1
|
Ding JJ, Lin SH, Wu TW, Tseng MH. Persistent renal dysfunction post-chemotherapy: a diagnostic conundrum in pediatric cancer survivorship - a case report. BMC Pediatr 2024; 24:693. [PMID: 39478534 PMCID: PMC11526687 DOI: 10.1186/s12887-024-05129-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Late-onset type II Bartter syndrome is an exceedingly rare condition, with only six documented cases presenting symptoms and signs beyond infancy. We report a unique case of late-onset type II Bartter syndrome with an atypical presentation and clinical course following chemotherapy treatment during childhood. CASE PRESENTATION A 10-year-old boy, diagnosed with hepatoblastoma at age 2 and treated with cisplatin and epirubicin, presented with polyuria, polydipsia, failure to thrive, and electrolyte imbalances. He exhibited hypokalemia, metabolic alkalosis, and elevated urinary excretion of sodium, chloride, calcium, and magnesium. Whole exome sequencing and Sanger sequencing identified compound heterozygous variants in the KCNJ1 gene, confirming the diagnosis of type II Bartter syndrome. The patient's clinical presentation was distinct from previously reported cases, with an absence of nephrocalcinosis, unusually small and hyperechoic kidneys, and a substantial decline in kidney function. Treatment included oral potassium supplementation, spironolactone, and angiotensin-converting enzyme inhibitors. CONCLUSIONS This case highlights the importance of considering late-onset Bartter syndrome in patients with a history of chemotherapy presenting with persistent electrolyte imbalances and ongoing renal dysfunction. The atypical features and rapid progression of chronic kidney disease in this patient may be attributed to the deleterious nature of the identified variants and the potential impact of previous chemotherapy on kidney susceptibility to damage. Careful monitoring and management of electrolyte imbalances and renal function are crucial in such cases.
Collapse
Affiliation(s)
- Jhao-Jhuang Ding
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tai-Wei Wu
- Fetal and Neonatal Institute, Division of Neonatology, Children's Hospital Los Angeles, Los Angeles, CA, US
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, CA, US
| | - Min-Hua Tseng
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, CA, US.
- Division of Nephrology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.
- Department of Pediatrics, Chang Gung Memorial Hospital, No. 5, Fu-shing ST., Kwei-shan 33305, Taoyuan, Taiwan.
| |
Collapse
|
2
|
Nguyen NH, Sheng S, Banerjee A, Guerriero CJ, Chen J, Wang X, Mackie TD, Welling PA, Kleyman TR, Bahar I, Carlson AE, Brodsky JL. Characterization of hyperactive mutations in the renal potassium channel ROMK uncovers unique effects on channel biogenesis and ion conductance. Mol Biol Cell 2024; 35:ar119. [PMID: 39024255 PMCID: PMC11449386 DOI: 10.1091/mbc.e23-12-0494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
Hypertension affects one billion people worldwide and is the most common risk factor for cardiovascular disease, yet a comprehensive picture of its underlying genetic factors is incomplete. Amongst regulators of blood pressure is the renal outer medullary potassium (ROMK) channel. While select ROMK mutants are prone to premature degradation and lead to disease, heterozygous carriers of some of these same alleles are protected from hypertension. Therefore, we hypothesized that gain-of-function (GoF) ROMK variants which increase potassium flux may predispose people to hypertension. To begin to test this hypothesis, we employed genetic screens and a candidate-based approach to identify six GoF variants in yeast. Subsequent functional assays in higher cells revealed two variant classes. The first group exhibited greater stability in the endoplasmic reticulum, enhanced channel assembly, and/or increased protein at the cell surface. The second group of variants resided in the PIP2-binding pocket, and computational modeling coupled with patch-clamp studies demonstrated lower free energy for channel opening and slowed current rundown, consistent with an acquired PIP2-activated state. Together, these findings advance our understanding of ROMK structure-function, suggest the existence of hyperactive ROMK alleles in humans, and establish a system to facilitate the development of ROMK-targeted antihypertensives.
Collapse
Affiliation(s)
- Nga H. Nguyen
- Department of Biological Sciences, School of Medicine, University of Pittsburgh, PA 15260
| | - Shaohu Sheng
- Renal-Electrolyte Division, Department of Medicine, School of Medicine, University of Pittsburgh, PA 15260
| | - Anupam Banerjee
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, PA 15260
| | | | - Jingxin Chen
- Renal-Electrolyte Division, Department of Medicine, School of Medicine, University of Pittsburgh, PA 15260
| | - Xueqi Wang
- Renal-Electrolyte Division, Department of Medicine, School of Medicine, University of Pittsburgh, PA 15260
| | - Timothy D. Mackie
- Department of Biological Sciences, School of Medicine, University of Pittsburgh, PA 15260
| | - Paul A. Welling
- Division of Nephrology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Thomas R. Kleyman
- Renal-Electrolyte Division, Department of Medicine, School of Medicine, University of Pittsburgh, PA 15260
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, PA 15260
| | - Anne E. Carlson
- Department of Biological Sciences, School of Medicine, University of Pittsburgh, PA 15260
| | - Jeffrey L. Brodsky
- Department of Biological Sciences, School of Medicine, University of Pittsburgh, PA 15260
| |
Collapse
|
3
|
Nguyen NH, Sarangi S, McChesney EM, Sheng S, Durrant JD, Porter AW, Kleyman TR, Pitluk ZW, Brodsky JL. Genome mining yields putative disease-associated ROMK variants with distinct defects. PLoS Genet 2023; 19:e1011051. [PMID: 37956218 PMCID: PMC10695394 DOI: 10.1371/journal.pgen.1011051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/04/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023] Open
Abstract
Bartter syndrome is a group of rare genetic disorders that compromise kidney function by impairing electrolyte reabsorption. Left untreated, the resulting hyponatremia, hypokalemia, and dehydration can be fatal, and there is currently no cure. Bartter syndrome type II specifically arises from mutations in KCNJ1, which encodes the renal outer medullary potassium channel, ROMK. Over 40 Bartter syndrome-associated mutations in KCNJ1 have been identified, yet their molecular defects are mostly uncharacterized. Nevertheless, a subset of disease-linked mutations compromise ROMK folding in the endoplasmic reticulum (ER), which in turn results in premature degradation via the ER associated degradation (ERAD) pathway. To identify uncharacterized human variants that might similarly lead to premature degradation and thus disease, we mined three genomic databases. First, phenotypic data in the UK Biobank were analyzed using a recently developed computational platform to identify individuals carrying KCNJ1 variants with clinical features consistent with Bartter syndrome type II. In parallel, we examined genomic data in both the NIH TOPMed and ClinVar databases with the aid of Rhapsody, a verified computational algorithm that predicts mutation pathogenicity and disease severity. Subsequent phenotypic studies using a yeast screen to assess ROMK function-and analyses of ROMK biogenesis in yeast and human cells-identified four previously uncharacterized mutations. Among these, one mutation uncovered from the two parallel approaches (G228E) destabilized ROMK and targeted it for ERAD, resulting in reduced cell surface expression. Another mutation (T300R) was ERAD-resistant, but defects in channel activity were apparent based on two-electrode voltage clamp measurements in X. laevis oocytes. Together, our results outline a new computational and experimental pipeline that can be applied to identify disease-associated alleles linked to a range of other potassium channels, and further our understanding of the ROMK structure-function relationship that may aid future therapeutic strategies to advance precision medicine.
Collapse
Affiliation(s)
- Nga H. Nguyen
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Srikant Sarangi
- Paradigm4, Inc., Waltham, Massachusetts, United States of America
| | - Erin M. McChesney
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Shaohu Sheng
- Renal-Electrolyte Division, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jacob D. Durrant
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Aidan W. Porter
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Thomas R. Kleyman
- Renal-Electrolyte Division, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | | | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
4
|
Nguyen NH, Sarangi S, McChesney EM, Sheng S, Porter AW, Kleyman TR, Pitluk ZW, Brodsky JL. Genome mining yields new disease-associated ROMK variants with distinct defects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539609. [PMID: 37214976 PMCID: PMC10197530 DOI: 10.1101/2023.05.05.539609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bartter syndrome is a group of rare genetic disorders that compromise kidney function by impairing electrolyte reabsorption. Left untreated, the resulting hyponatremia, hypokalemia, and dehydration can be fatal. Although there is no cure for this disease, specific genes that lead to different Bartter syndrome subtypes have been identified. Bartter syndrome type II specifically arises from mutations in the KCNJ1 gene, which encodes the renal outer medullary potassium channel, ROMK. To date, over 40 Bartter syndrome-associated mutations in KCNJ1 have been identified. Yet, their molecular defects are mostly uncharacterized. Nevertheless, a subset of disease-linked mutations compromise ROMK folding in the endoplasmic reticulum (ER), which in turn results in premature degradation via the ER associated degradation (ERAD) pathway. To identify uncharacterized human variants that might similarly lead to premature degradation and thus disease, we mined three genomic databases. First, phenotypic data in the UK Biobank were analyzed using a recently developed computational platform to identify individuals carrying KCNJ1 variants with clinical features consistent with Bartter syndrome type II. In parallel, we examined ROMK genomic data in both the NIH TOPMed and ClinVar databases with the aid of a computational algorithm that predicts protein misfolding and disease severity. Subsequent phenotypic studies using a high throughput yeast screen to assess ROMK function-and analyses of ROMK biogenesis in yeast and human cells-identified four previously uncharacterized mutations. Among these, one mutation uncovered from the two parallel approaches (G228E) destabilized ROMK and targeted it for ERAD, resulting in reduced protein expression at the cell surface. Another ERAD-targeted ROMK mutant (L320P) was found in only one of the screens. In contrast, another mutation (T300R) was ERAD-resistant, but defects in ROMK activity were apparent after expression and two-electrode voltage clamp measurements in Xenopus oocytes. Together, our results outline a new computational and experimental pipeline that can be applied to identify disease-associated alleles linked to a range of other potassium channels, and further our understanding of the ROMK structure-function relationship that may aid future therapeutic strategies. Author Summary Bartter syndrome is a rare genetic disorder characterized by defective renal electrolyte handing, leading to debilitating symptoms and, in some patients, death in infancy. Currently, there is no cure for this disease. Bartter syndrome is divided into five types based on the causative gene. Bartter syndrome type II results from genetic variants in the gene encoding the ROMK protein, which is expressed in the kidney and assists in regulating sodium, potassium, and water homeostasis. Prior work established that some disease-associated ROMK mutants misfold and are destroyed soon after their synthesis in the endoplasmic reticulum (ER). Because a growing number of drugs have been identified that correct defective protein folding, we wished to identify an expanded cohort of similarly misshapen and unstable disease-associated ROMK variants. To this end, we developed a pipeline that employs computational analyses of human genome databases with genetic and biochemical assays. Next, we both confirmed the identity of known variants and uncovered previously uncharacterized ROMK variants associated with Bartter syndrome type II. Further analyses indicated that select mutants are targeted for ER-associated degradation, while another mutant compromises ROMK function. This work sets-the-stage for continued mining for ROMK loss of function alleles as well as other potassium channels, and positions select Bartter syndrome mutations for correction using emerging pharmaceuticals.
Collapse
|
5
|
Nguyen NH, Brodsky JL. The cellular pathways that maintain the quality control and transport of diverse potassium channels. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194908. [PMID: 36638864 PMCID: PMC9908860 DOI: 10.1016/j.bbagrm.2023.194908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
Potassium channels are multi-subunit transmembrane proteins that permit the selective passage of potassium and play fundamental roles in physiological processes, such as action potentials in the nervous system and organismal salt and water homeostasis, which is mediated by the kidney. Like all ion channels, newly translated potassium channels enter the endoplasmic reticulum (ER) and undergo the error-prone process of acquiring post-translational modifications, folding into their native conformations, assembling with other subunits, and trafficking through the secretory pathway to reach their final destinations, most commonly the plasma membrane. Disruptions in these processes can result in detrimental consequences, including various human diseases. Thus, multiple quality control checkpoints evolved to guide potassium channels through the secretory pathway and clear potentially toxic, aggregation-prone misfolded species. We will summarize current knowledge on the mechanisms underlying potassium channel quality control in the secretory pathway, highlight diseases associated with channel misfolding, and suggest potential therapeutic routes.
Collapse
Affiliation(s)
- Nga H Nguyen
- Department of Biological Sciences, University of Pittsburgh, A320 Langley Hall, Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, A320 Langley Hall, Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA.
| |
Collapse
|
6
|
Macdonald CB, Nedrud D, Grimes PR, Trinidad D, Fraser JS, Coyote-Maestas W. DIMPLE: deep insertion, deletion, and missense mutation libraries for exploring protein variation in evolution, disease, and biology. Genome Biol 2023; 24:36. [PMID: 36829241 PMCID: PMC9951526 DOI: 10.1186/s13059-023-02880-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
Insertions and deletions (indels) enable evolution and cause disease. Due to technical challenges, indels are left out of most mutational scans, limiting our understanding of them in disease, biology, and evolution. We develop a low cost and bias method, DIMPLE, for systematically generating deletions, insertions, and missense mutations in genes, which we test on a range of targets, including Kir2.1. We use DIMPLE to study how indels impact potassium channel structure, disease, and evolution. We find deletions are most disruptive overall, beta sheets are most sensitive to indels, and flexible loops are sensitive to deletions yet tolerate insertions.
Collapse
Affiliation(s)
- Christian B Macdonald
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, USA
| | | | | | - Donovan Trinidad
- Department of Medicine, Division of Infectious Disease, University of California, San Francisco, USA
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, USA.,Quantitative Biosciences Institute, University of California, San Francisco, USA
| | - Willow Coyote-Maestas
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, USA. .,Quantitative Biosciences Institute, University of California, San Francisco, USA.
| |
Collapse
|
7
|
Coyote-Maestas W, Nedrud D, He Y, Schmidt D. Determinants of trafficking, conduction, and disease within a K + channel revealed through multiparametric deep mutational scanning. eLife 2022; 11:e76903. [PMID: 35639599 PMCID: PMC9273215 DOI: 10.7554/elife.76903] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/27/2022] [Indexed: 01/04/2023] Open
Abstract
A long-standing goal in protein science and clinical genetics is to develop quantitative models of sequence, structure, and function relationships to understand how mutations cause disease. Deep mutational scanning (DMS) is a promising strategy to map how amino acids contribute to protein structure and function and to advance clinical variant interpretation. Here, we introduce 7429 single-residue missense mutations into the inward rectifier K+ channel Kir2.1 and determine how this affects folding, assembly, and trafficking, as well as regulation by allosteric ligands and ion conduction. Our data provide high-resolution information on a cotranslationally folded biogenic unit, trafficking and quality control signals, and segregated roles of different structural elements in fold stability and function. We show that Kir2.1 surface trafficking mutants are underrepresented in variant effect databases, which has implications for clinical practice. By comparing fitness scores with expert-reviewed variant effects, we can predict the pathogenicity of 'variants of unknown significance' and disease mechanisms of known pathogenic mutations. Our study in Kir2.1 provides a blueprint for how multiparametric DMS can help us understand the mechanistic basis of genetic disorders and the structure-function relationships of proteins.
Collapse
Affiliation(s)
- Willow Coyote-Maestas
- Department of Biochemistry, Molecular Biology and Biophysics, University of MinnesotaMinneapolisUnited States
| | - David Nedrud
- Department of Biochemistry, Molecular Biology and Biophysics, University of MinnesotaMinneapolisUnited States
| | - Yungui He
- Department of Genetics, Cell Biology and Development, University of MinnesotaMinneapolisUnited States
| | - Daniel Schmidt
- Department of Genetics, Cell Biology and Development, University of MinnesotaMinneapolisUnited States
| |
Collapse
|
8
|
Coyote-Maestas W, Nedrud D, Suma A, He Y, Matreyek KA, Fowler DM, Carnevale V, Myers CL, Schmidt D. Probing ion channel functional architecture and domain recombination compatibility by massively parallel domain insertion profiling. Nat Commun 2021; 12:7114. [PMID: 34880224 PMCID: PMC8654947 DOI: 10.1038/s41467-021-27342-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Abstract
Protein domains are the basic units of protein structure and function. Comparative analysis of genomes and proteomes showed that domain recombination is a main driver of multidomain protein functional diversification and some of the constraining genomic mechanisms are known. Much less is known about biophysical mechanisms that determine whether protein domains can be combined into viable protein folds. Here, we use massively parallel insertional mutagenesis to determine compatibility of over 300,000 domain recombination variants of the Inward Rectifier K+ channel Kir2.1 with channel surface expression. Our data suggest that genomic and biophysical mechanisms acted in concert to favor gain of large, structured domain at protein termini during ion channel evolution. We use machine learning to build a quantitative biophysical model of domain compatibility in Kir2.1 that allows us to derive rudimentary rules for designing domain insertion variants that fold and traffic to the cell surface. Positional Kir2.1 responses to motif insertion clusters into distinct groups that correspond to contiguous structural regions of the channel with distinct biophysical properties tuned towards providing either folding stability or gating transitions. This suggests that insertional profiling is a high-throughput method to annotate function of ion channel structural regions.
Collapse
Affiliation(s)
- Willow Coyote-Maestas
- grid.17635.360000000419368657Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455 USA
| | - David Nedrud
- grid.17635.360000000419368657Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455 USA
| | - Antonio Suma
- grid.264727.20000 0001 2248 3398Department of Chemistry, Temple University, Philadelphia, PA 19122 USA
| | - Yungui He
- grid.17635.360000000419368657Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455 USA
| | - Kenneth A. Matreyek
- grid.67105.350000 0001 2164 3847Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
| | - Douglas M. Fowler
- grid.34477.330000000122986657Department of Genome Sciences, University of Washington, Seattle, WA 98115 USA ,grid.34477.330000000122986657Department of Bioengineering, University of Washington, Seattle, WA 98115 USA
| | - Vincenzo Carnevale
- grid.264727.20000 0001 2248 3398Department of Chemistry, Temple University, Philadelphia, PA 19122 USA
| | - Chad L. Myers
- grid.17635.360000000419368657Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Daniel Schmidt
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
9
|
Coyote-Maestas W, Nedrud D, Okorafor S, He Y, Schmidt D. Targeted insertional mutagenesis libraries for deep domain insertion profiling. Nucleic Acids Res 2020; 48:e11. [PMID: 31745561 PMCID: PMC6954442 DOI: 10.1093/nar/gkz1110] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/22/2019] [Accepted: 11/08/2019] [Indexed: 11/21/2022] Open
Abstract
Domain recombination is a key principle in protein evolution and protein engineering, but inserting a donor domain into every position of a target protein is not easily experimentally accessible. Most contemporary domain insertion profiling approaches rely on DNA transposons, which are constrained by sequence bias. Here, we establish Saturated Programmable Insertion Engineering (SPINE), an unbiased, comprehensive, and targeted domain insertion library generation technique using oligo library synthesis and multi-step Golden Gate cloning. Through benchmarking to MuA transposon-mediated library generation on four ion channel genes, we demonstrate that SPINE-generated libraries are enriched for in-frame insertions, have drastically reduced sequence bias as well as near-complete and highly-redundant coverage. Unlike transposon-mediated domain insertion that was severely biased and sparse for some genes, SPINE generated high-quality libraries for all genes tested. Using the Inward Rectifier K+ channel Kir2.1, we validate the practical utility of SPINE by constructing and comparing domain insertion permissibility maps. SPINE is the first technology to enable saturated domain insertion profiling. SPINE could help explore the relationship between domain insertions and protein function, and how this relationship is shaped by evolutionary forces and can be engineered for biomedical applications.
Collapse
Affiliation(s)
- Willow Coyote-Maestas
- Dept. of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - David Nedrud
- Dept. of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Steffan Okorafor
- Dept. of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yungui He
- Dept. of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel Schmidt
- Dept. of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
10
|
Zangerl-Plessl EM, Qile M, Bloothooft M, Stary-Weinzinger A, van der Heyden MAG. Disease Associated Mutations in K IR Proteins Linked to Aberrant Inward Rectifier Channel Trafficking. Biomolecules 2019; 9:biom9110650. [PMID: 31731488 PMCID: PMC6920955 DOI: 10.3390/biom9110650] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/28/2022] Open
Abstract
The ubiquitously expressed family of inward rectifier potassium (KIR) channels, encoded by KCNJ genes, is primarily involved in cell excitability and potassium homeostasis. Channel mutations associate with a variety of severe human diseases and syndromes, affecting many organ systems including the central and peripheral neural system, heart, kidney, pancreas, and skeletal muscle. A number of mutations associate with altered ion channel expression at the plasma membrane, which might result from defective channel trafficking. Trafficking involves cellular processes that transport ion channels to and from their place of function. By alignment of all KIR channels, and depicting the trafficking associated mutations, three mutational hotspots were identified. One localized in the transmembrane-domain 1 and immediately adjacent sequences, one was found in the G-loop and Golgi-export domain, and the third one was detected at the immunoglobulin-like domain. Surprisingly, only few mutations were observed in experimentally determined Endoplasmic Reticulum (ER)exit-, export-, or ER-retention motifs. Structural mapping of the trafficking defect causing mutations provided a 3D framework, which indicates that trafficking deficient mutations form clusters. These “mutation clusters” affect trafficking by different mechanisms, including protein stability.
Collapse
Affiliation(s)
- Eva-Maria Zangerl-Plessl
- Department of Pharmacology and Toxicology, University of Vienna, 1090 Vienna, Austria; (E.-M.Z.-P.); (A.S.-W.)
| | - Muge Qile
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, 3584 CM Utrecht, The Netherlands; (M.Q.); (M.B.)
| | - Meye Bloothooft
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, 3584 CM Utrecht, The Netherlands; (M.Q.); (M.B.)
| | - Anna Stary-Weinzinger
- Department of Pharmacology and Toxicology, University of Vienna, 1090 Vienna, Austria; (E.-M.Z.-P.); (A.S.-W.)
| | - Marcel A. G. van der Heyden
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, 3584 CM Utrecht, The Netherlands; (M.Q.); (M.B.)
- Correspondence: ; Tel.: +31-887558901
| |
Collapse
|
11
|
Mackie TD, Kim BY, Subramanya AR, Bain DJ, O'Donnell AF, Welling PA, Brodsky JL. The endosomal trafficking factors CORVET and ESCRT suppress plasma membrane residence of the renal outer medullary potassium channel (ROMK). J Biol Chem 2018; 293:3201-3217. [PMID: 29311259 PMCID: PMC5836112 DOI: 10.1074/jbc.m117.819086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/02/2018] [Indexed: 11/06/2022] Open
Abstract
Protein trafficking can act as the primary regulatory mechanism for ion channels with high open probabilities, such as the renal outer medullary (ROMK) channel. ROMK, also known as Kir1.1 (KCNJ1), is the major route for potassium secretion into the pro-urine and plays an indispensable role in regulating serum potassium and urinary concentrations. However, the cellular machinery that regulates ROMK trafficking has not been fully defined. To identify regulators of the cell-surface population of ROMK, we expressed a pH-insensitive version of the channel in the budding yeast Saccharomyces cerevisiae We determined that ROMK primarily resides in the endoplasmic reticulum (ER), as it does in mammalian cells, and is subject to ER-associated degradation (ERAD). However, sufficient ROMK levels on the plasma membrane rescued growth on low-potassium medium of yeast cells lacking endogenous potassium channels. Next, we aimed to identify the biological pathways most important for ROMK regulation. Therefore, we used a synthetic genetic array to identify non-essential genes that reduce the plasma membrane pool of ROMK in potassium-sensitive yeast cells. Genes identified in this screen included several members of the endosomal complexes required for transport (ESCRT) and the class-C core vacuole/endosome tethering (CORVET) complexes. Mass spectroscopy analysis confirmed that yeast cells lacking an ESCRT component accumulate higher potassium concentrations. Moreover, silencing of ESCRT and CORVET components increased ROMK levels at the plasma membrane in HEK293 cells. Our results indicate that components of the post-endocytic pathway influence the cell-surface density of ROMK and establish that components in this pathway modulate channel activity.
Collapse
Affiliation(s)
| | - Bo-Young Kim
- the Department of Physiology, University of Maryland at Baltimore, Baltimore, Maryland 21201
| | - Arohan R Subramanya
- the Departments of Medicine and Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- the Medicine and Research Services, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania 15240, and
| | - Daniel J Bain
- Geology and Environmental Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Allyson F O'Donnell
- the Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282
| | - Paul A Welling
- the Department of Physiology, University of Maryland at Baltimore, Baltimore, Maryland 21201
| | | |
Collapse
|
12
|
Sammons MF, Kharade SV, Filipski KJ, Boehm M, Smith AC, Shavnya A, Fernando DP, Dowling MS, Carpino PA, Castle NA, Zellmer SG, Antonio BM, Gosset JR, Carlo A, Denton JS. Discovery and in Vitro Optimization of 3-Sulfamoylbenzamides as ROMK Inhibitors. ACS Med Chem Lett 2018; 9:125-130. [PMID: 29456800 DOI: 10.1021/acsmedchemlett.7b00481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/19/2018] [Indexed: 02/05/2023] Open
Abstract
Inhibitors of the renal outer medullary potassium channel (ROMK) show promise as novel mechanism diuretics, with potentially lower risk of diuretic-induced hypokalemia relative to current thiazide and loop diuretics. Here, we report the identification of a novel series of 3-sulfamoylbenzamide ROMK inhibitors. Starting from HTS hit 4, this series was optimized to provide ROMK inhibitors with good in vitro potencies and well-balanced ADME profiles. In contrast to previously reported small-molecule ROMK inhibitors, members of this series were demonstrated to be highly selective for inhibition of human over rat ROMK and to be insensitive to the N171D pore mutation that abolishes inhibitory activity of previously reported ROMK inhibitors.
Collapse
Affiliation(s)
- Matthew F. Sammons
- Pfizer Worldwide Research & Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Sujay V. Kharade
- Department
of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Kevin J. Filipski
- Pfizer Worldwide Research & Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Markus Boehm
- Pfizer Worldwide Research & Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Aaron C. Smith
- Pfizer Worldwide Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Andre Shavnya
- Pfizer Worldwide Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Dilinie P. Fernando
- Pfizer Worldwide Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Matthew S. Dowling
- Pfizer Worldwide Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Philip A. Carpino
- Pfizer Worldwide Research & Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Neil A. Castle
- Neusentis, Pfizer Worldwide Research & Development, Durham, North Carolina 27703, United States
| | - Shannon G. Zellmer
- Neusentis, Pfizer Worldwide Research & Development, Durham, North Carolina 27703, United States
| | - Brett M. Antonio
- Neusentis, Pfizer Worldwide Research & Development, Durham, North Carolina 27703, United States
| | - James R. Gosset
- Pfizer Worldwide Research & Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Anthony Carlo
- Pfizer Worldwide Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jerod S. Denton
- Department
of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
13
|
O'Donnell BM, Mackie TD, Brodsky JL. Linking chanelopathies with endoplasmic reticulum associated degradation. Channels (Austin) 2017; 11:499-501. [PMID: 28723237 DOI: 10.1080/19336950.2017.1357944] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Brighid M O'Donnell
- a Department of Biological Sciences , University of Pittsburgh , Pittsburgh , PA , USA.,b Department of Medicine , University of Pittsburgh , Pittsburgh , PA , USA
| | - Timothy D Mackie
- a Department of Biological Sciences , University of Pittsburgh , Pittsburgh , PA , USA
| | - Jeffrey L Brodsky
- a Department of Biological Sciences , University of Pittsburgh , Pittsburgh , PA , USA
| |
Collapse
|
14
|
O'Donnell BM, Mackie TD, Subramanya AR, Brodsky JL. Endoplasmic reticulum-associated degradation of the renal potassium channel, ROMK, leads to type II Bartter syndrome. J Biol Chem 2017. [PMID: 28630040 DOI: 10.1074/jbc.m117.786376] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Type II Bartter syndrome is caused by mutations in the renal outer medullary potassium (ROMK) channel, but the molecular mechanisms underlying this disease are poorly defined. To rapidly screen for ROMK function, we developed a yeast expression system and discovered that yeast cells lacking endogenous potassium channels could be rescued by WT ROMK but not by ROMK proteins containing any one of four Bartter mutations. We also found that the mutant proteins were significantly less stable than WT ROMK. However, their degradation was slowed in the presence of a proteasome inhibitor or when yeast cells contained mutations in the CDC48 or SSA1 gene, which is required for endoplasmic reticulum (ER)-associated degradation (ERAD). Consistent with these data, sucrose gradient centrifugation and indirect immunofluorescence microscopy indicated that most ROMK protein was ER-localized. To translate these findings to a more relevant cell type, we measured the stabilities of WT ROMK and the ROMK Bartter mutants in HEK293 cells. As in yeast, the Bartter mutant proteins were less stable than the WT protein, and their degradation was slowed in the presence of a proteasome inhibitor. Finally, we discovered that low-temperature incubation increased the steady-state levels of a Bartter mutant, suggesting that the disease-causing mutation traps the protein in a folding-deficient conformation. These findings indicate that the underlying pathology for at least a subset of patients with type II Bartter syndrome is linked to the ERAD pathway and that future therapeutic strategies should focus on correcting deficiencies in ROMK folding.
Collapse
Affiliation(s)
- Brighid M O'Donnell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Timothy D Mackie
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Arohan R Subramanya
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260.
| |
Collapse
|
15
|
Swale DR, Sheehan JH, Banerjee S, Husni AS, Nguyen TT, Meiler J, Denton JS. Computational and functional analyses of a small-molecule binding site in ROMK. Biophys J 2016; 108:1094-103. [PMID: 25762321 DOI: 10.1016/j.bpj.2015.01.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 12/20/2022] Open
Abstract
The renal outer medullary potassium channel (ROMK, or Kir1.1, encoded by KCNJ1) critically regulates renal tubule electrolyte and water transport and hence blood volume and pressure. The discovery of loss-of-function mutations in KCNJ1 underlying renal salt and water wasting and lower blood pressure has sparked interest in developing new classes of antihypertensive diuretics targeting ROMK. The recent development of nanomolar-affinity small-molecule inhibitors of ROMK creates opportunities for exploring the chemical and physical basis of ligand-channel interactions required for selective ROMK inhibition. We previously reported that the bis-nitro-phenyl ROMK inhibitor VU591 exhibits voltage-dependent knock-off at hyperpolarizing potentials, suggesting that the binding site is located within the ion-conduction pore. In this study, comparative molecular modeling and in silico ligand docking were used to interrogate the full-length ROMK pore for energetically favorable VU591 binding sites. Cluster analysis of 2498 low-energy poses resulting from 9900 Monte Carlo docking trajectories on each of 10 conformationally distinct ROMK comparative homology models identified two putative binding sites in the transmembrane pore that were subsequently tested for a role in VU591-dependent inhibition using site-directed mutagenesis and patch-clamp electrophysiology. Introduction of mutations into the lower site had no effect on the sensitivity of the channel to VU591. In contrast, mutations of Val(168) or Asn(171) in the upper site, which are unique to ROMK within the Kir channel family, led to a dramatic reduction in VU591 sensitivity. This study highlights the utility of computational modeling for defining ligand-ROMK interactions and proposes a mechanism for inhibition of ROMK.
Collapse
Affiliation(s)
- Daniel R Swale
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jonathan H Sheehan
- Center for Structural Biology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sreedatta Banerjee
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Afeef S Husni
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Thuy T Nguyen
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jens Meiler
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Structural Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jerod S Denton
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee; Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, Tennessee; Institute for Global Health, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
16
|
Druggability of the inward rectifier family: a hope for rare channelopathies? Future Med Chem 2014; 6:971-3. [PMID: 24547691 DOI: 10.4155/fmc.14.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
17
|
Raphemot R, Kadakia RJ, Olsen ML, Banerjee S, Days E, Smith SS, Weaver CD, Denton JS. Development and validation of fluorescence-based and automated patch clamp-based functional assays for the inward rectifier potassium channel Kir4.1. Assay Drug Dev Technol 2013; 11:532-43. [PMID: 24266659 DOI: 10.1089/adt.2013.544] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The inward rectifier potassium (Kir) channel Kir4.1 plays essential roles in modulation of neurotransmission and renal sodium transport and may represent a novel drug target for temporal lobe epilepsy and hypertension. The molecular pharmacology of Kir4.1 is limited to neurological drugs, such as fluoxetine (Prozac(©)), exhibiting weak and nonspecific activity toward the channel. The development of potent and selective small-molecule probes would provide critically needed tools for exploring the integrative physiology and therapeutic potential of Kir4.1. A fluorescence-based thallium (Tl(+)) flux assay that utilizes a tetracycline-inducible T-Rex-HEK293-Kir4.1 cell line to enable high-throughput screening (HTS) of small-molecule libraries was developed. The assay is dimethyl sulfoxide tolerant and exhibits robust screening statistics (Z'=0.75±0.06). A pilot screen of 3,655 small molecules and lipids revealed 16 Kir4.1 inhibitors (0.4% hit rate). 3,3-Diphenyl-N-(1-phenylethyl)propan-1-amine, termed VU717, inhibits Kir4.1-mediated thallium flux with an IC50 of ∼6 μM. An automated patch clamp assay using the IonFlux HT workbench was developed to facilitate compound characterization. Leak-subtracted ensemble "loose patch" recordings revealed robust tetracycline-inducible and Kir4.1 currents that were inhibited by fluoxetine (IC50=10 μM), VU717 (IC50=6 μM), and structurally related calcium channel blocker prenylamine (IC50=6 μM). Finally, we demonstrate that VU717 inhibits Kir4.1 channel activity in cultured rat astrocytes, providing proof-of-concept that the Tl(+) flux and IonFlux HT assays can enable the discovery of antagonists that are active against native Kir4.1 channels.
Collapse
Affiliation(s)
- Rene Raphemot
- 1 Department of Anesthesiology, Vanderbilt University School of Medicine , Nashville, Tennessee
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Raphemot R, Rouhier MF, Hopkins CR, Gogliotti RD, Lovell KM, Hine RM, Ghosalkar D, Longo A, Beyenbach KW, Denton JS, Piermarini PM. Eliciting renal failure in mosquitoes with a small-molecule inhibitor of inward-rectifying potassium channels. PLoS One 2013; 8:e64905. [PMID: 23734226 PMCID: PMC3666979 DOI: 10.1371/journal.pone.0064905] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 04/19/2013] [Indexed: 11/29/2022] Open
Abstract
Mosquito-borne diseases such as malaria and dengue fever take a large toll on global health. The primary chemical agents used for controlling mosquitoes are insecticides that target the nervous system. However, the emergence of resistance in mosquito populations is reducing the efficacy of available insecticides. The development of new insecticides is therefore urgent. Here we show that VU573, a small-molecule inhibitor of mammalian inward-rectifying potassium (Kir) channels, inhibits a Kir channel cloned from the renal (Malpighian) tubules of Aedes aegypti (AeKir1). Injection of VU573 into the hemolymph of adult female mosquitoes (Ae. aegypti) disrupts the production and excretion of urine in a manner consistent with channel block of AeKir1 and renders the mosquitoes incapacitated (flightless or dead) within 24 hours. Moreover, the toxicity of VU573 in mosquitoes (Ae. aegypti) is exacerbated when hemolymph potassium levels are elevated, suggesting that Kir channels are essential for maintenance of whole-animal potassium homeostasis. Our study demonstrates that renal failure is a promising mechanism of action for killing mosquitoes, and motivates the discovery of selective small-molecule inhibitors of mosquito Kir channels for use as insecticides.
Collapse
Affiliation(s)
- Rene Raphemot
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Matthew F. Rouhier
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Corey R. Hopkins
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Rocco D. Gogliotti
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Kimberly M. Lovell
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Rebecca M. Hine
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
| | - Dhairyasheel Ghosalkar
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
| | - Anthony Longo
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
| | - Klaus W. Beyenbach
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
| | - Jerod S. Denton
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Institute for Global Health, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail: (JSD); (PMP)
| | - Peter M. Piermarini
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
- * E-mail: (JSD); (PMP)
| |
Collapse
|
19
|
Kubrycht J, Sigler K, Souček P. Virtual interactomics of proteins from biochemical standpoint. Mol Biol Int 2012; 2012:976385. [PMID: 22928109 PMCID: PMC3423939 DOI: 10.1155/2012/976385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/18/2012] [Accepted: 05/18/2012] [Indexed: 12/24/2022] Open
Abstract
Virtual interactomics represents a rapidly developing scientific area on the boundary line of bioinformatics and interactomics. Protein-related virtual interactomics then comprises instrumental tools for prediction, simulation, and networking of the majority of interactions important for structural and individual reproduction, differentiation, recognition, signaling, regulation, and metabolic pathways of cells and organisms. Here, we describe the main areas of virtual protein interactomics, that is, structurally based comparative analysis and prediction of functionally important interacting sites, mimotope-assisted and combined epitope prediction, molecular (protein) docking studies, and investigation of protein interaction networks. Detailed information about some interesting methodological approaches and online accessible programs or databases is displayed in our tables. Considerable part of the text deals with the searches for common conserved or functionally convergent protein regions and subgraphs of conserved interaction networks, new outstanding trends and clinically interesting results. In agreement with the presented data and relationships, virtual interactomic tools improve our scientific knowledge, help us to formulate working hypotheses, and they frequently also mediate variously important in silico simulations.
Collapse
Affiliation(s)
- Jaroslav Kubrycht
- Department of Physiology, Second Medical School, Charles University, 150 00 Prague, Czech Republic
| | - Karel Sigler
- Laboratory of Cell Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic
| | - Pavel Souček
- Toxicogenomics Unit, National Institute of Public Health, 100 42 Prague, Czech Republic
| |
Collapse
|
20
|
Raphemot R, Lonergan DF, Nguyen TT, Utley T, Lewis LM, Kadakia R, Weaver CD, Gogliotti R, Hopkins C, Lindsley CW, Denton JS. Discovery, characterization, and structure-activity relationships of an inhibitor of inward rectifier potassium (Kir) channels with preference for Kir2.3, Kir3.x, and Kir7.1. Front Pharmacol 2011; 2:75. [PMID: 22275899 PMCID: PMC3254186 DOI: 10.3389/fphar.2011.00075] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 11/07/2011] [Indexed: 12/03/2022] Open
Abstract
The inward rectifier family of potassium (Kir) channels is comprised of at least 16 family members exhibiting broad and often overlapping cellular, tissue, or organ distributions. The discovery of disease-causing mutations in humans and experiments on knockout mice has underscored the importance of Kir channels in physiology and in some cases raised questions about their potential as drug targets. However, the paucity of potent and selective small-molecule modulators targeting specific family members has with few exceptions mired efforts to understand their physiology and assess their therapeutic potential. A growing body of evidence suggests that G protein-coupled inward rectifier K (GIRK) channels of the Kir3.X subfamily may represent novel targets for the treatment of atrial fibrillation. In an effort to expand the molecular pharmacology of GIRK, we performed a thallium (Tl(+)) flux-based high-throughput screen of a Kir1.1 inhibitor library for modulators of GIRK. One compound, termed VU573, exhibited 10-fold selectivity for GIRK over Kir1.1 (IC(50) = 1.9 and 19 μM, respectively) and was therefore selected for further study. In electrophysiological experiments performed on Xenopus laevis oocytes and mammalian cells, VU573 inhibited Kir3.1/3.2 (neuronal GIRK) and Kir3.1/3.4 (cardiac GIRK) channels with equal potency and preferentially inhibited GIRK, Kir2.3, and Kir7.1 over Kir1.1 and Kir2.1.Tl(+) flux assays were established for Kir2.3 and the M125R pore mutant of Kir7.1 to support medicinal chemistry efforts to develop more potent and selective analogs for these channels. The structure-activity relationships of VU573 revealed few analogs with improved potency, however two compounds retained most of their activity toward GIRK and Kir2.3 and lost activity toward Kir7.1. We anticipate that the VU573 series will be useful for exploring the physiology and structure-function relationships of these Kir channels.
Collapse
Affiliation(s)
- Rene Raphemot
- Department of Anesthesiology, Vanderbilt University School of MedicineNashville, TN, USA
- Department of Pharmacology, Vanderbilt University School of MedicineNashville, TN, USA
| | - Daniel F. Lonergan
- Department of Anesthesiology, Vanderbilt University School of MedicineNashville, TN, USA
| | - Thuy T. Nguyen
- Department of Anesthesiology, Vanderbilt University School of MedicineNashville, TN, USA
- Department of Pharmacology, Vanderbilt University School of MedicineNashville, TN, USA
| | - Thomas Utley
- Department of Pharmacology, Vanderbilt University School of MedicineNashville, TN, USA
| | - L. Michelle Lewis
- Vanderbilt Institute of Chemical Biology, Vanderbilt UniversityNashville, TN, USA
| | - Rishin Kadakia
- Department of Anesthesiology, Vanderbilt University School of MedicineNashville, TN, USA
| | - C. David Weaver
- Department of Pharmacology, Vanderbilt University School of MedicineNashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt UniversityNashville, TN, USA
| | - Rocco Gogliotti
- Department of Pharmacology, Vanderbilt University School of MedicineNashville, TN, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of MedicineNashville, TN, USA
| | - Corey Hopkins
- Department of Pharmacology, Vanderbilt University School of MedicineNashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt UniversityNashville, TN, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of MedicineNashville, TN, USA
- Department of Chemistry, Vanderbilt UniversityNashville, TN, USA
- Vanderbilt Specialized Chemistry Center for Accelerated Probe Development, Molecular Libraries Probe Production Centers NetworkNashville, TN, USA
| | - Craig W. Lindsley
- Department of Pharmacology, Vanderbilt University School of MedicineNashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt UniversityNashville, TN, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of MedicineNashville, TN, USA
- Department of Chemistry, Vanderbilt UniversityNashville, TN, USA
- Vanderbilt Specialized Chemistry Center for Accelerated Probe Development, Molecular Libraries Probe Production Centers NetworkNashville, TN, USA
| | - Jerod S. Denton
- Department of Anesthesiology, Vanderbilt University School of MedicineNashville, TN, USA
- Department of Pharmacology, Vanderbilt University School of MedicineNashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt UniversityNashville, TN, USA
| |
Collapse
|
21
|
Bhave G, Chauder BA, Liu W, Dawson ES, Kadakia R, Nguyen TT, Lewis LM, Meiler J, Weaver CD, Satlin LM, Lindsley CW, Denton JS. Development of a selective small-molecule inhibitor of Kir1.1, the renal outer medullary potassium channel. Mol Pharmacol 2011; 79:42-50. [PMID: 20926757 PMCID: PMC3014278 DOI: 10.1124/mol.110.066928] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 10/06/2010] [Indexed: 11/22/2022] Open
Abstract
The renal outer medullary potassium (K+) channel, ROMK (Kir1.1), is a putative drug target for a novel class of loop diuretic that would lower blood volume and pressure without causing hypokalemia. However, the lack of selective ROMK inhibitors has hindered efforts to assess its therapeutic potential. In a high-throughput screen for small-molecule modulators of ROMK, we previously identified a potent and moderately selective ROMK antagonist, 7,13-bis(4-nitrobenzyl)-1,4,10-trioxa-7,13-diazacyclopentadecane (VU590), that also inhibits Kir7.1. Because ROMK and Kir7.1 are coexpressed in the nephron, VU590 is not a good probe of ROMK function in the kidney. Here we describe the development of the structurally related inhibitor 2,2'-oxybis(methylene)bis(5-nitro-1H-benzo[d]imidazole) (VU591), which is as potent as VU590 but is selective for ROMK over Kir7.1 and more than 65 other potential off-targets. VU591 seems to block the intracellular pore of the channel. The development of VU591 may enable studies to explore the viability of ROMK as a diuretic target.
Collapse
Affiliation(s)
- Gautam Bhave
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Frindt G, Palmer LG. Effects of dietary K on cell-surface expression of renal ion channels and transporters. Am J Physiol Renal Physiol 2010; 299:F890-7. [PMID: 20702602 DOI: 10.1152/ajprenal.00323.2010] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Changes in apical surface expression of ion channels and transporters in the superficial rat renal cortex were assessed using biotinylation and immunoblotting during alterations in dietary K intake. A high-K diet increased, and a low-K diet decreased, both the overall and surface abundance of the β- and γ-subunits of the epithelial Na channel (ENaC). In the case of γ-ENaC, the effect was specific for the 65-kDa cleaved form of the protein. The overall amount of α-ENAC was also increased with increasing K intake. The total expression of the secretory K(+) channels (ROMK) increased with a high-K diet and decreased with a low-K diet. The surface expression of ROMK increased with high K intake but was not significantly altered by a low-K diet. In contrast, the amounts of total and surface protein representing the thiazide-sensitive NaCl cotransporter (NCC) decreased with increasing K intake. We conclude that modulation of K(+) secretion in response to changes in dietary K intake involves changes in apical K(+) permeability through regulation of K(+) channels and in driving force subsequent to alterations in both Na delivery to the distal nephron and Na(+) uptake across the apical membrane of the K(+) secretory cells.
Collapse
Affiliation(s)
- Gustavo Frindt
- Dept. Physiology and Biophysics, Weill Medical College of Cornell Univ., 1300 York Ave., New York, NY 10065, USA
| | | |
Collapse
|
23
|
Gupta S, Bavro VN, D’Mello R, Tucker SJ, Vénien-Bryan C, Chance MR. Conformational changes during the gating of a potassium channel revealed by structural mass spectrometry. Structure 2010; 18:839-46. [PMID: 20637420 PMCID: PMC3124773 DOI: 10.1016/j.str.2010.04.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 03/21/2010] [Accepted: 04/01/2010] [Indexed: 10/19/2022]
Abstract
Potassium channels are dynamic proteins that undergo large conformational changes to regulate the flow of K(+) ions across the cell membrane. Understanding the gating mechanism of these channels therefore requires methods for probing channel structure in both their open and closed conformations. Radiolytic footprinting is used to study the gating mechanism of the inwardly-rectifying potassium channel KirBac3.1. The purified protein stabilized in either open or closed conformations was exposed to focused synchrotron X-ray beams on millisecond timescales to modify solvent accessible amino acid side chains. These modifications were identified and quantified using high-resolution mass spectrometry. The differences observed between the closed and open states were then used to reveal local conformational changes that occur during channel gating. The results provide support for a proposed gating mechanism of the Kir channel and demonstrate a method of probing the dynamic gating mechanism of other integral membrane proteins and ion channels.
Collapse
Affiliation(s)
- Sayan Gupta
- Center for Synchrotron Biosciences, Case Western Reserve University, Cleveland Ohio, 44022, USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland Ohio, 44022, USA
| | - Vassiliy N. Bavro
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
- OXION Initiative, Sherrington Building, University of Oxford, Oxford, United Kingdom
| | - Rhijuta D’Mello
- Center for Synchrotron Biosciences, Case Western Reserve University, Cleveland Ohio, 44022, USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland Ohio, 44022, USA
| | - Stephen J. Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
- OXION Initiative, Sherrington Building, University of Oxford, Oxford, United Kingdom
| | - Catherine Vénien-Bryan
- OXION Initiative, Sherrington Building, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Mark R. Chance
- Center for Synchrotron Biosciences, Case Western Reserve University, Cleveland Ohio, 44022, USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland Ohio, 44022, USA
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland Ohio, 44022, USA
| |
Collapse
|
24
|
Bhave G, Lonergan D, Chauder BA, Denton JS. Small-molecule modulators of inward rectifier K+ channels: recent advances and future possibilities. Future Med Chem 2010; 2:757-74. [PMID: 20543968 PMCID: PMC2883187 DOI: 10.4155/fmc.10.179] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Inward rectifier potassium (Kir) channels have been postulated as therapeutic targets for several common disorders including hypertension, cardiac arrhythmias and pain. With few exceptions, however, the small-molecule pharmacology of this family is limited to nonselective cardiovascular and neurologic drugs with off-target activity toward inward rectifiers. Consequently, the actual therapeutic potential and 'drugability' of most Kir channels has not yet been determined experimentally. The purpose of this review is to provide a comprehensive summary of publicly disclosed Kir channel small-molecule modulators and highlight recent targeted drug-discovery efforts toward Kir1.1 and Kir2.1. The review concludes with a brief speculation on how the field of Kir channel pharmacology will develop over the coming years and a discussion of the increasingly important role academic laboratories will play in this progress.
Collapse
Affiliation(s)
- Gautam Bhave
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Daniel Lonergan
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Brian A Chauder
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jerod S Denton
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
25
|
Lewis LM, Bhave G, Chauder BA, Banerjee S, Lornsen KA, Redha R, Fallen K, Lindsley CW, Weaver CD, Denton JS. High-throughput screening reveals a small-molecule inhibitor of the renal outer medullary potassium channel and Kir7.1. Mol Pharmacol 2009; 76:1094-103. [PMID: 19706730 PMCID: PMC2774996 DOI: 10.1124/mol.109.059840] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 08/25/2009] [Indexed: 11/22/2022] Open
Abstract
The renal outer medullary potassium channel (ROMK) is expressed in the kidney tubule and critically regulates sodium and potassium balance. The physiological functions of other inward rectifying K(+) (Kir) channels expressed in the nephron, such as Kir7.1, are less well understood in part due to the lack of selective pharmacological probes targeting inward rectifiers. In an effort to identify Kir channel probes, we performed a fluorescence-based, high-throughput screen (HTS) of 126,009 small molecules for modulators of ROMK function. Several antagonists were identified in the screen. One compound, termed VU590, inhibits ROMK with submicromolar affinity, but has no effect on Kir2.1 or Kir4.1. Low micromolar concentrations inhibit Kir7.1, making VU590 the first small-molecule inhibitor of Kir7.1. Structure-activity relationships of VU590 were defined using small-scale parallel synthesis. Electrophysiological analysis indicates that VU590 is an intracellular pore blocker. VU590 and other compounds identified by HTS will be instrumental in defining Kir channel structure, physiology, and therapeutic potential.
Collapse
Affiliation(s)
- L Michelle Lewis
- Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|