1
|
Liu R, Luo Y, Ma J, Zhang Q, Sheng Y, Li J, Li H, Zhao T. Traditional Chinese medicine for functional gastrointestinal disorders and inflammatory bowel disease: narrative review of the evidence and potential mechanisms involving the brain-gut axis. Front Pharmacol 2024; 15:1444922. [PMID: 39355776 PMCID: PMC11443704 DOI: 10.3389/fphar.2024.1444922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/23/2024] [Indexed: 10/03/2024] Open
Abstract
Functional gastrointestinal disorders (FGIDs) and inflammatory bowel disease (IBD) are common clinical disorders characterized by recurrent diarrhea and abdominal pain. Although their pathogenesis has not been fully clarified, disruptions in intestinal motility and immune function are widely accepted as contributing factors to both conditions, and the brain-gut axis plays a key role in these processes. Traditional Chinese Medicine (TCM) employs a holistic approach to treatment, considers spleen and stomach impairments and liver abnormality the main pathogenesis of these two diseases, and offers a unique therapeutic strategy that targets these interconnected pathways. Clinical evidence shows the great potential of TCM in treating FGIDs and IBD. This study presents a systematic description of the pathological mechanisms of FGIDs and IBD in the context of the brain-gut axis, discusses clinical and preclinical studies on TCM and acupuncture for the treatment of these diseases, and summarizes TCM targets and pathways for the treatment of FGIDs and IBD, integrating ancient wisdom with contemporary biomedical insights. The alleviating effects of TCM on FGID and IBD symptoms are mainly mediated through the modulation of intestinal immunity and inflammation, sensory transmission, neuroendocrine-immune network, and microbiota and their metabolism through brain-gut axis mechanisms. TCM may be a promising treatment option in controlling FGIDs and IBD; however, further high-quality research is required. This review provides a reference for an in-depth exploration of the interventional effects and mechanisms of TCM in FGIDs and IBD, underscoring TCM's potential to recalibrate the dysregulated brain-gut axis in FGIDs and IBD.
Collapse
Affiliation(s)
- RuiXuan Liu
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - YunTian Luo
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - JinYing Ma
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qi Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yudong Sheng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiashan Li
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongjiao Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - TianYi Zhao
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
2
|
Antoniazzi CTDD, Ruviaro NA, Peres DS, Rodrigues P, Viero FT, Trevisan G. Targeting TRPV4 Channels for Cancer Pain Relief. Cancers (Basel) 2024; 16:1703. [PMID: 38730655 PMCID: PMC11083562 DOI: 10.3390/cancers16091703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Despite the unique and complex nature of cancer pain, the activation of different ion channels can be related to the initiation and maintenance of pain. The transient receptor potential vanilloid 4 (TRPV4) is a cation channel broadly expressed in sensory afferent neurons. This channel is activated by multiple stimuli to mediate pain perception associated with inflammatory and neuropathic pain. Here, we focused on summarizing the role of TRPV4 in cancer etiology and cancer-induced pain mechanisms. Many studies revealed that the administration of a TRPV4 antagonist and TRPV4 knockdown diminishes nociception in chemotherapy-induced peripheral neuropathy (CIPN). Although the evidence on TRPV4 channels' involvement in cancer pain is scarce, the expression of these receptors was reportedly enhanced in cancer-induced bone pain (CIBP), perineural, and orofacial cancer models following the inoculation of tumor cells to the bone marrow cavity, sciatic nerve, and tongue, respectively. Effective pain management is a continuous problem for patients diagnosed with cancer, and current guidelines fail to address a mechanism-based treatment. Therefore, examining new molecules with potential antinociceptive properties targeting TRPV4 modulation would be interesting. Identifying such agents could lead to the development of treatment strategies with improved pain-relieving effects and fewer adverse effects than the currently available analgesics.
Collapse
Affiliation(s)
- Caren Tatiane de David Antoniazzi
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (C.T.d.D.A.); (D.S.P.); (P.R.); (F.T.V.)
| | - Náthaly Andrighetto Ruviaro
- Graduate Program in Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil;
| | - Diulle Spat Peres
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (C.T.d.D.A.); (D.S.P.); (P.R.); (F.T.V.)
| | - Patrícia Rodrigues
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (C.T.d.D.A.); (D.S.P.); (P.R.); (F.T.V.)
| | - Fernanda Tibolla Viero
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (C.T.d.D.A.); (D.S.P.); (P.R.); (F.T.V.)
| | - Gabriela Trevisan
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (C.T.d.D.A.); (D.S.P.); (P.R.); (F.T.V.)
- Graduate Program in Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil;
| |
Collapse
|
3
|
Nagaraja S, Tewari SG, Reifman J. Predictive analytics identifies key factors driving hyperalgesic priming of muscle sensory neurons. Front Neurosci 2023; 17:1254154. [PMID: 37942142 PMCID: PMC10629345 DOI: 10.3389/fnins.2023.1254154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023] Open
Abstract
Hyperalgesic priming, a form of neuroplasticity induced by inflammatory mediators, in peripheral nociceptors enhances the magnitude and duration of action potential (AP) firing to future inflammatory events and can potentially lead to pain chronification. The mechanisms underlying the development of hyperalgesic priming are not well understood, limiting the identification of novel therapeutic strategies to combat chronic pain. In this study, we used a computational model to identify key proteins whose modifications caused priming of muscle nociceptors and made them hyperexcitable to a subsequent inflammatory event. First, we extended a previously validated model of mouse muscle nociceptor sensitization to incorporate Epac-mediated interaction between two G protein-coupled receptor signaling pathways commonly activated by inflammatory mediators. Next, we calibrated and validated the model simulations of the nociceptor's AP response to both innocuous and noxious levels of mechanical force after two subsequent inflammatory events using literature data. Then, by performing global sensitivity analyses that simulated thousands of nociceptor-priming scenarios, we identified five ion channels and two molecular processes (from the 18 modeled transmembrane proteins and 29 intracellular signaling components) as potential regulators of the increase in AP firing in response to mechanical forces. Finally, when we simulated specific neuroplastic modifications in Kv1.1 and Nav1.7 alone as well as with simultaneous modifications in Nav1.7, Nav1.8, TRPA1, and Kv7.2, we observed a considerable increase in the fold change in the number of triggered APs in primed nociceptors. These results suggest that altering the expression of Kv1.1 and Nav1.7 might regulate the neuronal hyperexcitability in primed mechanosensitive muscle nociceptors.
Collapse
Affiliation(s)
- Sridevi Nagaraja
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Development Command, Fort Detrick, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Shivendra G. Tewari
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Development Command, Fort Detrick, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Development Command, Fort Detrick, MD, United States
| |
Collapse
|
4
|
Zuo WM, Li YJ, Cui KY, Shen D, Zhang D, Zheng YW, Huang M, Wu Y, Shen XY, Wang LN, Ding GH. The real-time detection of acupuncture-induced extracellular ATP mobilization in acupoints and exploration of its role in acupuncture analgesia. Purinergic Signal 2023; 19:69-85. [PMID: 35113324 PMCID: PMC9984633 DOI: 10.1007/s11302-021-09833-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/02/2021] [Indexed: 12/22/2022] Open
Abstract
Our and in vitro studies had confirmed that mechanosensitive ATP release and accumulation in acupoints was elicited by acupuncture (AP), which might be a pivotal step for triggering AP analgesia. But to date, the dynamics of extracellular ATP (eATP) in the interstitial space during AP process was poorly known, mainly due to the low temporal resolution of the current detection approach. This study attempted to capture rapid eATP signals in vivo in the process of needling, and further explored the role of this eATP mobilization in initiating AP analgesic effect. Ipsilateral 20-min needling was applied on Zusanli acupoint (ST36) of complete Freund's adjuvant (CFA)-induced ankle arthritis rats. Pain thresholds were assessed in injured-side hindpaws. eATP in the interstitial space was microdialyzed and real-time quantified by luciferin-luciferase assay at 1-min interval with the aid of the microfluid chip. We revealed in behavioral tests that modulation of eATP levels in ST36 influenced AP analgesic effect on ankle arthritis. A transient eATP accumulation was induced by needling that started to mobilize at 4 min, climbed to the peak of 11.21 nM within 3.25 min and gradually recovered. Such AP-induced eATP mobilization was significantly impacted by ankle inflammation, needling depth, needle manipulation, and the presence of local ecto-nucleotidases. This work reveals that needling elicits a transient eATP mobilization in acupoints, which contributes to initiating AP analgesia. This study will help us better understand the peripheral mechanism of AP analgesia and guide clinicians to optimize the needle manipulations to improve AP efficacy.
Collapse
Affiliation(s)
- Wei-Min Zuo
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203 China
- HuBei Provincial Hospital of Traditional Chinese Medicine, 4 Huayuanshan Road, Wuhan, 430060 Hubei China
| | - Yu-Jia Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203 China
| | - Kai-Yu Cui
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203 China
| | - Dan Shen
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203 China
- School of Traditional Chinese Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433 China
| | - Di Zhang
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function (14DZ2260500), Fudan University, 220 Handan Road, Shanghai, 201433 China
- Department of Aeronautics and Astronautics, Fudan University, 220 Handan Road, Shanghai, 200433 China
| | - Ya-Wen Zheng
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203 China
| | - Meng Huang
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function (14DZ2260500), Fudan University, 220 Handan Road, Shanghai, 201433 China
| | - Yong Wu
- Department of Aeronautics and Astronautics, Fudan University, 220 Handan Road, Shanghai, 200433 China
| | - Xue-Yong Shen
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203 China
- Shanghai Research Center for Acupuncture and Meridians, Shanghai, 201203 China
| | - Li-Na Wang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203 China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function (14DZ2260500), Fudan University, 220 Handan Road, Shanghai, 201433 China
| | - Guang-Hong Ding
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function (14DZ2260500), Fudan University, 220 Handan Road, Shanghai, 201433 China
- Department of Aeronautics and Astronautics, Fudan University, 220 Handan Road, Shanghai, 200433 China
| |
Collapse
|
5
|
Characteristics of Zusanli Dorsal Root Ganglion Neurons in Rats and Their Receptor Mechanisms in Response to Adenosine. THE JOURNAL OF PAIN 2022; 23:1564-1580. [PMID: 35472520 DOI: 10.1016/j.jpain.2022.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 12/19/2022]
Abstract
Neural systems play important roles in the functions of acupuncture. But the unclear structure and mechanism of acupoints hinder acupuncture standardization and cause the acupuncture effects to be varying or even paradoxical. It has been broadly assumed that the efficacy of acupuncture depends on the biological signals triggered at acupoints and passed up along neural systems. However, as the first station to transmit such signals, the characters of the dorsal root ganglia (DRG) neurons innervating acupoints are still not well elucidated. We adopted Zusanli (ST36) as a representative acupoint and found most DRG neurons innervating ST36 acupoint are middle-size neurons with a single spike firing pattern. This suggests that proprioceptive neurons take on greater possibility than small size nociceptive neurons do to mediate the acupuncture signals. Moreover, we found that adenosine injected into ST36 acupoints could dose- and acupoint-dependently mimic the analgesic effect of acupuncture. However, adenosine could not elicit action potentials in the acutely isolated ST36 DRG neurons, but it inhibited ID currents and increased the areas of overshoots. Further, we found that 4 types of adenosine receptors were all expressed by ST36 DRG neurons, and A1, A2b, and A3 receptors were the principal reactors to adenosine. PERSPECTIVE: This study provides the major characteristics of ST36 DRG neurons, which will help to analyze the neural pathway of acupuncture signals. At the same time, these findings could provide a new possible therapy for pain relief, such as injecting adenosine or corresponding agonists into acupoints.
Collapse
|
6
|
Wang LN, Wang XZ, Li YJ, Li BR, Huang M, Wang XY, Grygorczyk R, Ding GH, Schwarz W. Activation of Subcutaneous Mast Cells in Acupuncture Points Triggers Analgesia. Cells 2022; 11:809. [PMID: 35269431 PMCID: PMC8909735 DOI: 10.3390/cells11050809] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/13/2022] [Accepted: 02/22/2022] [Indexed: 11/24/2022] Open
Abstract
This review summarizes experimental evidence indicating that subcutaneous mast cells are involved in the trigger mechanism of analgesia induced by acupuncture, a traditional oriental therapy, which has gradually become accepted worldwide. The results are essentially based on work from our laboratories. Skin mast cells are present at a high density in acupuncture points where fine needles are inserted and manipulated during acupuncture intervention. Mast cells are sensitive to mechanical stimulation because they express multiple types of mechanosensitive channels, including TRPV1, TRPV2, TRPV4, receptors and chloride channels. Acupuncture manipulation generates force and torque that indirectly activate the mast cells via the collagen network. Subsequently, various mediators, for example, histamine, serotonin, adenosine triphosphate and adenosine, are released from activated mast cells to the interstitial space; they or their downstream products activate the corresponding receptors situated at local nerve terminals of sensory neurons in peripheral ganglia. The analgesic effects are thought to be generated via the reduced electrical activities of the primary sensory neurons. Alternatively, these neurons project such signals to pain-relevant regions in spinal cord and/or higher centers of the brain.
Collapse
Affiliation(s)
- Li-Na Wang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (L.-N.W.); (Y.-J.L.)
| | - Xue-Zhi Wang
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China; (X.-Z.W.); (B.-R.L.)
| | - Yu-Jia Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (L.-N.W.); (Y.-J.L.)
| | - Bing-Rong Li
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China; (X.-Z.W.); (B.-R.L.)
| | - Meng Huang
- Shanghai Research Center for Acupuncture and Meridians, Shanghai 201203, China;
| | - Xiao-Yu Wang
- Laboratory of Immunology and Virology, Experimental Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Ryszard Grygorczyk
- Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
| | - Guang-Hong Ding
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China; (X.-Z.W.); (B.-R.L.)
| | - Wolfgang Schwarz
- Institute for Biophysics, Department of Physics, Goethe-University Frankfurt, Max-von-Laue St. 1, 60438 Frankfurt am Main, Germany
| |
Collapse
|
7
|
Lilliu E, Koenig S, Koenig X, Frieden M. Store-Operated Calcium Entry in Skeletal Muscle: What Makes It Different? Cells 2021; 10:2356. [PMID: 34572005 PMCID: PMC8468011 DOI: 10.3390/cells10092356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 01/26/2023] Open
Abstract
Current knowledge on store-operated Ca2+ entry (SOCE) regarding its localization, kinetics, and regulation is mostly derived from studies performed in non-excitable cells. After a long time of relative disinterest in skeletal muscle SOCE, this mechanism is now recognized as an essential contributor to muscle physiology, as highlighted by the muscle pathologies that are associated with mutations in the SOCE molecules STIM1 and Orai1. This review mainly focuses on the peculiar aspects of skeletal muscle SOCE that differentiate it from its counterpart found in non-excitable cells. This includes questions about SOCE localization and the movement of respective proteins in the highly organized skeletal muscle fibers, as well as the diversity of expressed STIM isoforms and their differential expression between muscle fiber types. The emerging evidence of a phasic SOCE, which is activated during EC coupling, and its physiological implication is described as well. The specific issues related to the use of SOCE modulators in skeletal muscles are discussed. This review highlights the complexity of SOCE activation and its regulation in skeletal muscle, with an emphasis on the most recent findings and the aim to reach a current picture of this mesmerizing phenomenon.
Collapse
Affiliation(s)
- Elena Lilliu
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Stéphane Koenig
- Department of Cell Physiology and Metabolism, University of Geneva, 1201 Geneva, Switzerland;
| | - Xaver Koenig
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Maud Frieden
- Department of Cell Physiology and Metabolism, University of Geneva, 1201 Geneva, Switzerland;
| |
Collapse
|
8
|
Kärki T, Tojkander S. TRPV Protein Family-From Mechanosensing to Cancer Invasion. Biomolecules 2021; 11:1019. [PMID: 34356643 PMCID: PMC8301805 DOI: 10.3390/biom11071019] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 02/08/2023] Open
Abstract
Biophysical cues from the cellular microenvironment are detected by mechanosensitive machineries that translate physical signals into biochemical signaling cascades. At the crossroads of extracellular space and cell interior are located several ion channel families, including TRP family proteins, that are triggered by mechanical stimuli and drive intracellular signaling pathways through spatio-temporally controlled Ca2+-influx. Mechanosensitive Ca2+-channels, therefore, act as critical components in the rapid transmission of physical signals into biologically compatible information to impact crucial processes during development, morphogenesis and regeneration. Given the mechanosensitive nature of many of the TRP family channels, they must also respond to the biophysical changes along the development of several pathophysiological conditions and have also been linked to cancer progression. In this review, we will focus on the TRPV, vanilloid family of TRP proteins, and their connection to cancer progression through their mechanosensitive nature.
Collapse
Affiliation(s)
- Tytti Kärki
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland;
| | - Sari Tojkander
- Department of Veterinary Biosciences, Section of Pathology, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
9
|
Maggi L, Bonanno S, Altamura C, Desaphy JF. Ion Channel Gene Mutations Causing Skeletal Muscle Disorders: Pathomechanisms and Opportunities for Therapy. Cells 2021; 10:cells10061521. [PMID: 34208776 PMCID: PMC8234207 DOI: 10.3390/cells10061521] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/03/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle ion channelopathies (SMICs) are a large heterogeneous group of rare genetic disorders caused by mutations in genes encoding ion channel subunits in the skeletal muscle mainly characterized by myotonia or periodic paralysis, potentially resulting in long-term disabilities. However, with the development of new molecular technologies, new genes and new phenotypes, including progressive myopathies, have been recently discovered, markedly increasing the complexity in the field. In this regard, new advances in SMICs show a less conventional role of ion channels in muscle cell division, proliferation, differentiation, and survival. Hence, SMICs represent an expanding and exciting field. Here, we review current knowledge of SMICs, with a description of their clinical phenotypes, cellular and molecular pathomechanisms, and available treatments.
Collapse
Affiliation(s)
- Lorenzo Maggi
- Neuroimmunology and Neuromuscular Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
- Correspondence:
| | - Silvia Bonanno
- Neuroimmunology and Neuromuscular Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Concetta Altamura
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (C.A.); (J.-F.D.)
| | - Jean-François Desaphy
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (C.A.); (J.-F.D.)
| |
Collapse
|
10
|
Zheng Y, Zuo W, Shen D, Cui K, Huang M, Zhang D, Shen X, Wang L. Mechanosensitive TRPV4 Channel-Induced Extracellular ATP Accumulation at the Acupoint Mediates Acupuncture Analgesia of Ankle Arthritis in Rats. Life (Basel) 2021; 11:513. [PMID: 34073103 PMCID: PMC8228741 DOI: 10.3390/life11060513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Acupuncture (AP) is a safe and effective analgesic therapy. Understanding how fine needles trigger biological signals can help us optimize needling manipulation to improve its efficiency. Adenosine accumulation in treated acupoints is a vital related event. Here, we hypothesized that extracellular ATP (eATP) mobilization preceded adenosine accumulation, which involved local activation of mechanosensitive channels, especially TRPV4 protein. (2) Methods: AP was applied at the injured-side Zusanli acupoint (ST36) of acute ankle arthritis rats. Pain thresholds were assessed in injured-side hindpaws. eATP in microdialysate from the acupoints was determined by luminescence assay. (3) Results: AP analgesic effect was significantly suppressed by pre-injection of GdCl3 or ruthenium red in ST36, the wide-spectrum inhibitors of mechanosensitive channels, or by HC067047, a specific antagonist of TRPV4 channels. Microdialysate determination revealed a needling-induced transient eATP accumulation that was significantly decreased by pre-injection of HC067047. Additionally, preventing eATP hydrolysis by pre-injection of ARL67156, a non-specific inhibitor of ecto-ATPases, led to the increase in eATP levels and the abolishment of AP analgesic effect. (4) Conclusions: These observations indicate that needling-induced transient accumulation of eATP, due to the activation of mechanosensitive TRPV4 channels and the activities of ecto-ATPases, is involved in the trigger mechanism of AP analgesia.
Collapse
Affiliation(s)
- Yawen Zheng
- Acupuncture and Moxibustion College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weimin Zuo
- Acupuncture and Moxibustion College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Dan Shen
- Acupuncture and Moxibustion College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Kaiyu Cui
- Acupuncture and Moxibustion College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Meng Huang
- Shanghai Research Center for Acupuncture and Meridians, Shanghai 201203, China
| | - Di Zhang
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function (14DZ2260500), Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China
| | - Xueyong Shen
- Acupuncture and Moxibustion College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Research Center for Acupuncture and Meridians, Shanghai 201203, China
| | - Lina Wang
- Acupuncture and Moxibustion College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Research Center for Acupuncture and Meridians, Shanghai 201203, China
| |
Collapse
|
11
|
Ishido M, Yoshikado T. Decrease in AQP4 expression level in atrophied skeletal muscles with innervation. Physiol Rep 2021; 9:e14856. [PMID: 33991463 PMCID: PMC8123556 DOI: 10.14814/phy2.14856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/23/2021] [Indexed: 12/05/2022] Open
Abstract
Functional interaction between the selective water channel AQP4 and several ion channels, such as TRPV4, NKCC1, and Na+/K+‐ATPase, closely participate to regulate osmotic homeostasis. In the skeletal muscles, the decrease in APQ4 expression due to denervation was followed by the restoration of AQP4 expression during reinnervation. These findings raised the possibility that innervation status is an essential factor to regulate AQP4 expression in the skeletal muscles. This study investigated this hypothesis using disuse muscle atrophy model with innervation. Adult female Fischer 344 rats (8 weeks of age) were randomly assigned to either control (C) or cast immobilization (IM) groups (n = 6 per group). Two weeks after cast immobilization, the tibialis anterior muscles of each group were removed and the expression levels of some target proteins were quantified by western blot analysis. The expression level of AQP4 significantly decreased at 2 weeks post‐immobilization (p < 0.05). Moreover, the expression levels of TRPV4, NKCC1, and Na+/K+‐ATPase significantly decreased at 2 weeks post‐immobilization (p < 0.05). This study suggested that innervation status is not always a key regulatory factor to maintain the expression of AQP4 in the skeletal muscles. Moreover, the transport of water and ions by AQP4 may be changed during immobilization‐induced muscle atrophy.
Collapse
Affiliation(s)
- Minenori Ishido
- Division of Human Sciences, Faculty of Engineering, Section for Health-Related Physical Education, Osaka Institute of Technology, Osaka, Japan
| | - Tomoya Yoshikado
- Graduate Course in Applied Chemistry, Environmental and Biomedical Engineering, Osaka Institute of Technology, Osaka, Japan
| |
Collapse
|
12
|
Fernández-Carvajal A, González-Muñiz R, Fernández-Ballester G, Ferrer-Montiel A. Investigational drugs in early phase clinical trials targeting thermotransient receptor potential (thermoTRP) channels. Expert Opin Investig Drugs 2020; 29:1209-1222. [PMID: 32941080 DOI: 10.1080/13543784.2020.1825680] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Thermo transient receptor potential (thermoTRP) channels are some of the most intensely pursued therapeutic targets of the past decade. They are considered promising targets of numerous diseases including chronic pain and cancer. Modulators of these proteins, in particular TRPV1-4, TRPM8 and TRPA1, have reached clinical development, but none has been approved for clinical practice yet. AREAS COVERED The therapeutic potential of targeting thermoTRP channels is discussed. The discussion is centered on our experience and on available data found in SciFinder, PubMed, and ClinicalTrials.gov database from the past decade. This review focuses on the therapeutic progress concerning this family of channels, including strategies to improve their therapeutic index for overcoming adverse effects. EXPERT OPINION Although thermoTRPs are pivotal drug targets, translation to the clinic has faced two key problems, (i) unforeseen side effects in Phase I trials and, (ii) poor clinical efficacy in Phase II trials. Thus, there is a need for (i) an enhanced understanding of the physiological role of these channels in tissues and organs and (ii) the development of human-based pre-clinical models with higher clinical translation. Furthermore, progress in nanotechnology-based delivery strategies will positively impact thermoTRP human pharmacology.
Collapse
Affiliation(s)
- Asia Fernández-Carvajal
- Instituto De Investigación, Desarrollo E Innovación En Biotecnología Sanitaria De Elche (Idibe), Universitas Miguel Hernández , Alicante, Spain
| | | | - Gregorio Fernández-Ballester
- Instituto De Investigación, Desarrollo E Innovación En Biotecnología Sanitaria De Elche (Idibe), Universitas Miguel Hernández , Alicante, Spain
| | - Antonio Ferrer-Montiel
- Instituto De Investigación, Desarrollo E Innovación En Biotecnología Sanitaria De Elche (Idibe), Universitas Miguel Hernández , Alicante, Spain
| |
Collapse
|
13
|
Dupont C, Novak K, Denman K, Myers JH, Sullivan JM, Walker PV, Brown NL, Ladle DR, Bogdanik L, Lutz CM, A Voss A, Sumner CJ, Rich MM. TRPV4 Antagonism Prevents Mechanically Induced Myotonia. Ann Neurol 2020; 88:297-308. [PMID: 32418267 PMCID: PMC7657963 DOI: 10.1002/ana.25780] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/27/2020] [Accepted: 05/07/2020] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Myotonia is caused by involuntary firing of skeletal muscle action potentials and causes debilitating stiffness. Current treatments are insufficiently efficacious and associated with side effects. Myotonia can be triggered by voluntary movement (electrically induced myotonia) or percussion (mechanically induced myotonia). Whether distinct molecular mechanisms underlie these triggers is unknown. Our goal was to identify ion channels involved in mechanically induced myotonia and to evaluate block of the channels involved as a novel approach to therapy. METHODS We developed a novel system to enable study of mechanically induced myotonia using both genetic and pharmacologic mouse models of myotonia congenita. We extended ex vivo studies of excitability to in vivo studies of muscle stiffness. RESULTS As previous work suggests activation of transient receptor potential vanilloid 4 (TRPV4) channels by mechanical stimuli in muscle, we examined the role of this cation channel. Mechanically induced myotonia was markedly suppressed in TRPV4-null muscles and in muscles treated with TRPV4 small molecule antagonists. The suppression of mechanically induced myotonia occurred without altering intrinsic muscle excitability, such that myotonia triggered by firing of action potentials (electrically induced myotonia) was unaffected. When injected intraperitoneally, TRPV4 antagonists lessened the severity of myotonia in vivo by approximately 80%. INTERPRETATION These data demonstrate that there are distinct molecular mechanisms triggering electrically induced and mechanically induced myotonia. Our data indicates that activation of TRPV4 during muscle contraction plays an important role in triggering myotonia in vivo. Elimination of mechanically induced myotonia by TRPV4 inhibition offers a new approach to treating myotonia. ANN NEUROL 2020;88:297-308.
Collapse
Affiliation(s)
- Chris Dupont
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| | - Kevin Novak
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| | - Kirsten Denman
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| | - Jessica H Myers
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| | - Jeremy M Sullivan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Phillip V Walker
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| | - Nicklaus L Brown
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| | - David R Ladle
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| | | | | | - Andrew A Voss
- Department of Biology, Wright State University, Dayton, OH, USA
| | - Charlotte J Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark M Rich
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| |
Collapse
|
14
|
Feng B, Guo T. Visceral pain from colon and rectum: the mechanotransduction and biomechanics. J Neural Transm (Vienna) 2020; 127:415-429. [PMID: 31598778 PMCID: PMC7141966 DOI: 10.1007/s00702-019-02088-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/28/2019] [Indexed: 12/14/2022]
Abstract
Visceral pain is the cardinal symptom of functional gastrointestinal (GI) disorders such as the irritable bowel syndrome (IBS) and the leading cause of patients' visit to gastroenterologists. IBS-related visceral pain usually arises from the distal colon and rectum (colorectum), an intraluminal environment that differs greatly from environment outside the body in chemical, biological, thermal, and mechanical conditions. Accordingly, visceral pain is different from cutaneous pain in several key psychophysical characteristics, which likely underlies the unsatisfactory management of visceral pain by drugs developed for other types of pain. Colorectal visceral pain is usually elicited from mechanical distension/stretch, rather than from heating, cutting, pinching, or piercing that usually evoke pain from the skin. Thus, mechanotransduction, i.e., the encoding of colorectal mechanical stimuli by sensory afferents, is crucial to the underlying mechanisms of GI-related visceral pain. This review will focus on colorectal mechanotransduction, the process of converting colorectal mechanical stimuli into trains of action potentials by the sensory afferents to inform the central nervous system (CNS). We will summarize neurophysiological studies on afferent encoding of colorectal mechanical stimuli, highlight recent advances in our understanding of colorectal biomechanics that plays critical roles in mechanotransduction, and review studies on mechano-sensitive ion channels in colorectal afferents. This review calls for focused attention on targeting colorectal mechanotransduction as a new strategy for managing visceral pain, which can also have an added benefit of limited CNS side effects, because mechanotransduction arises from peripheral organs.
Collapse
Affiliation(s)
- Bin Feng
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT, 06269-3247, USA.
| | - Tiantian Guo
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT, 06269-3247, USA
| |
Collapse
|
15
|
Doñate-Macián P, Enrich-Bengoa J, Dégano IR, Quintana DG, Perálvarez-Marín A. Trafficking of Stretch-Regulated TRPV2 and TRPV4 Channels Inferred Through Interactomics. Biomolecules 2019; 9:biom9120791. [PMID: 31783610 PMCID: PMC6995547 DOI: 10.3390/biom9120791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022] Open
Abstract
Transient receptor potential cation channels are emerging as important physiological and therapeutic targets. Within the vanilloid subfamily, transient receptor potential vanilloid 2 (TRPV2) and 4 (TRPV4) are osmo- and mechanosensors becoming critical determinants in cell structure and activity. However, knowledge is scarce regarding how TRPV2 and TRPV4 are trafficked to the plasma membrane or specific organelles to undergo quality controls through processes such as biosynthesis, anterograde/retrograde trafficking, and recycling. This review lists and reviews a subset of protein–protein interactions from the TRPV2 and TRPV4 interactomes, which is related to trafficking processes such as lipid metabolism, phosphoinositide signaling, vesicle-mediated transport, and synaptic-related exocytosis. Identifying the protein and lipid players involved in trafficking will improve the knowledge on how these stretch-related channels reach specific cellular compartments.
Collapse
Affiliation(s)
- Pau Doñate-Macián
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain; (P.D.-M.); (J.E.-B.); (D.G.Q.)
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Pompeu Fabra University, 08003 Barcelona, Catalonia, Spain
| | - Jennifer Enrich-Bengoa
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain; (P.D.-M.); (J.E.-B.); (D.G.Q.)
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain
| | - Irene R. Dégano
- CIBER Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- REGICOR Study Group, Cardiovascular Epidemiology and Genetics Group, IMIM (Hospital Del Mar Medical Research Institute), 08003 Barcelona, Catalonia, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
| | - David G. Quintana
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain; (P.D.-M.); (J.E.-B.); (D.G.Q.)
| | - Alex Perálvarez-Marín
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain; (P.D.-M.); (J.E.-B.); (D.G.Q.)
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain
- Correspondence: ; Tel.: +34-93-581-4504
| |
Collapse
|
16
|
Yap JLY, Tai YK, Fröhlich J, Fong CHH, Yin JN, Foo ZL, Ramanan S, Beyer C, Toh SJ, Casarosa M, Bharathy N, Kala MP, Egli M, Taneja R, Lee CN, Franco-Obregón A. Ambient and supplemental magnetic fields promote myogenesis via a TRPC1-mitochondrial axis: evidence of a magnetic mitohormetic mechanism. FASEB J 2019; 33:12853-12872. [PMID: 31518158 DOI: 10.1096/fj.201900057r] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We show that both supplemental and ambient magnetic fields modulate myogenesis. A lone 10 min exposure of myoblasts to 1.5 mT amplitude supplemental pulsed magnetic fields (PEMFs) accentuated in vitro myogenesis by stimulating transient receptor potential (TRP)-C1-mediated calcium entry and downstream nuclear factor of activated T cells (NFAT)-transcriptional and P300/CBP-associated factor (PCAF)-epigenetic cascades, whereas depriving myoblasts of ambient magnetic fields slowed myogenesis, reduced TRPC1 expression, and silenced NFAT-transcriptional and PCAF-epigenetic cascades. The expression levels of peroxisome proliferator-activated receptor γ coactivator 1α, the master regulator of mitochondriogenesis, was also enhanced by brief PEMF exposure. Accordingly, mitochondriogenesis and respiratory capacity were both enhanced with PEMF exposure, paralleling TRPC1 expression and pharmacological sensitivity. Clustered regularly interspaced short palindromic repeats-Cas9 knockdown of TRPC1 precluded proliferative and mitochondrial responses to supplemental PEMFs, whereas small interfering RNA gene silencing of TRPM7 did not, coinciding with data that magnetoreception did not coincide with the expression or function of other TRP channels. The aminoglycoside antibiotics antagonized and down-regulated TRPC1 expression and, when applied concomitantly with PEMF exposure, attenuated PEMF-stimulated calcium entry, mitochondrial respiration, proliferation, differentiation, and epigenetic directive in myoblasts, elucidating why the developmental potential of magnetic fields may have previously escaped detection. Mitochondrial-based survival adaptations were also activated upon PEMF stimulation. Magnetism thus deploys an authentic myogenic directive that relies on an interplay between mitochondria and TRPC1 to reach fruition.-Yap, J. L. Y., Tai, Y. K., Fröhlich, J., Fong, C. H. H., Yin, J. N., Foo, Z. L., Ramanan, S., Beyer, C., Toh, S. J., Casarosa, M., Bharathy, N., Kala, M. P., Egli, M., Taneja, R., Lee, C. N., Franco-Obregón, A. Ambient and supplemental magnetic fields promote myogenesis via a TRPC1-mitochondrial axis: evidence of a magnetic mitohormetic mechanism.
Collapse
Affiliation(s)
- Jasmine Lye Yee Yap
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,BioIonic Currents Electromagnetic Pulsing Systems (BICEPS) Laboratory, National University of Singapore, Singapore
| | - Yee Kit Tai
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,BioIonic Currents Electromagnetic Pulsing Systems (BICEPS) Laboratory, National University of Singapore, Singapore
| | - Jürg Fröhlich
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Institute for Electromagnetic Fields, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Charlene Hui Hua Fong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,BioIonic Currents Electromagnetic Pulsing Systems (BICEPS) Laboratory, National University of Singapore, Singapore
| | - Jocelyn Naixin Yin
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,BioIonic Currents Electromagnetic Pulsing Systems (BICEPS) Laboratory, National University of Singapore, Singapore
| | - Zi Ling Foo
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,BioIonic Currents Electromagnetic Pulsing Systems (BICEPS) Laboratory, National University of Singapore, Singapore
| | - Sharanya Ramanan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,BioIonic Currents Electromagnetic Pulsing Systems (BICEPS) Laboratory, National University of Singapore, Singapore
| | - Christian Beyer
- Institute for Electromagnetic Fields, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.,Centre Suisse d'Électronique et de Microtechnique (CSEM SA), Neuchâtel, Switzerland
| | - Shi Jie Toh
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,BioIonic Currents Electromagnetic Pulsing Systems (BICEPS) Laboratory, National University of Singapore, Singapore
| | - Marco Casarosa
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy
| | - Narendra Bharathy
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Children's Cancer Therapy Development Institute, Beaverton, Oregon, USA
| | - Monica Palanichamy Kala
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Marcel Egli
- Institute of Medical Engineering, Lucerne University of Applied Sciences and Arts, Hergiswil, Switzerland; and
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chuen Neng Lee
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Institute for Health Innovation and Technology, iHealthtech, National University of Singapore, Singapore
| | - Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,BioIonic Currents Electromagnetic Pulsing Systems (BICEPS) Laboratory, National University of Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Institute for Health Innovation and Technology, iHealthtech, National University of Singapore, Singapore
| |
Collapse
|
17
|
Tabuchi A, Eshima H, Tanaka Y, Nogami S, Inoue N, Sudo M, Okada H, Poole DC, Kano Y. Regional differences in Ca 2+ entry along the proximal-middle-distal muscle axis during eccentric contractions in rat skeletal muscle. J Appl Physiol (1985) 2019; 127:828-837. [PMID: 31369334 DOI: 10.1152/japplphysiol.01005.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Eccentric (ECC) contraction-induced muscle damage is associated with calcium ion (Ca2+) influx from the extracellular milieu through stretch-activated channels. It remains unknown whether Ca2+ influx consequent to repetitive ECC contractions is nonuniform across different muscle regions. We tested the hypothesis that there are regional differences in Ca2+ entry along the proximal-middle-distal muscle axis. Tibialis anterior (TA) muscles of adult male Wistar rats were exposed by reflecting the overlying skin and fasciae and ECC contractions evoked by peroneal nerve stimulation paired with simultaneous ankle extension (50 times/set, 2 protocols: 1 set and 10 sets). During ECC in the proximal, middle, and distal TA, we determined 1) muscle fiber extension by high-speed camera (200 frames/s) and 2) Ca2+ accumulation by in vivo bioimaging (Ca2+-sensitive probe Fura-2-acetoxymethyl ester). Muscle fiber extension from resting was significantly different among regions (i.e., proximal, 4.0%: < middle, 11.2%: < distal, 17.0%; ECC phase length at 500th contraction). Intracellular Ca2+ accumulation after 1 set of ECC was higher in the distal (1.46 ± 0.04, P < 0.05) than the proximal (1.27 ± 0.04) or middle (1.26 ± 0.05) regions. However, this regional Ca2+ accumulation difference disappeared by 32.5 min after the 1 set protocol when the muscle was quiescent and by contraction set 5 for the 10-set protocol. The initial preferential ECC-induced Ca2+ accumulation observed distally was associated spatially with the greater muscle extension compared with that of the proximal and middle regions. Disappearance of the regional Ca2+ accumulation disparity in quiescent and ECC-contracting muscle might be explained, in part, by axial Ca2+ propagation and account for the uniformity of muscle damage across regions evident 3 days post-ECC.NEW & NOTEWORTHY After 1 set of 50 eccentric (ECC) contractions in the anterior tibialis muscle, intracellular Ca2+ ([Ca2+]i) accumulation evinces substantial regional heterogeneity that is spatially coherent with muscle length changes (i.e., distal [Ca2+]i > middle, proximal). However, irrespective of whether 50 or 500 ECC contractions are performed, this heterogeneity is subsequently abolished, at least in part, by axial intracellular Ca2+ propagation. This Ca2+ homogenization across regions is consistent with the absence of any interregional difference in muscle damage 3 days post-ECC.
Collapse
Affiliation(s)
- Ayaka Tabuchi
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan
| | - Hiroaki Eshima
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan.,Department of Nutrition and Integrative Physiology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Yoshinori Tanaka
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan
| | - Shunsuke Nogami
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan
| | - Naoki Inoue
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan
| | - Mizuki Sudo
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan.,Physical Fitness Research Institute, Meiji Yasuda Life Foundation of Health and Welfare, Tokyo, Japan
| | - Hidetaka Okada
- Department of Mechanical Engineering and Intelligent Systems, Control Systems Program, University of Electro-Communications, Chofu, Tokyo, Japan
| | - David C Poole
- Departments of Anatomy & Physiology and Kinesiology, Kansas State University, Manhattan, Kansas
| | - Yutaka Kano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan.,Center for Neuroscience and Biomedical Engineering (CNBE), University of Electro-Communications, Chofu, Tokyo, Japan
| |
Collapse
|
18
|
Sadler KE, Stucky CL. Neuronal transient receptor potential (TRP) channels and noxious sensory detection in sickle cell disease. Neurosci Lett 2018; 694:184-191. [PMID: 30508569 DOI: 10.1016/j.neulet.2018.11.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 12/21/2022]
Abstract
Pain is the leading cause for hospitalization in patients with sickle cell disease (SCD). While the characteristics of SCD pain can vary widely between patients and between phases of the disease (e.g. vasoocclusive crisis pain vs. chronic pain), similar neuronal mechanisms likely underlie the various aspects of nociceptive processing. In the peripheral nervous system, small unmyelinated C fibers and lightly-myelinated Aδ fibers detect and transmit noxious stimuli. Both classes of neurons express members of the transient receptor potential (TRP) family, a group of ligand gated ion-channels that are activated by thermal, chemical, and mechanical stimuli. Promiscuous TRP channel family members are activated by a wide range of stimuli, many of which are dysregulated in patients with SCD and transgenic SCD mouse models. In 2011, our lab published the first report of TRP channel contributions to rodent SCD pain. Since that time, additional basic and clinical research efforts have investigated the genetic and biochemical status of TRP channels in SCD, placing particular focus on TRPV1. This review will discuss these advances and highlight the clinical SCD presentations that have not yet been studied, but which may be mediated by TRP channel activity.
Collapse
Affiliation(s)
- Katelyn E Sadler
- Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States.
| | - Cheryl L Stucky
- Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| |
Collapse
|
19
|
Wozniak KL, Tembo M, Phelps WA, Lee MT, Carlson AE. PLC and IP 3-evoked Ca 2+ release initiate the fast block to polyspermy in Xenopus laevis eggs. J Gen Physiol 2018; 150:1239-1248. [PMID: 30012841 PMCID: PMC6122927 DOI: 10.1085/jgp.201812069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/12/2018] [Indexed: 11/20/2022] Open
Abstract
The fast block to polyspermy is achieved in Xenopus laevis eggs by fertilization-induced depolarization. Wozniak et al. show that fertilization activates a signaling cascade involving phospholipase C, IP3, and intracellular Ca2+ release, which induces depolarization via Ca2+-activated Cl− efflux. The prevention of polyspermy is essential for the successful progression of normal embryonic development in most sexually reproducing species. In external fertilizers, the process of fertilization induces a depolarization of the egg’s membrane within seconds, which inhibits supernumerary sperm from entering an already-fertilized egg. This fast block requires an increase of intracellular Ca2+ in the African clawed frog, Xenopus laevis, which in turn activates an efflux of Cl− that depolarizes the cell. Here we seek to identify the source of this intracellular Ca2+. Using electrophysiology, pharmacology, bioinformatics, and developmental biology, we explore the requirement for both Ca2+ entry into the egg from the extracellular milieu and Ca2+ release from an internal store, to mediate fertilization-induced depolarization. We report that although eggs express Ca2+-permeant ion channels, blockade of these channels does not alter the fast block. In contrast, insemination of eggs in the presence of Xestospongin C—a potent inhibitor of inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release from the endoplasmic reticulum (ER)—completely inhibits fertilization-evoked depolarization and increases the incidence of polyspermy. Inhibition of the IP3-generating enzyme phospholipase C (PLC) with U73122 similarly prevents fertilization-induced depolarization and increases polyspermy. Together, these results demonstrate that fast polyspermy block after fertilization in X. laevis eggs is mediated by activation of PLC, which increases IP3 and evokes Ca2+ release from the ER. This ER-derived Ca2+ then activates a Cl− channel to induce the fast polyspermy block. The PLC-induced cascade of events represents one of the earliest known signaling pathways initiated by fertilization.
Collapse
Affiliation(s)
| | - Maiwase Tembo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Wesley A Phelps
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Miler T Lee
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Anne E Carlson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
20
|
Angiotensin II Triggers Peripheral Macrophage-to-Sensory Neuron Redox Crosstalk to Elicit Pain. J Neurosci 2018; 38:7032-7057. [PMID: 29976627 DOI: 10.1523/jneurosci.3542-17.2018] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 12/20/2022] Open
Abstract
Injury, inflammation, and nerve damage initiate a wide variety of cellular and molecular processes that culminate in hyperexcitation of sensory nerves, which underlies chronic inflammatory and neuropathic pain. Using behavioral readouts of pain hypersensitivity induced by angiotensin II (Ang II) injection into mouse hindpaws, our study shows that activation of the type 2 Ang II receptor (AT2R) and the cell-damage-sensing ion channel TRPA1 are required for peripheral mechanical pain sensitization induced by Ang II in male and female mice. However, we show that AT2R is not expressed in mouse and human dorsal root ganglia (DRG) sensory neurons. Instead, expression/activation of AT2R on peripheral/skin macrophages (MΦs) constitutes a critical trigger of mouse and human DRG sensory neuron excitation. Ang II-induced peripheral mechanical pain hypersensitivity can be attenuated by chemogenetic depletion of peripheral MΦs. Furthermore, AT2R activation in MΦs triggers production of reactive oxygen/nitrogen species, which trans-activate TRPA1 on mouse and human DRG sensory neurons via cysteine modification of the channel. Our study thus identifies a translatable immune cell-to-sensory neuron signaling crosstalk underlying peripheral nociceptor sensitization. This form of cell-to-cell signaling represents a critical peripheral mechanism for chronic pain and thus identifies multiple druggable analgesic targets.SIGNIFICANCE STATEMENT Pain is a widespread health problem that is undermanaged by currently available analgesics. Findings from a recent clinical trial on a type II angiotensin II receptor (AT2R) antagonist showed effective analgesia for neuropathic pain. AT2R antagonists have been shown to reduce neuropathy-, inflammation- and bone cancer-associated pain in rodents. We report that activation of AT2R in macrophages (MΦs) that infiltrate the site of injury, but not in sensory neurons, triggers an intercellular redox communication with sensory neurons via activation of the cell damage/pain-sensing ion channel TRPA1. This MΦ-to-sensory neuron crosstalk results in peripheral pain sensitization. Our findings provide an evidence-based mechanism underlying the analgesic action of AT2R antagonists, which could accelerate the development of efficacious non-opioid analgesic drugs for multiple pain conditions.
Collapse
|
21
|
A sensory-motor neuron type mediates proprioceptive coordination of steering in C. elegans via two TRPC channels. PLoS Biol 2018; 16:e2004929. [PMID: 29883446 PMCID: PMC6010301 DOI: 10.1371/journal.pbio.2004929] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/20/2018] [Accepted: 05/24/2018] [Indexed: 11/25/2022] Open
Abstract
Animal locomotion is mediated by a sensory system referred to as proprioception. Defects in the proprioceptive coordination of locomotion result in uncontrolled and inefficient movements. However, the molecular mechanisms underlying proprioception are not fully understood. Here, we identify two transient receptor potential cation (TRPC) channels, trp-1 and trp-2, as necessary and sufficient for proprioceptive responses in C. elegans head steering locomotion. Both channels are expressed in the SMDD neurons, which are required and sufficient for head bending, and mediate coordinated head steering by sensing mechanical stretches due to the contraction of head muscle and orchestrating dorsal head muscle contractions. Moreover, the SMDD neurons play dual roles to sense muscle stretch as well as to control muscle contractions. These results demonstrate that distinct locomotion patterns require dynamic and homeostatic modulation of feedback signals between neurons and muscles. Proprioception provides the nervous system with feedback about body posture in animals and is essential for the generation of coherent locomotive behaviors, such as walking, running, or crawling. However, little is known about the identity of proprioceptive receptors that sense body movement to regulate locomotion and the extent to which proprioception modulates sensorimotor coordination. Here, we analyze the molecular mechanisms that control head steering locomotion of Caenorhabditis elegans. We show that this movement is regulated by the transient receptor potential cation (TRPC) channels TRP-1 and TRP-2 and the SMDD proprioceptive neurons. We observe that mutant animals for both channels are defective in head steering locomotion and that ectopic expression of TRP-1 or TPR-2 in a C. elegans chemosensory neuron confers head bending–dependent responses, suggesting roles for these channels in proprioception. We also find that SMDD neurons are both necessary and sufficient to generate head steering locomotion via the two channels. Moreover, we demonstrate that the proprioceptive system mediates locomotion coordination by desynchronizing activities in motor systems. We conclude that two TRPC channels in collaboration with the proprioceptive receptor SMDD neurons control head steering in worms during forward locomotion.
Collapse
|
22
|
Brinchmann BC, Le Ferrec E, Podechard N, Lagadic-Gossmann D, Shoji KF, Penna A, Kukowski K, Kubátová A, Holme JA, Øvrevik J. Lipophilic Chemicals from Diesel Exhaust Particles Trigger Calcium Response in Human Endothelial Cells via Aryl Hydrocarbon Receptor Non-Genomic Signalling. Int J Mol Sci 2018; 19:E1429. [PMID: 29748474 PMCID: PMC5983734 DOI: 10.3390/ijms19051429] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 12/21/2022] Open
Abstract
Exposure to diesel exhaust particles (DEPs) affects endothelial function and may contribute to the development of atherosclerosis and vasomotor dysfunction. As intracellular calcium concentration [Ca2+]i is considered important in myoendothelial signalling, we explored the effects of extractable organic matter from DEPs (DEP-EOM) on [Ca2+]i and membrane microstructure in endothelial cells. DEP-EOM of increasing polarity was obtained by pressurized sequential extraction of DEPs with n-hexane (n-Hex-EOM), dichloromethane (DCM-EOM), methanol, and water. Chemical analysis revealed that the majority of organic matter was extracted by the n-Hex- and DCM-EOM, with polycyclic aromatic hydrocarbons primarily occurring in n-Hex-EOM. The concentration of calcium was measured in human microvascular endothelial cells (HMEC-1) using micro-spectrofluorometry. The lipophilic n-Hex-EOM and DCM-EOM, but not the more polar methanol- and water-soluble extracts, induced rapid [Ca2+]i increases in HMEC-1. n-Hex-EOM triggered [Ca2+]i increase from intracellular stores, followed by extracellular calcium influx consistent with store operated calcium entry (SOCE). By contrast, the less lipophilic DCM-EOM triggered [Ca2+]i increase via extracellular influx alone, resembling receptor operated calcium entry (ROCE). Both extracts increased [Ca2+]i via aryl hydrocarbon receptor (AhR) non-genomic signalling, verified by pharmacological inhibition and RNA-interference. Moreover, DCM-EOM appeared to induce an AhR-dependent reduction in the global plasma membrane order, as visualized by confocal fluorescence microscopy. DCM-EOM-triggered [Ca2+]i increase and membrane alterations were attenuated by the membrane stabilizing lipid cholesterol. In conclusion, lipophilic constituents of DEPs extracted by n-hexane and DCM seem to induce rapid AhR-dependent [Ca2+]i increase in HMEC-1 endothelial cells, possibly involving both ROCE and SOCE-mediated mechanisms. The semi-lipophilic fraction extracted by DCM also caused an AhR-dependent reduction in global membrane order, which appeared to be connected to the [Ca2+]i increase.
Collapse
Affiliation(s)
- Bendik C Brinchmann
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, N-0403 Oslo, Norway.
- Division of Laboratory Medicine, Faculty of Medicine, University of Oslo, N-0315 Oslo, Norway.
| | - Eric Le Ferrec
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Univ. Rennes, UMR_S 1085, F-35000 Rennes, France.
| | - Normand Podechard
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Univ. Rennes, UMR_S 1085, F-35000 Rennes, France.
| | - Dominique Lagadic-Gossmann
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Univ. Rennes, UMR_S 1085, F-35000 Rennes, France.
| | - Kenji F Shoji
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Univ. Rennes, UMR_S 1085, F-35000 Rennes, France.
| | - Aubin Penna
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Univ. Rennes, UMR_S 1085, F-35000 Rennes, France.
| | - Klara Kukowski
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA.
| | - Alena Kubátová
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA.
| | - Jørn A Holme
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, N-0403 Oslo, Norway.
| | - Johan Øvrevik
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, N-0403 Oslo, Norway.
| |
Collapse
|
23
|
Shepherd AJ, Mickle AD, Kadunganattil S, Hu H, Mohapatra DP. Parathyroid Hormone-Related Peptide Elicits Peripheral TRPV1-dependent Mechanical Hypersensitivity. Front Cell Neurosci 2018; 12:38. [PMID: 29497363 PMCID: PMC5818411 DOI: 10.3389/fncel.2018.00038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/31/2018] [Indexed: 02/04/2023] Open
Abstract
Bone metastasis in breast, prostate and lung cancers often leads to chronic pain, which is poorly managed by existing analgesics. The neurobiological mechanisms that underlie chronic pain associated with bone-metastasized cancers are not well understood, but sensitization of peripheral nociceptors by tumor microenvironment factors has been demonstrated to be important. Parathyroid hormone-related peptide (PTHrP) is highly expressed in bone-metastasized breast and prostate cancers, and is critical to growth and proliferation of these tumors in the bone tumor microenvironment. Previous studies have suggested that PTHrP could sensitize nociceptive sensory neurons, resulting in peripheral pain hypersensitivity. In this study, we found that PTHrP induces both heat and mechanical hypersensitivity, that are dependent on the pain-transducing transient receptor potential channel family vanilloid, member-1 (TRPV1), but not the mechano-transducing TRPV4 and TRPA1 ion channels. Functional ratiometric Ca2+ imaging and voltage-clamp electrophysiological analysis of cultured mouse DRG neurons show significant potentiation of TRPV1, but not TRPA1 or TRPV4 channel activation by PTHrP. Interestingly, PTHrP exposure led to the slow and sustained activation of TRPV1, in the absence of any exogenous channel agonist, and is dependent on the expression of the type-1 parathyroid hormone receptor (PTH1), as well as on downstream phosphorylation of the channel by protein kinase C (PKC). Accordingly, local administration of specific small-molecule antagonists of TRPV1 to mouse hindpaws after the development of PTHrP-induced mechanical hypersensitivity led to its significant attenuation. Collectively, our findings suggest that PTHrP/PTH1-mediated flow activation of TRPV1 channel contributes at least in part to the development and maintenance of peripheral mechanical pain hypersensitivity, and could therefore constitute a mechanism for nociceptor sensitization in the context of metastatic bone cancer pain.
Collapse
Affiliation(s)
- Andrew J Shepherd
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States.,Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Aaron D Mickle
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States.,Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Suraj Kadunganattil
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Hongzhen Hu
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.,Center for the Study of Itch, Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.,Center for Investigation on Membrane Excitable Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Durga P Mohapatra
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States.,Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.,Center for the Study of Itch, Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.,Center for Investigation on Membrane Excitable Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| |
Collapse
|
24
|
Ishido M, Nakamura T. Marked decrease of aquaporin-4 protein is independent of the changes in α1-syntrophin and TRPV4 levels in response to denervation-induced muscle atrophy in vivo. J Muscle Res Cell Motil 2017; 38:175-181. [PMID: 28488242 DOI: 10.1007/s10974-017-9471-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/03/2017] [Indexed: 11/28/2022]
Abstract
Aquaporin-4 (AQP4) is a selective water channel mediating water transport across cell membranes in skeletal muscles. Recently, it was noted that AQP4 is one of the key molecules regulating muscle morphology. Indeed, the AQP4 accumulation level was stably maintained in hypertrophied skeletal muscles. On the other hand, whether the AQP4 accumulation level is stably maintained in atrophied muscles remains poorly understood. The present study investigated the changes in the AQP4 accumulation level in the atrophied muscles at 2 weeks after denervation. As a result, the accumulation level of AQP4 in the atrophied muscle was significantly decreased compared with that in the control muscle (p < 0.05). Interestingly, the accumulation level of α1-syntrophin, which is an essential factor in regulating the stable accumulation level of AQP4, was stably maintained in the atrophied muscles. On the other hand, the accumulation level of the transient receptor potential vanilloid 4 (TRPV4), which contributes to cell volume control via interaction with AQP4, was significantly increased in the atrophied muscles compared with that in the control muscle (p < 0.05). Therefore, the present study suggested that the imbalance between the AQP4 accumulation level and skeletal muscle volume may be induced in the atrophied muscles by denervation, and the decrease in the accumulation level of AQP4 may be accompanied by defects in the functional and structural relationships with α1-syntrophin and TRPV4.
Collapse
Affiliation(s)
- Minenori Ishido
- Section for Health-related Physical Education, Division of Human Sciences, Faculty of Engineering, Osaka Institute of Technology, Ohmiya, Asahi-ku, Osaka, 535-8585, Japan.
| | - Tomohiro Nakamura
- Section for Health-related Physical Education, Division of Human Sciences, Faculty of Engineering, Osaka Institute of Technology, Ohmiya, Asahi-ku, Osaka, 535-8585, Japan
| |
Collapse
|
25
|
White JPM, Cibelli M, Urban L, Nilius B, McGeown JG, Nagy I. TRPV4: Molecular Conductor of a Diverse Orchestra. Physiol Rev 2017; 96:911-73. [PMID: 27252279 DOI: 10.1152/physrev.00016.2015] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential vanilloid type 4 (TRPV4) is a calcium-permeable nonselective cation channel, originally described in 2000 by research teams led by Schultz (Nat Cell Biol 2: 695-702, 2000) and Liedtke (Cell 103: 525-535, 2000). TRPV4 is now recognized as being a polymodal ionotropic receptor that is activated by a disparate array of stimuli, ranging from hypotonicity to heat and acidic pH. Importantly, this ion channel is constitutively expressed and capable of spontaneous activity in the absence of agonist stimulation, which suggests that it serves important physiological functions, as does its widespread dissemination throughout the body and its capacity to interact with other proteins. Not surprisingly, therefore, it has emerged more recently that TRPV4 fulfills a great number of important physiological roles and that various disease states are attributable to the absence, or abnormal functioning, of this ion channel. Here, we review the known characteristics of this ion channel's structure, localization and function, including its activators, and examine its functional importance in health and disease.
Collapse
Affiliation(s)
- John P M White
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Mario Cibelli
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Laszlo Urban
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Bernd Nilius
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - J Graham McGeown
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Istvan Nagy
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
26
|
Effects of transient receptor potential canonical 1 (TRPC1) on the mechanical stretch-induced expression of airway remodeling-associated factors in human bronchial epithelioid cells. J Biomech 2016; 51:89-96. [PMID: 27986325 DOI: 10.1016/j.jbiomech.2016.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/15/2016] [Accepted: 12/04/2016] [Indexed: 02/06/2023]
Abstract
Research has shown that mechanical stress stimulation can cause airway remodeling. We investigate the effects of mechanical stretch on the expression of the airway remodeling-associated factors interleukin-13 (IL-13) and matrix metalloprotein-9 (MMP-9) and signaling pathways in human bronchial epithelioid (16HBE) cells under mechanical stretch. A Flexcell FX-4000 Tension System with a flexible substrate was applied to stretch 16HBE cells at a 15% elongation amplitude and 1Hz frequency, with stretching for 0.5h, 1h, 1.5h and 2h. The experimental group with higher IL-13, MMP-9, and TRPC1 expression and higher Ca2+ levels was selected for performing intervention experiment. These cells were pretreated with the transient receptor potential canonical 1 (TRPC1) channel antagonist SKF96365 and TRPC1-specific siRNA, and then mechanical stretch was applied. Our results provided evidences that mechanical pressure significantly increased IL-13, MMP-9, and TRPC1 protein and mRNA expression levels and intracellular Ca2+ fluorescence intensity at 4 time points compared with the control group. The peak IL-13, MMP-9, and TRPC1 expression levels were observed at 0.5h after exposure to mechanical pressure. IL-13 and MMP-9 expression levels and Ca2+ fluorescence intensity in the stretch+SKF96365 group and in the stretch+TRPC1 siRNA group were significantly lower than those were in the mechanical stretch group. By incubating the cells with the intracellular calcium chelator BAPTA-AM, the expression of IL-13 and MMP9 was significantly decreased, and the expression level of TRPC1 remained unchanged. These observations suggest that mechanical stretch may induce an influx of Ca2+ and up-regulation of IL-13 and MMP-9 expression in 16HBE cells via activation of TRPC1.
Collapse
|
27
|
Mickle AD, Shepherd AJ, Mohapatra DP. Nociceptive TRP Channels: Sensory Detectors and Transducers in Multiple Pain Pathologies. Pharmaceuticals (Basel) 2016; 9:ph9040072. [PMID: 27854251 PMCID: PMC5198047 DOI: 10.3390/ph9040072] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 02/07/2023] Open
Abstract
Specialized receptors belonging to the transient receptor potential (TRP) family of ligand-gated ion channels constitute the critical detectors and transducers of pain-causing stimuli. Nociceptive TRP channels are predominantly expressed by distinct subsets of sensory neurons of the peripheral nervous system. Several of these TRP channels are also expressed in neurons of the central nervous system, and in non-neuronal cells that communicate with sensory nerves. Nociceptive TRPs are activated by specific physico-chemical stimuli to provide the excitatory trigger in neurons. In addition, decades of research has identified a large number of immune and neuromodulators as mediators of nociceptive TRP channel activation during injury, inflammatory and other pathological conditions. These findings have led to aggressive targeting of TRP channels for the development of new-generation analgesics. This review summarizes the complex activation and/or modulation of nociceptive TRP channels under pathophysiological conditions, and how these changes underlie acute and chronic pain conditions. Furthermore, development of small-molecule antagonists for several TRP channels as analgesics, and the positive and negative outcomes of these drugs in clinical trials are discussed. Understanding the diverse functional and modulatory properties of nociceptive TRP channels is critical to function-based drug targeting for the development of evidence-based and efficacious new generation analgesics.
Collapse
Affiliation(s)
- Aaron D Mickle
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| | - Andrew J Shepherd
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| | - Durga P Mohapatra
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
- Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
- Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
28
|
Zanou N, Mondin L, Fuster C, Seghers F, Dufour I, de Clippele M, Schakman O, Tajeddine N, Iwata Y, Wakabayashi S, Voets T, Allard B, Gailly P. Osmosensation in TRPV2 dominant negative expressing skeletal muscle fibres. J Physiol 2015; 593:3849-63. [PMID: 26108786 DOI: 10.1113/jp270522] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/19/2015] [Indexed: 11/08/2022] Open
Abstract
Increased plasma osmolarity induces intracellular water depletion and cell shrinkage (CS) followed by activation of a regulatory volume increase (RVI). In skeletal muscle, the hyperosmotic shock-induced CS is accompanied by a small membrane depolarization responsible for a release of Ca(2+) from intracellular pools. Hyperosmotic shock also induces phosphorylation of STE20/SPS1-related proline/alanine-rich kinase (SPAK). TRPV2 dominant negative expressing fibres challenged with hyperosmotic shock present a slower membrane depolarization, a diminished Ca(2+) response, a smaller RVI response, a decrease in SPAK phosphorylation and defective muscle function. We suggest that hyperosmotic shock induces TRPV2 activation, which accelerates muscle cell depolarization and allows the subsequent Ca(2+) release from the sarcoplasmic reticulum, activation of the Na(+) -K(+) -Cl(-) cotransporter by SPAK, and the RVI response. Increased plasma osmolarity induces intracellular water depletion and cell shrinkage followed by activation of a regulatory volume increase (RVI). In skeletal muscle, this is accompanied by transverse tubule (TT) dilatation and by a membrane depolarization responsible for a release of Ca(2+) from intracellular pools. We observed that both hyperosmotic shock-induced Ca(2+) transients and RVI were inhibited by Gd(3+) , ruthenium red and GsMTx4 toxin, three inhibitors of mechanosensitive ion channels. The response was also completely absent in muscle fibres overexpressing a non-permeant, dominant negative (DN) mutant of the transient receptor potential, V2 isoform (TRPV2) ion channel, suggesting the involvement of TRPV2 or of a TRP isoform susceptible to heterotetramerization with TRPV2. The release of Ca(2+) induced by hyperosmotic shock was increased by cannabidiol, an activator of TRPV2, and decreased by tranilast, an inhibitor of TRPV2, suggesting a role for the TRPV2 channel itself. Hyperosmotic shock-induced membrane depolarization was impaired in TRPV2-DN fibres, suggesting that TRPV2 activation triggers the release of Ca(2+) from the sarcoplasmic reticulum by depolarizing TTs. RVI requires the sequential activation of STE20/SPS1-related proline/alanine-rich kinase (SPAK) and NKCC1, a Na(+) -K(+) -Cl(-) cotransporter, allowing ion entry and driving osmotic water flow. In fibres overexpressing TRPV2-DN as well as in fibres in which Ca(2+) transients were abolished by the Ca(2+) chelator BAPTA, the level of P-SPAK(Ser373) in response to hyperosmotic shock was reduced, suggesting a modulation of SPAK phosphorylation by intracellular Ca(2+) . We conclude that TRPV2 is involved in osmosensation in skeletal muscle fibres, acting in concert with P-SPAK-activated NKCC1.
Collapse
Affiliation(s)
- Nadège Zanou
- Laboratory of Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, av. Mounier, B1.53.17, B-1200, Brussels, Belgium
| | - Ludivine Mondin
- Laboratory of Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, av. Mounier, B1.53.17, B-1200, Brussels, Belgium
| | - Clarisse Fuster
- Centre de Génétique et de Physiologie Cellulaire et Moléculaire, Université Claude Bernard Lyon 1, CNRS, UMR 5534, 69622, Villeurbanne, France
| | - François Seghers
- Laboratory of Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, av. Mounier, B1.53.17, B-1200, Brussels, Belgium
| | - Inès Dufour
- Laboratory of Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, av. Mounier, B1.53.17, B-1200, Brussels, Belgium
| | - Marie de Clippele
- Laboratory of Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, av. Mounier, B1.53.17, B-1200, Brussels, Belgium
| | - Olivier Schakman
- Laboratory of Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, av. Mounier, B1.53.17, B-1200, Brussels, Belgium
| | - Nicolas Tajeddine
- Laboratory of Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, av. Mounier, B1.53.17, B-1200, Brussels, Belgium
| | - Yuko Iwata
- Department of Molecular Physiology, National Cardiovascular Center Research Institute Suita, Osaka, 565-8565, Japan
| | - Shigeo Wakabayashi
- Department of Molecular Physiology, National Cardiovascular Center Research Institute Suita, Osaka, 565-8565, Japan
| | - Thomas Voets
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, Katholiek Universiteit Leuven, B-3000, Leuven, Belgium
| | - Bruno Allard
- Centre de Génétique et de Physiologie Cellulaire et Moléculaire, Université Claude Bernard Lyon 1, CNRS, UMR 5534, 69622, Villeurbanne, France
| | - Philippe Gailly
- Laboratory of Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, av. Mounier, B1.53.17, B-1200, Brussels, Belgium
| |
Collapse
|
29
|
Kurth F, Franco-Obregón A, Casarosa M, Küster SK, Wuertz-Kozak K, Dittrich PS. Transient receptor potential vanilloid 2-mediated shear-stress responses in C2C12 myoblasts are regulated by serum and extracellular matrix. FASEB J 2015. [PMID: 26207028 DOI: 10.1096/fj.15-275396] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The developmental sensitivity of skeletal muscle to mechanical forces is unparalleled in other tissues. Calcium entry via reputedly mechanosensitive transient receptor potential (TRP) channel classes has been shown to play an essential role in both the early proliferative stage and subsequent differentiation of skeletal muscle myoblasts, particularly TRP canonical (TRPC) 1 and TRP vanilloid (TRPV) 2. Here we show that C2C12 murine myoblasts respond to fluid flow-induced shear stress with increments in cytosolic calcium that are largely initiated by the mechanosensitive opening of TRPV2 channels. Response to fluid flow was augmented by growth in low extracellular serum concentration (5 vs. 20% fetal bovine serum) by greater than 9-fold and at 18 h in culture, coincident with the greatest TRPV2 channel expression under identical conditions (P < 0.02). Fluid flow responses were also enhanced by substrate functionalization with laminin, rather than with fibronectin, agreeing with previous findings that the gating of TRPV2 is facilitated by laminin. Fluid flow-induced calcium increments were blocked by ruthenium red (27%) and SKF-96365 (38%), whereas they were unaltered by 2-aminoethoxydiphenyl borate, further corroborating that TRPV2 channels play a predominant role in fluid flow mechanosensitivity over that of TRPC1 and TRP melastatin (TRPM) 7.
Collapse
Affiliation(s)
- Felix Kurth
- *Department of Biosystems and Science Engineering and Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Switzerland; Department of Surgery, Yong Loo Lin School of Medicine, and Department of Physiology, National University of Singapore, Singapore; and National University Hospital Sports Centre, Singapore
| | - Alfredo Franco-Obregón
- *Department of Biosystems and Science Engineering and Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Switzerland; Department of Surgery, Yong Loo Lin School of Medicine, and Department of Physiology, National University of Singapore, Singapore; and National University Hospital Sports Centre, Singapore
| | - Marco Casarosa
- *Department of Biosystems and Science Engineering and Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Switzerland; Department of Surgery, Yong Loo Lin School of Medicine, and Department of Physiology, National University of Singapore, Singapore; and National University Hospital Sports Centre, Singapore
| | - Simon K Küster
- *Department of Biosystems and Science Engineering and Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Switzerland; Department of Surgery, Yong Loo Lin School of Medicine, and Department of Physiology, National University of Singapore, Singapore; and National University Hospital Sports Centre, Singapore
| | - Karin Wuertz-Kozak
- *Department of Biosystems and Science Engineering and Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Switzerland; Department of Surgery, Yong Loo Lin School of Medicine, and Department of Physiology, National University of Singapore, Singapore; and National University Hospital Sports Centre, Singapore
| | - Petra S Dittrich
- *Department of Biosystems and Science Engineering and Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Switzerland; Department of Surgery, Yong Loo Lin School of Medicine, and Department of Physiology, National University of Singapore, Singapore; and National University Hospital Sports Centre, Singapore
| |
Collapse
|
30
|
Burr AR, Molkentin JD. Genetic evidence in the mouse solidifies the calcium hypothesis of myofiber death in muscular dystrophy. Cell Death Differ 2015; 22:1402-12. [PMID: 26088163 PMCID: PMC4532779 DOI: 10.1038/cdd.2015.65] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/03/2015] [Accepted: 04/17/2015] [Indexed: 01/19/2023] Open
Abstract
Muscular dystrophy (MD) refers to a clinically and genetically heterogeneous group of degenerative muscle disorders characterized by progressive muscle wasting and often premature death. Although the primary defect underlying most forms of MD typically results from a loss of sarcolemmal integrity, the secondary molecular mechanisms leading to muscle degeneration and myofiber necrosis is debated. One hypothesis suggests that elevated or dysregulated cytosolic calcium is the common transducing event, resulting in myofiber necrosis in MD. Previous measurements of resting calcium levels in myofibers from dystrophic animal models or humans produced equivocal results. However, recent studies in genetically altered mouse models have largely solidified the calcium hypothesis of MD, such that models with artificially elevated calcium in skeletal muscle manifest fulminant dystrophic-like disease, whereas models with enhanced calcium clearance or inhibited calcium influx are resistant to myofiber death and MD. Here, we will review the field and the recent cadre of data from genetically altered mouse models, which we propose have collectively mostly proven the hypothesis that calcium is the primary effector of myofiber necrosis in MD. This new consensus on calcium should guide future selection of drugs to be evaluated in clinical trials as well as gene therapy-based approaches.
Collapse
Affiliation(s)
- A R Burr
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, 240 Albert Sabin Way, Cincinnati, OH, USA
| | - J D Molkentin
- 1] Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, 240 Albert Sabin Way, Cincinnati, OH, USA [2] Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Howard Hughes Medical Institute, Molecular Cardiovascular Biology, 240 Albert Sabin Way, Cincinnati, OH, USA
| |
Collapse
|
31
|
Morrissey JB, Cheng RY, Davoudi S, Gilbert PM. Biomechanical Origins of Muscle Stem Cell Signal Transduction. J Mol Biol 2015; 428:1441-54. [PMID: 26004541 DOI: 10.1016/j.jmb.2015.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/03/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
Abstract
Skeletal muscle, the most abundant and widespread tissue in the human body, contracts upon receiving electrochemical signals from the nervous system to support essential functions such as thermoregulation, limb movement, blinking, swallowing and breathing. Reconstruction of adult muscle tissue relies on a pool of mononucleate, resident muscle stem cells, known as "satellite cells", expressing the paired-box transcription factor Pax7 necessary for their specification during embryonic development and long-term maintenance during adult life. Satellite cells are located around the myofibres in a niche at the interface of the basal lamina and the host fibre plasma membrane (i.e., sarcolemma), at a very low frequency. Upon damage to the myofibres, quiescent satellite cells are activated and give rise to a population of transient amplifying myogenic progenitor cells, which eventually exit the cell cycle permanently and fuse to form new myofibres and regenerate the tissue. A subpopulation of satellite cells self-renew and repopulate the niche, poised to respond to future demands. Harnessing the potential of satellite cells relies on a complete understanding of the molecular mechanisms guiding their regulation in vivo. Over the past several decades, studies revealed many signal transduction pathways responsible for satellite cell fate decisions, but the niche cues driving the activation and silencing of these pathways are less clear. Here we explore the scintillating possibility that considering the dynamic changes in the biophysical properties of the skeletal muscle, namely stiffness, and the stretch and shear forces to which a myofibre can be subjected to may provide missing information necessary to gain a full understanding of satellite cell niche regulation.
Collapse
Affiliation(s)
- James B Morrissey
- Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada M5S3G9; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada M5S3E1
| | - Richard Y Cheng
- Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada M5S3G9; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada M5S3E1
| | - Sadegh Davoudi
- Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada M5S3G9; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada M5S3E1
| | - Penney M Gilbert
- Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada M5S3G9; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada M5S3E1.
| |
Collapse
|
32
|
Lansman JB. Utrophin suppresses low frequency oscillations and coupled gating of mechanosensitive ion channels in dystrophic skeletal muscle. Channels (Austin) 2015; 9:145-60. [PMID: 25941878 DOI: 10.1080/19336950.2015.1040211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
An absence of utrophin in muscle from mdx mice prolongs the open time of single mechanosensitive channels. On a time scale much longer than the duration of individual channel activations, genetic depletion of utrophin produces low frequency oscillations of channel open probability. Oscillatory channel opening occurred in the dystrophin/utrophin mutants, but was absent in wild-type and mdx fibers. By contrast, small conductance channels showed random gating behavior when present in the same patch. Applying a negative pressure to a patch on a DKO fiber produced a burst of mode II activity, but channels subsequently closed and remained silent for tens of seconds during the maintained pressure stimulus. In addition, simultaneous opening of multiple MS channels could be frequently observed in recordings from patches on DKO fibers, but only rarely in wild-type and mdx muscle. A model which accounts for the single-channel data is proposed in which utrophin acts as gating spring which maintains the mechanical stability a caveolar-like compartment. The state of this compartment is suggested to be dynamic; its continuity with the extracellular surface varying over seconds to minutes. Loss of the mechanical stability of this compartment contributes to pathogenic Ca(2+) entry through MS channels in Duchenne dystrophy.
Collapse
Affiliation(s)
- Jeffry B Lansman
- a Department of Cellular and Molecular Pharmacology ; School of Medicine; University of California San Francisco; San Francisco , CA USA
| |
Collapse
|
33
|
Placing ion channels into a signaling network of T cells: from maturing thymocytes to healthy T lymphocytes or leukemic T lymphoblasts. BIOMED RESEARCH INTERNATIONAL 2015; 2015:750203. [PMID: 25866806 PMCID: PMC4383400 DOI: 10.1155/2015/750203] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/19/2014] [Indexed: 12/20/2022]
Abstract
T leukemogenesis is a multistep process, where the genetic errors during T cell maturation cause the healthy progenitor to convert into the leukemic precursor that lost its ability to differentiate but possesses high potential for proliferation, self-renewal, and migration. A new misdirecting "leukemogenic" signaling network appears, composed by three types of participants which are encoded by (1) genes implicated in determined stages of T cell development but deregulated by translocations or mutations, (2) genes which normally do not participate in T cell development but are upregulated, and (3) nondifferentially expressed genes which become highly interconnected with genes expressed differentially. It appears that each of three groups may contain genes coding ion channels. In T cells, ion channels are implicated in regulation of cell cycle progression, differentiation, activation, migration, and cell death. In the present review we are going to reveal a relationship between different genetic defects, which drive the T cell neoplasias, with calcium signaling and ion channels. We suggest that changes in regulation of various ion channels in different types of the T leukemias may provide the intracellular ion microenvironment favorable to maintain self-renewal capacity, arrest differentiation, induce proliferation, and enhance motility.
Collapse
|
34
|
Mickle AD, Shepherd AJ, Mohapatra DP. Sensory TRP channels: the key transducers of nociception and pain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:73-118. [PMID: 25744671 DOI: 10.1016/bs.pmbts.2015.01.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peripheral detection of nociceptive and painful stimuli by sensory neurons involves a complex repertoire of molecular detectors and/or transducers on distinct subsets of nerve fibers. The majority of such molecular detectors/transducers belong to the transient receptor potential (TRP) family of cation channels, which comprise both specific receptors for distinct nociceptive stimuli, as well as for multiple stimuli. This chapter discusses the classification, distribution, and functional properties of individual TRP channel types that have been implicated in various nociceptive and/or painful conditions.
Collapse
Affiliation(s)
- Aaron D Mickle
- Department of Pharmacology, The University of Iowa Roy J. and Lucile A. Carver College of Medicine, Iowa City, Iowa, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew J Shepherd
- Department of Pharmacology, The University of Iowa Roy J. and Lucile A. Carver College of Medicine, Iowa City, Iowa, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Durga P Mohapatra
- Department of Pharmacology, The University of Iowa Roy J. and Lucile A. Carver College of Medicine, Iowa City, Iowa, USA; Department of Anesthesia, The University of Iowa Roy J. and Lucile A. Carver College of Medicine, Iowa City, Iowa, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
35
|
Pottosin I, Delgado-Enciso I, Bonales-Alatorre E, Nieto-Pescador MG, Moreno-Galindo EG, Dobrovinskaya O. Mechanosensitive Ca2+-permeable channels in human leukemic cells: Pharmacological and molecular evidence for TRPV2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:51-9. [DOI: 10.1016/j.bbamem.2014.09.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 01/09/2023]
|
36
|
Song S, Yamamura A, Yamamura H, Ayon RJ, Smith KA, Tang H, Makino A, Yuan JXJ. Flow shear stress enhances intracellular Ca2+ signaling in pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension. Am J Physiol Cell Physiol 2014; 307:C373-83. [PMID: 24920677 DOI: 10.1152/ajpcell.00115.2014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An increase in cytosolic Ca(2+) concentration ([Ca(2+)]cyt) in pulmonary arterial smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction and an important stimulus for pulmonary arterial medial hypertrophy in patients with idiopathic pulmonary arterial hypertension (IPAH). Vascular smooth muscle cells (SMC) sense the blood flow shear stress through interstitial fluid driven by pressure or direct exposure to blood flow in case of endothelial injury. Mechanical stimulus can increase [Ca(2+)]cyt. Here we report that flow shear stress raised [Ca(2+)]cyt in PASMC, while the shear stress-mediated rise in [Ca(2+)]cyt and the protein expression level of TRPM7 and TRPV4 channels were significantly greater in IPAH-PASMC than in normal PASMC. Blockade of TRPM7 by 2-APB or TRPV4 by Ruthenium red inhibited shear stress-induced rise in [Ca(2+)]cyt in normal and IPAH-PASMC, while activation of TRPM7 by bradykinin or TRPV4 by 4αPDD induced greater increase in [Ca(2+)]cyt in IPAH-PASMC than in normal PASMC. The bradykinin-mediated activation of TRPM7 also led to a greater increase in [Mg(2+)]cyt in IPAH-PASMC than in normal PASMC. Knockdown of TRPM7 and TRPV4 by siRNA significantly attenuated the shear stress-mediated [Ca(2+)]cyt increases in normal and IPAH-PASMC. In conclusion, upregulated mechanosensitive channels (e.g., TRPM7, TRPV4, TRPC6) contribute to the enhanced [Ca(2+)]cyt increase induced by shear stress in PASMC from IPAH patients. Blockade of the mechanosensitive cation channels may represent a novel therapeutic approach for relieving elevated [Ca(2+)]cyt in PASMC and thereby inhibiting sustained pulmonary vasoconstriction and pulmonary vascular remodeling in patients with IPAH.
Collapse
Affiliation(s)
- Shanshan Song
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Departments of Medicine and Physiology, University of Arizona College of Medicine, Tucson, Arizona
| | - Aya Yamamura
- Kinjo Gakuin University School of Pharmacy, Nagoya, Japan; and
| | - Hisao Yamamura
- Nagoya City University Graduate School of Pharmaceutical Sciences, Nagoya, Japan
| | - Ramon J Ayon
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Departments of Medicine and Physiology, University of Arizona College of Medicine, Tucson, Arizona
| | - Kimberly A Smith
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Haiyang Tang
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Departments of Medicine and Physiology, University of Arizona College of Medicine, Tucson, Arizona
| | - Ayako Makino
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Departments of Medicine and Physiology, University of Arizona College of Medicine, Tucson, Arizona
| | - Jason X-J Yuan
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Departments of Medicine and Physiology, University of Arizona College of Medicine, Tucson, Arizona;
| |
Collapse
|
37
|
Tan N, Lansman JB. Utrophin regulates modal gating of mechanosensitive ion channels in dystrophic skeletal muscle. J Physiol 2014; 592:3303-23. [PMID: 24879867 DOI: 10.1113/jphysiol.2014.274332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Dystrophin is a large, submembrane cytoskeletal protein, absence of which causes Duchenne muscular dystrophy. Utrophin is a dystrophin homologue found in both muscle and brain whose physiological function is unknown. Recordings of single-channel activity were made from membrane patches on skeletal muscle from mdx, mdx/utrn(+/-) heterozygotes and mdx/utrn(-/-) double knockout mice to investigate the role of these cytoskeletal proteins in mechanosensitive (MS) channel gating. We find complex, gene dose-dependent effects of utrophin depletion in dystrophin-deficient mdx muscle: (1) increased MS channel open probability, (2) a shift of MS channel gating to larger pressures, (3) appearance of modal gating of MS channels and small conductance channels and (4) expression of large conductance MS channels. We suggest a physical model in which utrophin acts as a scaffolding protein that stabilizes lipid microdomains and clusters MS channel subunits. Depletion of utrophin disrupts domain composition in a manner that favours open channel area expansion, as well as allowing diffusion and aggregation of additional MS channel subunits.
Collapse
Affiliation(s)
- Nhi Tan
- Department of Cellular and Molecular Pharmacology, School of Medicine, University of California, San Francisco, San Francisco, CA, 94143-0450, USA
| | - Jeffry B Lansman
- Department of Cellular and Molecular Pharmacology, School of Medicine, University of California, San Francisco, San Francisco, CA, 94143-0450, USA
| |
Collapse
|
38
|
Crocetti S, Beyer C, Unternährer S, Benavides Damm T, Schade-Kampmann G, Hebeisen M, Di Berardino M, Fröhlich J, Franco-Obregón A. Impedance flow cytometry gauges proliferative capacity by detecting TRPC1 expression. Cytometry A 2014; 85:525-36. [DOI: 10.1002/cyto.a.22461] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 12/10/2013] [Accepted: 03/03/2014] [Indexed: 01/13/2023]
Affiliation(s)
| | - Christian Beyer
- Electromagnetics in Medicine and Biology Group, Laboratory for Electromagnetic Fields and Microwave Electronics; ETH Zürich Switzerland
| | | | - Tatiana Benavides Damm
- Institute for Biomechanics; ETH Zürich Switzerland
- CC Aerospace Biomedical Science & Technology, Space Biology Group, Luzern University of Applied Sciences and Arts; Hergiswil Switzerland
| | | | - Monika Hebeisen
- Leister Process Technologies; Axetris Division; Kaegiswil Switzerland
| | | | - Jürg Fröhlich
- Electromagnetics in Medicine and Biology Group, Laboratory for Electromagnetic Fields and Microwave Electronics; ETH Zürich Switzerland
| | - Alfredo Franco-Obregón
- Institute for Biomechanics; ETH Zürich Switzerland
- Department of Surgery; Yong Loo Lin School of Medicine, National University of Singapore; Singapore
| |
Collapse
|
39
|
Bourinet E, Altier C, Hildebrand ME, Trang T, Salter MW, Zamponi GW. Calcium-permeable ion channels in pain signaling. Physiol Rev 2014; 94:81-140. [PMID: 24382884 DOI: 10.1152/physrev.00023.2013] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The detection and processing of painful stimuli in afferent sensory neurons is critically dependent on a wide range of different types of voltage- and ligand-gated ion channels, including sodium, calcium, and TRP channels, to name a few. The functions of these channels include the detection of mechanical and chemical insults, the generation of action potentials and regulation of neuronal firing patterns, the initiation of neurotransmitter release at dorsal horn synapses, and the ensuing activation of spinal cord neurons that project to pain centers in the brain. Long-term changes in ion channel expression and function are thought to contribute to chronic pain states. Many of the channels involved in the afferent pain pathway are permeable to calcium ions, suggesting a role in cell signaling beyond the mere generation of electrical activity. In this article, we provide a broad overview of different calcium-permeable ion channels in the afferent pain pathway and their role in pain pathophysiology.
Collapse
|
40
|
The interplay between cell signalling and mechanics in developmental processes. Nat Rev Genet 2013; 14:733-44. [PMID: 24045690 DOI: 10.1038/nrg3513] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Force production and the propagation of stress and strain within embryos and organisms are crucial physical processes that direct morphogenesis. In addition, there is mounting evidence that biomechanical cues created by these processes guide cell behaviours and cell fates. In this Review we discuss key roles for biomechanics during development to directly shape tissues, to provide positional information for cell fate decisions and to enable robust programmes of development. Several recently identified molecular mechanisms suggest how cells and tissues might coordinate their responses to biomechanical cues. Finally, we outline long-term challenges in integrating biomechanics with genetic analysis of developing embryos.
Collapse
|
41
|
Huang H, Bae C, Sachs F, Suchyna TM. Caveolae regulation of mechanosensitive channel function in myotubes. PLoS One 2013; 8:e72894. [PMID: 24023653 PMCID: PMC3758351 DOI: 10.1371/journal.pone.0072894] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/15/2013] [Indexed: 01/07/2023] Open
Abstract
Mutations that lead to muscular dystrophy often create deficiencies in cytoskeletal support of the muscle sarcolemma causing hyperactive mechanosensitive cation channel (MSC) activity and elevated intracellular Ca(2+). Caveolae are cholesterol-rich microdomains that form mechanically deformable invaginations of the sarcolemma. Mutations to caveolin-3, the main scaffolding protein of caveolae in muscle, cause Limbe-Girdle muscular dystrophy. Using genetic and acute chemical perturbations of developing myotubes we investigated whether caveolae are functionally linked to MSCs. MSC sensitivity was assayed using suction application to patches and probe-induced indentation during whole-cell recordings. Membrane mechanical stress in patches was monitored using patch capacitance/impedance. Cholesterol depletion disrupted caveolae and caused a large increase in MSC current. It also decreased the membrane mechanical relaxation time, likely reflecting cytoskeleton dissociation from the bilayer. Reduction of Cav3 expression with miRNA also increased MSC current and decreased patch relaxation time. In contrast Cav3 overexpression produced a small decrease in MSC currents. To acutely and specifically inhibit Cav3 interactions, we made a chimeric peptide containing the antennapedia membrane translocation domain and the Cav3 scaffolding domain (A-CSD3). A-CSD3 action was time dependent initially producing a mild Ca(2+) leak and increased MSC current, while longer exposures decreased MSC currents coinciding with increased patch stiffening. Images of GFP labeled Cav3 in patches showed that Cav3 doesn't enter the pipette, showing patch composition differed from the cell surface. However, disruption via cholesterol depletion caused Cav3 to become uniformly distributed over the sarcolemma and Cav3 appearance in the patch dome. The whole-cell indentation currents elicited under the different caveolae modifying conditions mirror the patch response supporting the role of caveolae in MSC function. These studies show that normal expression levels of Cav3 are mechanoprotective to the sarcolemma through multiple mechanisms, and Cav3 upregulation observed in some dystrophies may compensate for other mechanical deficiencies.
Collapse
Affiliation(s)
- Haixia Huang
- Capital Medical University, Department of Physiology, Beijing, China
| | - Chilman Bae
- SUNY at Buffalo, Department of Physiology and Biophysics, Buffalo, New York, United States of America
| | - Frederick Sachs
- SUNY at Buffalo, Department of Physiology and Biophysics, Buffalo, New York, United States of America
| | - Thomas M. Suchyna
- SUNY at Buffalo, Department of Physiology and Biophysics, Buffalo, New York, United States of America
| |
Collapse
|
42
|
Nilius B, Voets T. The puzzle of TRPV4 channelopathies. EMBO Rep 2013; 14:152-63. [PMID: 23306656 DOI: 10.1038/embor.2012.219] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 12/10/2012] [Indexed: 11/09/2022] Open
Abstract
Hereditary channelopathies, that is, mutations in channel genes that alter channel function and are causal for the pathogenesis of the disease, have been described for several members of the transient receptor potential channel family. Mutations in the TRPV4 gene, encoding a polymodal Ca(2+) permeable channel, are causative for several human diseases, which affect the skeletal system and the peripheral nervous system, with highly variable phenotypes. In this review, we describe the phenotypes of TRPV4 channelopathies and overlapping symptoms. Putative mechanisms to explain the puzzle, and how mutations in the same region of the channel cause different diseases, are discussed and experimental approaches to tackle this surprising problem are suggested.
Collapse
Affiliation(s)
- Bernd Nilius
- KU Leuven, Department of Cellular & Molecular Medicine, Laboratory of Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium.
| | | |
Collapse
|
43
|
Vasquez I, Tan N, Boonyasampant M, Koppitch KA, Lansman JB. Partial opening and subconductance gating of mechanosensitive ion channels in dystrophic skeletal muscle. J Physiol 2012; 590:6167-85. [PMID: 22966155 PMCID: PMC3530124 DOI: 10.1113/jphysiol.2012.240044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/03/2012] [Indexed: 12/31/2022] Open
Abstract
We recorded the activity of single mechanosensitive (MS) ion channels in skeletal muscle from the mdx mouse, a deletion mutant that lacks the cytoskeletal protein, dystrophin. Experiments were designed to examine the influence of dystrophin, a major component of skeletal muscle costameres, on the behaviour of single MS channels. In the majority of recordings from cell-attached patches, MS channels have a conductance of ∼23 pS. Recordings from some patches, however, showed a smaller conductance channel of ∼7-14 pS. Large and small conductance channels were detected in a single patch and showed serial, non-random gating, suggesting different opening levels of a single channel. Analysis of the distribution of current amplitudes within the open channel showed MS channels fluctuate between subconductance levels. MS channels in dystrophic muscle spend ∼60% of the time at smaller subconductance levels, often failing to reach the fully open level. Applying pressure to the membrane of mdx fibres increases in a graded manner occupancy of the fully open state, while reducing occupancy of subconductance levels. Recordings also show partial openings of MS channels in both wild-type and mdx muscle that fail to reach the fully open state. Partial openings occur at a higher frequency in mdx muscle and reflect occupancy of subconductance levels seen during complete activations. In muscle from mdx/utrn(-/-) double knockout mice, MS channels also spend more time at subconductance levels than the fully open state. Conductance variability of MS channels may represent gating of a heteromeric protein composed of different channel subunits. The results also show that partial opening and prolonged burst duration are distinct mechanisms that contribute to excess Ca(2+) entry in dystrophic muscle.
Collapse
Affiliation(s)
- Ivan Vasquez
- Department of Cellular & Molecular Pharmacology, School of Medicine, University of California, San Francisco, CA 94143-0450, USA
| | | | | | | | | |
Collapse
|
44
|
Single Mechanosensitive and Ca2+-Sensitive Channel Currents Recorded from Mouse and Human Embryonic Stem Cells. J Membr Biol 2012. [DOI: 10.1007/s00232-012-9523-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
45
|
Martinac B. Mechanosensitive ion channels: an evolutionary and scientific tour de force in mechanobiology. Channels (Austin) 2012; 6:211-3. [PMID: 22940794 PMCID: PMC3508899 DOI: 10.4161/chan.22047] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Boris Martinac
- Molecular Cardiology and Biophysics Division; Victor Chang Cardiac Research Institute; Darlinghurst, NSW Australia
| |
Collapse
|