generating lethal DNA double-strand breaks. A potential mechanism employed by cancer cells to resist killing by TOP1 poisons is to overexpress enzymes involved in the repair of TOP1-DNA breaks. Tyrosyl DNA phosphodiesterase 1 (TDP1) is a key player in this process and despite its importance, no data is currently available to correlate TDP1 protein and mRNA levels with catalytic activity in SCLC. In addition, it is not known if TDP1 and TOP1 protein levels correlate with the cellular response of SCLC to TOP1 based therapies. METHODS AND RESULTS We report a remarkable variation in TDP1 and TOP1 protein levels in a panel of SCLC cell lines. TDP1 protein level correlates well with TDP1 mRNA and TDP1 catalytic activity, as measured by two newly developed independent activity assays, suggesting the potential utility of immunohistochemistry in assessing TDP1 levels in SCLC tissues. We further demonstrate that whilst TDP1 protein level alone does not correlate with topotecan sensitivity, TDP1/TOP1 ratio correlates well with sensitivity in 8 out of 10 cell lines examined. CONCLUSION This study provides the first cellular analyses of TDP1 and TOP1 in SCLC and suggests the potential utility of TDP1/TOP1 ratio to assess the response of SCLC to topotecan. The establishment and validation of an easy-to-use TDP1 enzymatic assay in cell extracts could be exploited as a diagnostic tool in the clinic. These findings may help in stratifying patients that are likely to benefit from TOP1 poisons and TDP1 inhibitors currently under development.
Collapse
Affiliation(s)
- Cornelia Meisenberg
- The Wellcome Trust DNA Repair Group, Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | - Simon E Ward
- The Sussex Translational Drug Discovery Group, University of Sussex, Brighton, UK
| | - Peter Schmid
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK (former affiliation)
- Centre of Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University London, UK
| | - Sherif F El-Khamisy
- The Wellcome Trust DNA Repair Group, Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
- Center of Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
29
|
Loomis EW, Sanz LA, Chédin F, Hagerman PJ. Transcription-associated R-loop formation across the human FMR1 CGG-repeat region. PLoS Genet 2014; 10:e1004294. [PMID: 24743386 PMCID: PMC3990486 DOI: 10.1371/journal.pgen.1004294] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 02/21/2014] [Indexed: 11/24/2022] Open
Abstract
Expansion of a trinucleotide (CGG) repeat element within the 5′ untranslated region (5′UTR) of the human FMR1 gene is responsible for a number of heritable disorders operating through distinct pathogenic mechanisms: gene silencing for fragile X syndrome (>200 CGG) and RNA toxic gain-of-function for FXTAS (∼55–200 CGG). Existing models have focused almost exclusively on post-transcriptional mechanisms, but co-transcriptional processes could also contribute to the molecular dysfunction of FMR1. We have observed that transcription through the GC-rich FMR1 5′UTR region favors R-loop formation, with the nascent (G-rich) RNA forming a stable RNA:DNA hybrid with the template DNA strand, thereby displacing the non-template DNA strand. Using DNA:RNA (hybrid) immunoprecipitation (DRIP) of genomic DNA from cultured human dermal fibroblasts with both normal (∼30 CGG repeats) and premutation (55<CGG<200 repeats) alleles, we provide evidence for FMR1 R-loop formation in human genomic DNA. Using a doxycycline (DOX)-inducible episomal system in which both the CGG-repeat and transcription frequency can be varied, we further show that R-loop formation increases with higher expression levels. Finally, non-denaturing bisulfite mapping of the displaced single-stranded DNA confirmed R-loop formation at the endogenous FMR1 locus and further indicated that R-loops formed over CGG repeats may be prone to structural complexities, including hairpin formation, not commonly associated with other R-loops. These observations introduce a new molecular feature of the FMR1 gene that is directly affected by CGG-repeat expansion and is likely to be involved in the associated cellular dysfunction. Expansion of a CGG-repeat element within the human FMR1 gene is responsible for multiple human diseases, including fragile X syndrome and fragile X-associated tremor/ataxia syndrome (FXTAS). These diseases occur in separate ranges of repeat length and are characterized by profoundly different molecular mechanisms. Fragile X syndrome results from FMR1 gene silencing, whereas FXTAS is associated with an increase in transcription and toxicity of the CGG-repeat-containing mRNA. This study introduces a previously unknown molecular feature of the FMR1 locus, namely the co-transcriptional formation of three-stranded R-loop structures upon re-annealing of the nascent FMR1 transcript to the template DNA strand. R-loops are involved in the normal function of human CpG island promoters in that they contribute to protecting these sequences from DNA methylation. However, excessive R-loop formation can lead to activation of the DNA damage response and result in genomic instability. We used antibody recognition and chemical single-stranded DNA footprinting to show that R-loops form at the FMR1 locus with increasing frequency and greater structural complexity as the CGG-repeat length increases. This discovery provides a missing piece of both the complex FMR1 molecular puzzle and the diseases resulting from CGG-repeat expansion.
Collapse
Affiliation(s)
- Erick W. Loomis
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California, United States of America
| | - Lionel A. Sanz
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, California, United States of America
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, California, United States of America
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Paul J. Hagerman
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California, United States of America
- MIND Institute, University of California, Davis, Health System, Sacramento, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Bertozzi D, Marinello J, Manzo SG, Fornari F, Gramantieri L, Capranico G. The Natural Inhibitor of DNA Topoisomerase I, Camptothecin, Modulates HIF-1 Activity by Changing miR Expression Patterns in Human Cancer Cells. Mol Cancer Ther 2013; 13:239-48. [DOI: 10.1158/1535-7163.mct-13-0729] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Winsor TS, Bartkowiak B, Bennett CB, Greenleaf AL. A DNA damage response system associated with the phosphoCTD of elongating RNA polymerase II. PLoS One 2013; 8:e60909. [PMID: 23613755 PMCID: PMC3629013 DOI: 10.1371/journal.pone.0060909] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/04/2013] [Indexed: 01/22/2023] Open
Abstract
RNA polymerase II translocates across much of the genome and since it can be blocked by many kinds of DNA lesions, detects DNA damage proficiently; it thereby contributes to DNA repair and to normal levels of DNA damage resistance. However, the components and mechanisms that respond to polymerase blockage are largely unknown, except in the case of UV-induced damage that is corrected by nucleotide excision repair. Because elongating RNAPII carries with it numerous proteins that bind to its hyperphosphorylated CTD, we tested for effects of interfering with this binding. We find that expressing a decoy CTD-carrying protein in the nucleus, but not in the cytoplasm, leads to reduced DNA damage resistance. Likewise, inducing aberrant phosphorylation of the CTD, by deleting CTK1, reduces damage resistance and also alters rates of homologous recombination-mediated repair. In line with these results, extant data sets reveal a remarkable, highly significant overlap between phosphoCTD-associating protein genes and DNA damage-resistance genes. For one well-known phosphoCTD-associating protein, the histone methyltransferase Set2, we demonstrate a role in DNA damage resistance, and we show that this role requires the phosphoCTD binding ability of Set2; surprisingly, Set2’s role in damage resistance does not depend on its catalytic activity. To explain all of these observations, we posit the existence of a CTD-Associated DNA damage Response (CAR) system, organized around the phosphoCTD of elongating RNAPII and comprising a subset of phosphoCTD-associating proteins.
Collapse
Affiliation(s)
- Tiffany Sabin Winsor
- Department of Biochemistry, Duke Center for RNA Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Bartlomiej Bartkowiak
- Department of Biochemistry, Duke Center for RNA Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Craig B. Bennett
- Department of Biochemistry, Duke Center for RNA Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Arno L. Greenleaf
- Department of Biochemistry, Duke Center for RNA Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
32
|
Becherel OJ, Yeo AJ, Stellati A, Heng EYH, Luff J, Suraweera AM, Woods R, Fleming J, Carrie D, McKinney K, Xu X, Deng C, Lavin MF. Senataxin plays an essential role with DNA damage response proteins in meiotic recombination and gene silencing. PLoS Genet 2013; 9:e1003435. [PMID: 23593030 PMCID: PMC3623790 DOI: 10.1371/journal.pgen.1003435] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 02/12/2013] [Indexed: 12/28/2022] Open
Abstract
Senataxin, mutated in the human genetic disorder ataxia with oculomotor apraxia type 2 (AOA2), plays an important role in maintaining genome integrity by coordination of transcription, DNA replication, and the DNA damage response. We demonstrate that senataxin is essential for spermatogenesis and that it functions at two stages in meiosis during crossing-over in homologous recombination and in meiotic sex chromosome inactivation (MSCI). Disruption of the Setx gene caused persistence of DNA double-strand breaks, a defect in disassembly of Rad51 filaments, accumulation of DNA:RNA hybrids (R-loops), and ultimately a failure of crossing-over. Senataxin localised to the XY body in a Brca1-dependent manner, and in its absence there was incomplete localisation of DNA damage response proteins to the XY chromosomes and ATR was retained on the axial elements of these chromosomes, failing to diffuse out into chromatin. Furthermore persistence of RNA polymerase II activity, altered ubH2A distribution, and abnormal XY-linked gene expression in Setx−/− revealed an essential role for senataxin in MSCI. These data support key roles for senataxin in coordinating meiotic crossing-over with transcription and in gene silencing to protect the integrity of the genome. Ataxia with oculomotor apraxia type 2 (AOA2) caused by a defect in the gene Setx (coding for senataxin) is part of a subgroup of autosomal recessive ataxias characterized by defects in genes responsible for the recognition and/or repair of damage in DNA. Cells from these patients are characterized by oxidative stress and are defective in RNA processing and termination of transcription. Recent data suggest that senataxin is involved in coordinating events between DNA replication forks and ongoing transcription. To further understand the role of senataxin, we disrupted the Setx gene in mice and demonstrated its essential role in spermatogenesis during meiotic recombination and in meiotic sex chromosome inactivation (MSCI). In the absence of senataxin, DNA double-strand breaks persist, RNA:DNA hybrids (R-loops) accumulate, and homologous recombination is disrupted. Senataxin localised to the XY chromosomes during pachytene. This was dependent on Brca1, which functions early in MSCI to recruit DNA damage response proteins to the XY body. In the absence of senataxin, there was incomplete accumulation of DNA damage response proteins on the XY chromosomes and no MDC1-dependent diffusion of ATR to the broader XY chromatin. The end result was a defect in MSCI, apoptosis, and a failure to complete meiosis.
Collapse
Affiliation(s)
- Olivier J. Becherel
- Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, Brisbane, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Australia
| | - Abrey J. Yeo
- Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| | - Alissa Stellati
- Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, Brisbane, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Australia
| | - Evelyn Y. H. Heng
- Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, Brisbane, Australia
| | - John Luff
- Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, Brisbane, Australia
| | - Amila M. Suraweera
- Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, Brisbane, Australia
| | - Rick Woods
- Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, Brisbane, Australia
| | | | - Dianne Carrie
- QCF Transgenics Laboratory, Queensland Institute of Medical Research, Brisbane, Australia
| | - Kristine McKinney
- Dana Farber Cancer Institute, Harvard University, Boston, Massachusetts, United States of America
| | - Xiaoling Xu
- Mammalian Genetics Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chuxia Deng
- Mammalian Genetics Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Martin F. Lavin
- Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, Brisbane, Australia
- University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, Australia
- * E-mail:
| |
Collapse
|
33
|
Jahan Z, Castelli S, Aversa G, Rufini S, Desideri A, Giovanetti A. Role of human topoisomerase IB on ionizing radiation induced damage. Biochem Biophys Res Commun 2013; 432:545-8. [DOI: 10.1016/j.bbrc.2013.02.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 02/10/2013] [Indexed: 10/27/2022]
|
34
|
Povirk LF. Processing of damaged DNA ends for double-strand break repair in mammalian cells. ISRN MOLECULAR BIOLOGY 2012; 2012. [PMID: 24236237 PMCID: PMC3825254 DOI: 10.5402/2012/345805] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Most DNA double-strand breaks (DSBs)formed in a natural environment have chemical modifications at or near the ends that preclude direct religation and require removal or other processing so that rejoining can proceed. Free radical-mediated DSBs typically bear unligatable 3'-phosphate or 3'-phosphoglycolate termini and often have oxidized bases and/or abasic sites near the break. Topoisomerase-mediated DSBs are blocked by covalently bound peptide fragments of the topoisomerase. Enzymes capable of resolving damaged ends include polynucleotide kinase/phosphatase, which restores missing 5'-phosphates and removes 3'-phosphates; tyrosyl-DNA phosphodiesterases I and II (TDP1 and TDP2), which remove peptide fragments of topoisomerases I and II, respectively, and the Artemis and Metnase endonucleases, which can trim damaged overhangs of diverse structure. TDP1 as well as APE1 can remove 3'-phosphoglycolates and other 3' blocks, while CtIP appears to provide an alternative pathway for topoisomerase II fragment removal. Ku, a core DSB joining protein, can cleave abasic sites near DNA ends. The downstream processes of patching and ligation are tolerant of residual damage, and can sometimes proceed without complete damage removal. Despite these redundant pathways for resolution, damaged ends appear to be a significant barrier to rejoining, and their resolution may be a rate-limiting step in repair of some DSBs..
Collapse
Affiliation(s)
- Lawrence F Povirk
- Department of Pharmacology and Toxicology, and Massey Cancer Center, Virginia Commonwealth University, 401 College St. Richmond, VA 23298, USA, 804-828-9640
| |
Collapse
|
35
|
Chernikova SB, Brown JM. R-loops and genomic instability in Bre1 (RNF20/40)-deficient cells. Cell Cycle 2012; 11:2980-4. [PMID: 22825248 DOI: 10.4161/cc.21090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have proposed that maintenance of genomic stability may constitute the basis for the tumor-suppressing activity of the Bre1 (RNF20/RNF40) complex. Revisiting the evidence we presented in our recent publication, we discuss the mechanism by which maintenance of genomic stability by the Bre1 complex is achieved through coordination of events during transcription. Among many functions of Bre1, we focus on the two that, when defective, could lead to the formation of R-loops, the RNA:DNA hybrid structures regarded as a major source of genomic instability. Specifically, we discuss the role of Bre1-mediated H2B ubiquitination in the 3'-end processing of replication-associated histone mRNA and in heterochromatic gene silencing and show how disturbance of these two functions may result in the specific pattern of chromosomal abnormalities we observe in the Bre1-depleted cells.
Collapse
|
36
|
Fortini P, Ferretti C, Pascucci B, Narciso L, Pajalunga D, Puggioni EMR, Castino R, Isidoro C, Crescenzi M, Dogliotti E. DNA damage response by single-strand breaks in terminally differentiated muscle cells and the control of muscle integrity. Cell Death Differ 2012; 19:1741-9. [PMID: 22705848 DOI: 10.1038/cdd.2012.53] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
DNA single-strand breaks (SSB) formation coordinates the myogenic program, and defects in SSB repair in post-mitotic cells have been associated with human diseases. However, the DNA damage response by SSB in terminally differentiated cells has not been explored yet. Here we show that mouse post-mitotic muscle cells accumulate SSB after alkylation damage, but they are extraordinarily resistant to the killing effects of a variety of SSB-inducers. We demonstrate that, upon SSB induction, phosphorylation of H2AX occurs in myotubes and is largely ataxia telangiectasia mutated (ATM)-dependent. However, the DNA damage signaling cascade downstream of ATM is defective as shown by lack of p53 increase and phosphorylation at serine 18 (human serine 15). The stabilization of p53 by nutlin-3 was ineffective in activating the cell death pathway, indicating that the resistance to SSB inducers is due to defective p53 downstream signaling. The induction of specific types of damage is required to activate the cell death program in myotubes. Besides the topoisomerase inhibitor doxorubicin known for its cardiotoxicity, we show that the mitochondria-specific inhibitor menadione is able to activate p53 and to kill effectively myotubes. Cell killing is p53-dependent as demonstrated by full protection of myotubes lacking p53, but there is a restriction of p53-activated genes. This new information may have important therapeutic implications in the prevention of muscle cell toxicity.
Collapse
Affiliation(s)
- P Fortini
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Murai J, Huang SYN, Das BB, Dexheimer TS, Takeda S, Pommier Y. Tyrosyl-DNA phosphodiesterase 1 (TDP1) repairs DNA damage induced by topoisomerases I and II and base alkylation in vertebrate cells. J Biol Chem 2012; 287:12848-57. [PMID: 22375014 DOI: 10.1074/jbc.m111.333963] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) repairs topoisomerase I cleavage complexes (Top1cc) by hydrolyzing their 3'-phosphotyrosyl DNA bonds and repairs bleomycin-induced DNA damage by hydrolyzing 3'-phosphoglycolates. Yeast Tdp1 has also been implicated in the repair of topoisomerase II-DNA cleavage complexes (Top2cc). To determine whether vertebrate Tdp1 is involved in the repair of various DNA end-blocking lesions, we generated Tdp1 knock-out cells in chicken DT40 cells (Tdp1-/-) and Tdp1-complemented DT40 cells with human TDP1. We found that Tdp1-/- cells were not only hypersensitive to camptothecin and bleomycin but also to etoposide, methyl methanesulfonate (MMS), H(2)O(2), and ionizing radiation. We also show they were deficient in mitochondrial Tdp1 activity. In biochemical assays, recombinant human TDP1 was found to process 5'-phosphotyrosyl DNA ends when they mimic the 5'-overhangs of Top2cc. Tdp1 also processes 3'-deoxyribose phosphates generated from hydrolysis of abasic sites, which is consistent with the hypersensitivity of Tdp1-/- cells to MMS and H(2)O(2). Because recent studies established that CtIP together with BRCA1 also repairs topoisomerase-mediated DNA damage, we generated dual Tdp1-CtIP-deficient DT40 cells. Our results show that Tdp1 and CtIP act in parallel pathways for the repair of Top1cc and MMS-induced lesions but are epistatic for Top2cc. Together, our findings reveal a broad involvement of Tdp1 in DNA repair and clarify the role of human TDP1 in the repair of Top2-induced DNA damage.
Collapse
Affiliation(s)
- Junko Murai
- Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Li C, Sun SY, Khuri FR, Li R. Pleiotropic functions of EAPII/TTRAP/TDP2: cancer development, chemoresistance and beyond. Cell Cycle 2011; 10:3274-83. [PMID: 21926483 DOI: 10.4161/cc.10.19.17763] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
EAPII (also called TTRAP, TDP2), a protein identified a decade ago, has recently been shown to function as an oncogenic factor. This protein was also proven to be the first 5'- tyrosyl-DNA phosphodiesterase. EAPII has been demonstrated to have promiscuous protein associations, broad responsiveness to various extracellular signals, and pleiotropic functions in the development of human diseases including cancer and neurodegenerative disease. Emerging data suggest that EAPII is a multi-functional protein: EAPII repairs enzyme (topoisomerase)-mediated DNA damage by removing phosphotyrosine from DNA adducts; EAPII is involved in multiple signal transduction pathways such as TNF-TNFR, TGFβ and MAPK, and EAPII is responsive to immune defense, inflammatory response, virus infection and DNA toxins (chemo or radiation therapy). This review focuses on the current understanding of EAPII biology and its potential relations to many aspects of cancer development, including chromosome instability, tumorigenesis, tumor metastasis and chemoresistance, suggesting it as a potential target for intervention in cancer and other human diseases.
Collapse
Affiliation(s)
- Chunyang Li
- Winship Cancer Institute, Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, GA, USA
| | | | | | | |
Collapse
|
39
|
Importance of PIKKs in NF-κB activation by genotoxic stress. Biochem Pharmacol 2011; 82:1371-83. [PMID: 21872579 DOI: 10.1016/j.bcp.2011.07.105] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/26/2011] [Accepted: 07/29/2011] [Indexed: 01/11/2023]
Abstract
Alteration of the genome integrity leads to the activation of a vast network of cellular responses named "DNA damage response". Three kinases from the phosphoinositide 3-kinase-like protein kinase family regulate this network; ATM and DNA-PK both activated by DNA double-strand breaks and ATR activated by replication blocks. "DNA damage response" pathway coordinates cell cycle arrest, DNA repair, and the activation of transcription factors such as p53 and NF-κB. It controls senescence/apoptosis/survival of the damaged cells. Cell death or survival result from a tightly regulated balance between antagonist pro- and anti-apoptotic signals. NF-κB is a key transcription factor involved in immunity, inflammation and cell transformation. When activated by DNA double-strand breaks, NF-κB has most often a pro-survival effect and thereof interferes with chemotherapy treatments that often rely on DNA damage to induce tumor cell death (i.e. topoisomerase inhibitors and ionizing radiation). NF-κB is thus an important pharmaceutical target. Agents leading to replication stress induce a pro-apoptotic NF-κB. The molecular mechanisms initiated by DNA lesions leading to NF-κB nuclear translocation have been extensively studied these last years. In this review, we will focus on ATM, ATR and DNA-PK functions both in the IKKα/IKKβ/NEMO-dependent or -independent signaling pathways and on the regulation they can exercise at the promoter level of NF-κB regulated genes.
Collapse
|
40
|
Zhang YW, Regairaz M, Seiler JA, Agama KK, Doroshow JH, Pommier Y. Poly(ADP-ribose) polymerase and XPF-ERCC1 participate in distinct pathways for the repair of topoisomerase I-induced DNA damage in mammalian cells. Nucleic Acids Res 2011; 39:3607-20. [PMID: 21227924 PMCID: PMC3089458 DOI: 10.1093/nar/gkq1304] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Poly(ADP-Ribose) (PAR) polymerase (PARP) inhibitors represent a promising class of novel anticancer agents. The present study explores the molecular rationale for combining veliparib (ABT-888) with camptothecin (CPT) and its clinical derivatives, topotecan and irinotecan. ABT-888 inhibited PAR induction by CPT and increased CPT-induced cell killing and histone γH2AX. Increased DNA breaks by ABT-888 were not associated with a corresponding increase of topoisomerase I cleavage complexes and were further increased by inactivation of tyrosyl-DNA phosphodiesterase 1. SiRNA knockdown for the endonuclease XPF-ERCC1 reduced the ABT-888-induced γH2AX response in non-replicating and replicating cells but enhanced the antiproliferative effect of ABT-888 in CPT-treated cells. Our findings indicate the involvement of XPF-ERCC1 in inducing γH2AX response and repairing topoisomerase I-induced DNA damage as an alternative pathway from PARP and tyrosyl-DNA phosphodiesterase 1.
Collapse
Affiliation(s)
- Yong-Wei Zhang
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
41
|
O'Connell BC, Adamson B, Lydeard JR, Sowa ME, Ciccia A, Bredemeyer AL, Schlabach M, Gygi SP, Elledge SJ, Harper JW. A genome-wide camptothecin sensitivity screen identifies a mammalian MMS22L-NFKBIL2 complex required for genomic stability. Mol Cell 2010; 40:645-57. [PMID: 21055985 DOI: 10.1016/j.molcel.2010.10.022] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 09/20/2010] [Accepted: 10/18/2010] [Indexed: 10/18/2022]
Abstract
Replication stress involving collision of replisomes with camptothecin (CPT)-stabilized DNA-Topoisomerase I adducts activates an ATR-dependent pathway to promote repair by homologous recombination. To identify human genes that protect cells from such replication stress, we performed a genome-wide CPT sensitivity screen. Among numerous candidate genes are two previously unstudied proteins: the ankyrin repeat protein NFKBIL2 and C6ORF167 (MMS22L), distantly related to yeast replication stress regulator Mms22p. MMS22L and NFKBIL2 interact with each other and with FACT (facilitator of chromatin transcription) and MCM (minichromosome maintenance) complexes. Cells depleted of NFKBIL2 or MMS22L are sensitive to DNA-damaging agents, load phosphorylated RPA onto chromatin in a CTIP-dependent manner, activate the ATR/ATRIP-CHK1 and double-strand break repair signaling pathways, and are defective in HR. This study identifies MMS22L-NFKBIL2 as components of the replication stress control pathway and provides a resource for discovery of additional components of this pathway.
Collapse
|
42
|
McIvor EI, Polak U, Napierala M. New insights into repeat instability: role of RNA•DNA hybrids. RNA Biol 2010; 7:551-8. [PMID: 20729633 DOI: 10.4161/rna.7.5.12745] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Expansion of tandem repeat sequences is responsible for more than 20 human diseases. Several cis elements and trans factors involved in repeat instability (expansion and contraction) have been identified. However no comprehensive model explaining large intergenerational or somatic changes of the length of the repeating sequences exists. Several lines of evidence, accumulated from different model studies, indicate that transcription through repeat sequences is an important factor promoting their instability. The persistent interaction between transcription template DNA and nascent RNA (RNA•DNA hybrids, R loops) was shown to stimulate genomic instability. Recently, we demonstrated that cotranscriptional RNA•DNA hybrids are preferentially formed at GC-rich trinucleotide and tetranucleotide repeat sequences in vitro as well as in human genomic DNA. Additionally, we showed that cotranscriptional formation of RNA•DNA hybrids at CTG•CAG and GAA•TTC repeats stimulate instability of these sequences in both E. coli and human cells. Our results suggest that persistent RNA•DNA hybrids may also be responsible for other downstream effects of expanded trinucleotide repeats, including gene silencing. Considering the extent of transcription through the human genome as well as the abundance of GC-rich and/or non-canonical DNA structure forming tandem repeats, RNA•DNA hybrids may represent a common mutagenic conformation. Hence, R loops are potentially attractive therapeutic target in diseases associated with genomic instability.
Collapse
Affiliation(s)
- Elizabeth I McIvor
- Department of Biochemistry and Molecular Biology and Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | |
Collapse
|