1
|
Fiore CM, Quigley K, Vorobyov I, Clancy CE, Harvey RD. Effect of the Membrane Environment on Pharmacologic Inhibition of hERG K + Channel Activity. JACC Clin Electrophysiol 2025; 11:708-719. [PMID: 39895450 PMCID: PMC12043409 DOI: 10.1016/j.jacep.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/11/2024] [Accepted: 11/25/2024] [Indexed: 02/04/2025]
Abstract
BACKGROUND hERG encodes KV11.1 voltage-gated K+ channels, which generate the rapidly activating delayed rectifier K+ current that contributes to repolarization of the cardiac action potential. In addition to being targeted by many class III antiarrhythmic agents, these channels are also inhibited by a multitude of other pharmacological compounds, which can produce acquired long QT syndrome, leading to polymorphic ventricular tachycardia. While most drugs are thought to interact with a hydrophilic binding site in the channel pore, it has been postulated that some compounds act by perturbing the membrane environment or acting at hydrophobic sites accessed through the plasma membrane. OBJECTIVES Because hERG channels reside in cholesterol rich lipid raft domains, we hypothesized that disrupting the membrane environment by depleting cholesterol might alter inhibition of channel activity by certain drugs. METHODS We tested our hypothesis by examining the effect that depleting membrane cholesterol with methyl-β-cyclodextrin has on the ability of several compounds to inhibit hERG channels expressed in HEK293 cells. RESULTS We found that cholesterol depletion significantly increased the sensitivity of the whole cell current to inhibition by ibutilide, while decreasing the currents sensitivity to dofetilide and amiodarone at negative membrane potentials. CONCLUSIONS These results support the idea that the lipid environment of the plasma membrane plays a role in the ability of certain drugs to inhibit hERG channel activity. Differences in membrane cholesterol content may affect the ability of some hERG channel blockers to produce arrhythmogenic behavior.
Collapse
Affiliation(s)
- Chase M Fiore
- Department of Pharmacology, University of Nevada, Reno, Reno, Nevada, USA
| | - Kate Quigley
- Department of Pharmacology, University of Nevada, Reno, Reno, Nevada, USA
| | - Igor Vorobyov
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, California, USA
| | - Colleen E Clancy
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, California, USA
| | - Robert D Harvey
- Department of Pharmacology, University of Nevada, Reno, Reno, Nevada, USA.
| |
Collapse
|
2
|
Mondéjar-Parreño G, Moreno-Manuel AI, Ruiz-Robles JM, Jalife J. Ion channel traffic jams: the significance of trafficking deficiency in long QT syndrome. Cell Discov 2025; 11:3. [PMID: 39788950 PMCID: PMC11717978 DOI: 10.1038/s41421-024-00738-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/10/2024] [Indexed: 01/12/2025] Open
Abstract
A well-balanced ion channel trafficking machinery is paramount for the normal electromechanical function of the heart. Ion channel variants and many drugs can alter the cardiac action potential and lead to arrhythmias by interfering with mechanisms like ion channel synthesis, trafficking, gating, permeation, and recycling. A case in point is the Long QT syndrome (LQTS), a highly arrhythmogenic disease characterized by an abnormally prolonged QT interval on ECG produced by variants and drugs that interfere with the action potential. Disruption of ion channel trafficking is one of the main sources of LQTS. We review some molecular pathways and mechanisms involved in cardiac ion channel trafficking. We highlight the importance of channelosomes and other macromolecular complexes in helping to maintain normal cardiac electrical function, and the defects that prolong the QT interval as a consequence of variants or the effect of drugs. We examine the concept of "interactome mapping" and illustrate by example the multiple protein-protein interactions an ion channel may undergo throughout its lifetime. We also comment on how mapping the interactomes of the different cardiac ion channels may help advance research into LQTS and other cardiac diseases. Finally, we discuss how using human induced pluripotent stem cell technology to model ion channel trafficking and its defects may help accelerate drug discovery toward preventing life-threatening arrhythmias. Advancements in understanding ion channel trafficking and channelosome complexities are needed to find novel therapeutic targets, predict drug interactions, and enhance the overall management and treatment of LQTS patients.
Collapse
Affiliation(s)
| | | | | | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Departments of Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Ferreira G, Cardozo R, Sastre S, Costa C, Santander A, Chavarría L, Guizzo V, Puglisi J, Nicolson GL. Bacterial toxins and heart function: heat-labile Escherichia coli enterotoxin B promotes changes in cardiac function with possible relevance for sudden cardiac death. Biophys Rev 2023; 15:447-473. [PMID: 37681088 PMCID: PMC10480140 DOI: 10.1007/s12551-023-01100-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/11/2023] [Indexed: 09/09/2023] Open
Abstract
Bacterial toxins can cause cardiomyopathy, though it is not its most common cause. Some bacterial toxins can form pores in the membrane of cardiomyocytes, while others can bind to membrane receptors. Enterotoxigenic E. coli can secrete enterotoxins, including heat-resistant (ST) or labile (LT) enterotoxins. LT is an AB5-type toxin that can bind to specific cell receptors and disrupt essential host functions, causing several common conditions, such as certain diarrhea. The pentameric B subunit of LT, without A subunit (LTB), binds specifically to certain plasma membrane ganglioside receptors, found in lipid rafts of cardiomyocytes. Isolated guinea pig hearts and cardiomyocytes were exposed to different concentrations of purified LTB. In isolated hearts, mechanical and electrical alternans and an increment of heart rate variability, with an IC50 of ~0.2 μg/ml LTB, were observed. In isolated cardiomyocytes, LTB promoted significant decreases in the amplitude and the duration of action potentials. Na+ currents were inhibited whereas L-type Ca2+ currents were augmented at their peak and their fast inactivation was promoted. Delayed rectifier K+ currents decreased. Measurements of basal Ca2+ or Ca2+ release events in cells exposed to LTB suggest that LTB impairs Ca2+ homeostasis. Impaired calcium homeostasis is linked to sudden cardiac death. The results are consistent with the recent view that the B subunit is not merely a carrier of the A subunit, having a role explaining sudden cardiac death in children (SIDS) infected with enterotoxigenic E. coli, explaining several epidemiological findings that establish a strong relationship between SIDS and ETEC E. coli. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-023-01100-6.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Romina Cardozo
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Santiago Sastre
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics and Centro de Investigaciones Biomédicas (CeInBio), Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Carlos Costa
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Axel Santander
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Luisina Chavarría
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Valentina Guizzo
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - José Puglisi
- College of Medicine, California North State University, 9700 West Taron Drive, Elk Grove, CA 95757 USA
| | - G. L. Nicolson
- Institute for Molecular Medicine, Beach, Huntington, CA USA
| |
Collapse
|
4
|
Li J, Charpentier F, Maguy A. Long QT: Time to cut cholesterol? INTERNATIONAL JOURNAL OF CARDIOLOGY. HEART & VASCULATURE 2023; 45:101179. [PMID: 36793332 PMCID: PMC9922803 DOI: 10.1016/j.ijcha.2023.101179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/30/2023]
Affiliation(s)
- Jin Li
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland,Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, Schlieren, Switzerland
| | - Flavien Charpentier
- Nantes Université, CNRS, INSERM, l’institut du thorax, F-44000 Nantes, France
| | - Ange Maguy
- Department of Physiology, University of Bern, Bern, Switzerland,Corresponding author at: Department of Physiology, University of Bern, Buehlplatz 5, 3012 Bern, Switzerland.
| |
Collapse
|
5
|
Arreola J, López-Romero AE, Pérez-Cornejo P, Rodríguez-Menchaca AA. Phosphatidylinositol 4,5-Bisphosphate and Cholesterol Regulators of the Calcium-Activated Chloride Channels TMEM16A and TMEM16B. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:279-304. [PMID: 36988885 DOI: 10.1007/978-3-031-21547-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Chloride fluxes through homo-dimeric calcium-activated channels TMEM16A and TMEM16B are critical to blood pressure, gastrointestinal motility, hormone, fluid and electrolyte secretion, pain sensation, sensory transduction, and neuronal and muscle excitability. Their gating depends on the voltage-dependent binding of two intracellular calcium ions to a high-affinity site formed by acidic residues from α-helices 6-8 in each monomer. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a low-abundant lipid of the inner leaflet, supports TMEM16A function; it allows TMEM16A to evade the down-regulation induced by calcium, poly-L-lysine, or PI(4,5)P2 5-phosphatase. In stark contrast, adding or removing PI(4,5)P2 diminishes or increases TMEM16B function, respectively. PI(4,5)P2-binding sites on TMEM16A, and presumably on TMEM16B, are on the cytosolic side of α-helices 3-5, opposite the calcium-binding sites. This modular structure suggested that PI(4,5)P2 and calcium cooperate to maintain the conductive state in TMEM16A. Cholesterol, the second-largest constituent of the plasma membrane, also regulates TMEM16A though the mechanism, functional outcomes, binding site(s), and effects on TMEM16A and TMEM16B remain unknown.
Collapse
Affiliation(s)
- Jorge Arreola
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| | | | - Patricia Pérez-Cornejo
- Department of Physiology and Biophysics, School of Medicine, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Aldo A Rodríguez-Menchaca
- Department of Physiology and Biophysics, School of Medicine, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| |
Collapse
|
6
|
Chun YS, Chung S. High-Cholesterol Diet Decreases the Level of Phosphatidylinositol 4,5-Bisphosphate by Enhancing the Expression of Phospholipase C (PLCβ1) in Rat Brain. Int J Mol Sci 2020; 21:ijms21031161. [PMID: 32050555 PMCID: PMC7038105 DOI: 10.3390/ijms21031161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 11/16/2022] Open
Abstract
Cholesterol is a critical component of eukaryotic membranes, where it contributes to regulating transmembrane signaling, cell-cell interaction, and ion transport. Dysregulation of cholesterol levels in the brain may induce neurodegenerative diseases, such as Alzheimer's disease, Parkinson disease, and Huntington disease. We previously reported that augmenting membrane cholesterol level regulates ion channels by decreasing the level of phosphatidylinositol 4,5-bisphosphate (PIP2), which is closely related to β-amyloid (Aβ) production. In addition, cholesterol enrichment decreased PIP2 levels by increasing the expression of the β1 isoform of phospholipase C (PLC) in cultured cells. In this study, we examined the effect of a high-cholesterol diet on phospholipase C (PLCβ1) expression and PIP2 levels in rat brain. PIP2 levels were decreased in the cerebral cortex in rats on a high-cholesterol diet. Levels of PLCβ1 expression correlated with PIP2 levels. However, cholesterol and PIP2 levels were not correlated, suggesting that PIP2 level is regulated by cholesterol via PLCβ1 expression in the brain. Thus, there exists cross talk between cholesterol and PIP2 that could contribute to the pathogenesis of neurodegenerative diseases.
Collapse
|
7
|
|
8
|
Zheng H, Lee S, Llaguno MC, Jiang QX. bSUM: A bead-supported unilamellar membrane system facilitating unidirectional insertion of membrane proteins into giant vesicles. ACTA ACUST UNITED AC 2016; 147:77-93. [PMID: 26712851 PMCID: PMC4692488 DOI: 10.1085/jgp.201511448] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
KvAP conjugated to beads via a C-terminal His-tag seeds formation of a supported bilayer with unidirectional channel orientation for functional studies. Fused or giant vesicles, planar lipid bilayers, a droplet membrane system, and planar-supported membranes have been developed to incorporate membrane proteins for the electrical and biophysical analysis of such proteins or the bilayer properties. However, it remains difficult to incorporate membrane proteins, including ion channels, into reconstituted membrane systems that allow easy control of operational dimensions, incorporation orientation of the membrane proteins, and lipid composition of membranes. Here, using a newly developed chemical engineering procedure, we report on a bead-supported unilamellar membrane (bSUM) system that allows good control over membrane dimension, protein orientation, and lipid composition. Our new system uses specific ligands to facilitate the unidirectional incorporation of membrane proteins into lipid bilayers. Cryo–electron microscopic imaging demonstrates the unilamellar nature of the bSUMs. Electrical recordings from voltage-gated ion channels in bSUMs of varying diameters demonstrate the versatility of the new system. Using KvAP as a model system, we show that compared with other in vitro membrane systems, the bSUMs have the following advantages: (a) a major fraction of channels are orientated in a controlled way; (b) the channels mediate the formation of the lipid bilayer; (c) there is one and only one bilayer membrane on each bead; (d) the lipid composition can be controlled and the bSUM size is also under experimental control over a range of 0.2–20 µm; (e) the channel activity can be recorded by patch clamp using a planar electrode; and (f) the voltage-clamp speed (0.2–0.5 ms) of the bSUM on a planar electrode is fast, making it suitable to study ion channels with fast gating kinetics. Our observations suggest that the chemically engineered bSUMs afford a novel platform for studying lipid–protein interactions in membranes of varying lipid composition and may be useful for other applications, such as targeted delivery and single-molecule imaging.
Collapse
Affiliation(s)
- Hui Zheng
- Department of Cell Biology, Department of Physiology, and Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390 Department of Cell Biology, Department of Physiology, and Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Sungsoo Lee
- Department of Cell Biology, Department of Physiology, and Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390 Department of Cell Biology, Department of Physiology, and Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Marc C Llaguno
- Department of Cell Biology, Department of Physiology, and Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390 Department of Cell Biology, Yale University, New Haven, CT 06510
| | - Qiu-Xing Jiang
- Department of Cell Biology, Department of Physiology, and Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390 Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611
| |
Collapse
|
9
|
|