1
|
Hacking SM, Yakirevich E, Wang Y. Defining triple-negative breast cancer with neuroendocrine differentiation (TNBC-NED). J Pathol Clin Res 2023. [PMID: 37082801 DOI: 10.1002/cjp2.318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 04/22/2023]
Abstract
Primary breast neuroendocrine (NE) neoplasms are uncommon, and definitions harbor controversy. We retrospectively collected 73 triple-negative breast cancers (TNBC) and evaluated NE biomarker expression along with p53 aberrant staining (which correlates with TP53 gene mutation) and Rb protein loss by immunohistochemistry. In the study cohort, we found 11 (15%) cases of TNBC with neuroendocrine differentiation (TNBC-NED) showing positivity for one or more NE markers (synaptophysin/chromogranin/insulinoma-associated protein 1 [INSM1]). We also identified one separate small cell neuroendocrine carcinoma. Histologic types for these 11 TNBC-NED cases were as follows: 8 invasive ductal carcinoma (IDC) not otherwise specified (NOS), 2 IDC with apocrine features, 1 IDC with solid papillary features. INSM1 had the highest positivity and was seen in all 11 carcinomas. Seven (64%) cases showed p53 aberrant staining, 6 (55%) had Rb protein loss, while 6 (55%) had p53/Rb co-aberrant staining/protein loss. TNBC-NED was associated with Rb protein loss (p < 0.001), as well as p53/Rb co-aberrant staining/protein loss (p < 0.001). In 61 cases negative for NE markers, 37 (61%) showed p53 aberrant staining, while 5 (8%) had Rb protein loss. We also analyzed genomic and transcriptomic data from The Cancer Genome Atlas (TCGA) PanCancer Atlas of 171 basal/TNBC patients. Transcriptomic analysis revealed mRNA expression of RB1 to be correlated negatively with SYN1 mRNA expression (p = 0.0400) and INSM1 mRNA expression (p = 0.0106) in this cohort. We would like to highlight the importance of these findings. TNBC-NED is currently diagnosed as TNBC, and although it overlaps morphologically with TNBC without NED, the unique p53/Rb signature highlights a genetic overlap with NE carcinomas of the breast.
Collapse
Affiliation(s)
- Sean M Hacking
- Laboratory Medicine Program, University Health Network, Toronto General Hospital, Toronto, Canada
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Medical Center, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Evgeny Yakirevich
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Medical Center, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Yihong Wang
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Medical Center, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
2
|
Zhang J, Wang Q, Wang Q, Cao J, Sun J, Zhu Z. Mechanisms of resistance to estrogen receptor modulators in ER+/HER2- advanced breast cancer. Cell Mol Life Sci 2020; 77:559-572. [PMID: 31471681 PMCID: PMC11105043 DOI: 10.1007/s00018-019-03281-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023]
Abstract
Endocrine therapy represents a mainstay adjuvant treatment of estrogen receptor-positive (ER+) breast cancer in clinical practice with an overall survival (OS) benefit. However, the emergence of resistance is inevitable over time and is present in one-third of the ER+ breast tumors. Several mechanisms of endocrine resistance in ER+/HER2- advanced breast cancers, through ERα itself, receptor tyrosine signaling, or cell cycle pathway, have been identified to be pivotal in endocrine therapy. The epigenetic alterations also contribute to ensuring tumor cells' escape from endocrine therapies. The strategy of combined hormone therapy with targeted pharmaceutical compounds has shown an improvement of progression-free survival or OS in clinical practice, including three different classes of drugs: CDK4/6 inhibitors, selective inhibitor of PI3Kα and mTOR inhibitors. Many therapeutic targets of cell cycle pathway and cell signaling and their combination strategies have recently entered clinical trials. This review focuses on Cyclin D-CDK4/6-RB axis, PI3K pathway and HDACs. Additionally, genomic evolution is complex in tumors exposed to hormonal therapy. We highlight the genomic alterations present in ESR1 and PIK3CA genes to elucidate adaptive mechanisms of endocrine resistance, and discuss how these mutations may inform novel combinations to improve clinical outcomes in the future.
Collapse
Affiliation(s)
- Jin Zhang
- Tianjin Key Laboratory of Protein Science, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qianying Wang
- Tianjin Key Laboratory of Protein Science, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qing Wang
- Tianjin Key Laboratory of Protein Science, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jiangran Cao
- Tianjin Key Laboratory of Protein Science, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jiafu Sun
- Tianjin Key Laboratory of Protein Science, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhengmao Zhu
- Tianjin Key Laboratory of Protein Science, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
3
|
Gupta AK, Sharma S, Dahiya N, Brashier DBS. Palbociclib: A breakthrough in breast carcinoma in women. Med J Armed Forces India 2016; 72:S37-S42. [PMID: 28050067 DOI: 10.1016/j.mjafi.2015.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 11/01/2015] [Indexed: 01/22/2023] Open
Abstract
Breast cancer (BC) is the most common cancer and leading cause of death in women worldwide. Cellular proliferation, growth, and division are tightly controlled by the cell-cycle regulatory machinery. An important pathway is cyclin-dependent kinases (CDKs) which regulate cell cycle and thus control transcriptional processes. In human cancer, multiple CDK family members are commonly deregulated. The cyclin D-CDK4/6-retinoblastoma (RB) protein-INK4 axis is particularly affected in many solid tumors which leads to cancer cell proliferation. This has led to long-standing interest in targeting CDK4/6 as an anticancer strategy. Different investigational agents that have been tested which inhibit multiple cell cycle and transcriptional CDKs but have carried excessive toxicity thus failed to stand the rational of human use. Amongst several selective and potent inhibitors of CDK4/6, palbociclib is the first to be accessed suitable for human use having explicit selectivity toward CDK4/6. Its mechanism is to arrest cells in G1 phase by blocking RB phosphorylation at CDK4/6-specfic sites without affecting the growth of cells which are RB-deficient. Studies conducted in patients of BC having cells with advanced RB-expression demonstrated acceptable side effects but dose-limiting toxicities primarily neutropenia and thrombocytopenia, with prolonged stable disease in patients.
Collapse
Affiliation(s)
- Ajay Kumar Gupta
- Associate Professor, Dept of Pharmacology, Armed Forces Medical College, Pune 411040, India
| | - Sushil Sharma
- Associate Professor, Dept of Pharmacology, Armed Forces Medical College, Pune 411040, India
| | - Navdeep Dahiya
- Associate Professor, Dept of Pharmacology, Armed Forces Medical College, Pune 411040, India
| | - D B S Brashier
- Associate Professor, Dept of Pharmacology, Armed Forces Medical College, Pune 411040, India
| |
Collapse
|
4
|
McCubrey JA, Davis NM, Abrams SL, Montalto G, Cervello M, Libra M, Nicoletti F, D'Assoro AB, Cocco L, Martelli AM, Steelman LS. Targeting breast cancer initiating cells: advances in breast cancer research and therapy. Adv Biol Regul 2014; 56:81-107. [PMID: 24913694 DOI: 10.1016/j.jbior.2014.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 05/06/2014] [Indexed: 06/03/2023]
Abstract
Over the past 10 years there have been significant advances in our understanding of breast cancer and the important roles that breast cancer initiating cells (CICs) play in the development and resistance of breast cancer. Breast CICs endowed with self-renewing and tumor-initiating capacities are believed to be responsible for the relapses which often occur after various breast cancer therapies. In this review, we will summarize some of the key developments in breast CICs which will include discussion of some of the key genes implicated: estrogen receptor (ER), HER2, BRCA1, TP53, PIK3CA, RB, P16INK1 and various miRs as well some drugs which are showing promise in targeting CICs. In addition, the concept of combined therapies will be discussed. Basic and clinical research is resulting in novel approaches to improve breast cancer therapy by targeting the breast CICs.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Brody Building 5N98C, Greenville, NC 27858, USA.
| | - Nicole M Davis
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Brody Building 5N98C, Greenville, NC 27858, USA
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Brody Building 5N98C, Greenville, NC 27858, USA
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Massimo Libra
- Department of Bio-Medical Sciences, University of Catania, Catania, Italy
| | | | - Antonino B D'Assoro
- Department of Medical Oncology, Mayo Clinic Cancer Center, Rochester, MN, USA
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Brody Building 5N98C, Greenville, NC 27858, USA
| |
Collapse
|
5
|
Cadoo KA, Gucalp A, Traina TA. Palbociclib: an evidence-based review of its potential in the treatment of breast cancer. BREAST CANCER-TARGETS AND THERAPY 2014; 6:123-33. [PMID: 25177151 PMCID: PMC4128689 DOI: 10.2147/bctt.s46725] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cellular proliferation, growth, and division following DNA (deoxyribonucleic acid) damage are tightly controlled by the cell-cycle regulatory machinery. This machinery includes cyclin-dependent kinases (CDKs) which complex with their cyclin partners, allowing the cell cycle to progress. The cell-cycle regulatory process plays a critical role in oncogenesis and in the development of therapeutic resistance; it is frequently disrupted in breast cancer, providing a rational target for therapeutic development. Palbociclib is a potent and selective inhibitor of CDK4 and -6 with significant activity in breast cancer models. Furthermore, it has been shown to significantly prolong progression-free survival when combined with letrozole in the management of estrogen receptor-positive metastatic breast cancer. In this article we review the cell cycle and its regulatory processes, their role in breast cancer, and the rationale for CDK inhibition in this disease. We describe the preclinical and clinical data relating to the activity of palbociclib in breast cancer and the plans for the future development of this agent.
Collapse
Affiliation(s)
- Karen A Cadoo
- Breast Cancer Medicine Service, Memorial Sloan Kettering Cancer Center and Weill Medical College of Cornell University, New York, NY, USA
| | - Ayca Gucalp
- Breast Cancer Medicine Service, Memorial Sloan Kettering Cancer Center and Weill Medical College of Cornell University, New York, NY, USA
| | - Tiffany A Traina
- Breast Cancer Medicine Service, Memorial Sloan Kettering Cancer Center and Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
6
|
McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Franklin RA, Montalto G, Cervello M, Libra M, Candido S, Malaponte G, Mazzarino MC, Fagone P, Nicoletti F, Bäsecke J, Mijatovic S, Maksimovic-Ivanic D, Milella M, Tafuri A, Chiarini F, Evangelisti C, Cocco L, Martelli AM. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance. Oncotarget 2013; 3:1068-111. [PMID: 23085539 PMCID: PMC3717945 DOI: 10.18632/oncotarget.659] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Targeting these pathways is often complex and can result in pathway activation depending on the presence of upstream mutations (e.g., Raf inhibitors induce Raf activation in cells with wild type (WT) RAF in the presence of mutant, activated RAS) and rapamycin can induce Akt activation. Targeting with inhibitors directed at two constituents of the same pathway or two different signaling pathways may be a more effective approach. This review will first evaluate potential uses of Raf, MEK, PI3K, Akt and mTOR inhibitors that have been investigated in pre-clinical and clinical investigations and then discuss how cancers can become insensitive to various inhibitors and potential strategies to overcome this resistance.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Chappell WH, Abrams SL, Franklin RA, LaHair MM, Montalto G, Cervello M, Martelli AM, Nicoletti F, Candido S, Libra M, Polesel J, Talamini R, Milella M, Tafuri A, Steelman LS, McCubrey JA. Ectopic NGAL expression can alter sensitivity of breast cancer cells to EGFR, Bcl-2, CaM-K inhibitors and the plant natural product berberine. Cell Cycle 2012; 11:4447-61. [PMID: 23159854 PMCID: PMC3552927 DOI: 10.4161/cc.22786] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL, a.k.a Lnc2) is a member of the lipocalin family and has diverse roles. NGAL can stabilize matrix metalloproteinase-9 from autodegradation. NGAL is considered as a siderocalin that is important in the transport of iron. NGAL expression has also been associated with certain neoplasias and is implicated in the metastasis of breast cancer. In a previous study, we examined whether ectopic NGAL expression would alter the sensitivity of breast epithelial, breast and colorectal cancer cells to the effects of the chemotherapeutic drug doxorubicin. While abundant NGAL expression was detected in all the cells infected with a retrovirus encoding NGAL, this expression did not alter the sensitivity of these cells to doxorubicin as compared with empty vector-transduced cells. We were also interested in determining the effects of ectopic NGAL expression on the sensitivity to small-molecule inhibitors targeting key signaling molecules. Ectopic NGAL expression increased the sensitivity of MCF-7 breast cancer cells to EGFR, Bcl-2 and calmodulin kinase inhibitors as well as the natural plant product berberine. Furthermore, when suboptimal concentrations of certain inhibitors were combined with doxorubicin, a reduction in the doxorubicin IC 50 was frequently observed. An exception was observed when doxorubicin was combined with rapamycin, as doxorubicin suppressed the sensitivity of the NGAL-transduced MCF-7 cells to rapamycin when compared with the empty vector controls. In contrast, changes in the sensitivities of the NGAL-transduced HT-29 colorectal cancer cell line and the breast epithelial MCF-10A cell line were not detected compared with empty vector-transduced cells. Doxorubicin-resistant MCF-7/Dox (R) cells were examined in these experiments as a control drug-resistant line; it displayed increased sensitivity to EGFR and Bcl-2 inhibitors compared with empty vector transduced MCF-7 cells. These results indicate that NGAL expression can alter the sensitivity of certain cancer cells to small-molecule inhibitors, suggesting that patients whose tumors exhibit elevated NGAL expression or have become drug-resistant may display altered responses to certain small-molecule inhibitors.
Collapse
Affiliation(s)
- William H. Chappell
- Department of Microbiology & Immunology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| | - Stephen L. Abrams
- Department of Microbiology & Immunology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| | - Richard A. Franklin
- Department of Microbiology & Immunology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| | - Michelle M. LaHair
- Department of Microbiology & Immunology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| | - Giuseppe Montalto
- Department of Internal Medicine and Specialties; University of Palermo; Palermo, Italy
- Consiglio Nazionale delle Ricerche; Istituto di Biomedicina e Immunologia Molecolare “Alberto Monroy”; Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche; Istituto di Biomedicina e Immunologia Molecolare “Alberto Monroy”; Palermo, Italy
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor Sciences; Università di Bologna; Bologna, Italy
- Institute of Molecular Genetics; National Research Council-Rizzoli Orthopedic Institute; Bologna, Italy
| | | | - Saverio Candido
- Department of Bio-Medical Sciences; University of Catania; Catania, Italy
| | - Massimo Libra
- Department of Bio-Medical Sciences; University of Catania; Catania, Italy
| | - Jerry Polesel
- Unit of Epidemiology and Biostatistics; Centro di Riferimento Oncologico; IRCCS; Aviano, Italy
| | - Renato Talamini
- Unit of Epidemiology and Biostatistics; Centro di Riferimento Oncologico; IRCCS; Aviano, Italy
| | | | - Agostino Tafuri
- Department of Cellular Biotechnology and Hematology; University of Rome, Sapienza; Rome, Italy
| | - Linda S. Steelman
- Department of Microbiology & Immunology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| | - James A. McCubrey
- Department of Microbiology & Immunology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| |
Collapse
|