1
|
Neufeld S, Reichelt M, Scholz SS, Wojtaszek P, Mithöfer A. Exploring a Role for the Arabidopsis TIR-X Gene (TIRP) in the Defense Against Pathogenic Fungi or Insect Herbivory Attack. Int J Mol Sci 2025; 26:2764. [PMID: 40141409 PMCID: PMC11943168 DOI: 10.3390/ijms26062764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Plants are challenged regularly with multiple types of biotic stress factors, such as pathogens or insect herbivores, in their environment. To detect and defend against pathogens, plants have evolved an innate immune system in which intracellular receptors in the so-called effector-triggered immunity play a vital role. In Arabidopsis thaliana the Toll/interleukin-1 receptors (TIRs) domain is related to intracellular immunity receptors, for example in TIR-NBS-LRR (TNL) proteins. Among the TIR domain carrying proteins, very little is known about the function of the TIR-X proteins. Here, we focus on the recently described TIR-X (TIRP; At5g44900) to analyze its role in phytohormone-mediated plant defense through gene expression and phytohormone quantification. Therefore, we employed two fungal pathogens, the necrotrophic Alternaria brassicicola and the hemibiotrophic Verticillium dahliae, to infect A. thaliana WT (Col-0), TIRP knock-out, and TIRP overexpressing lines for comparative analyses. Furthermore, we included the insect herbivore Spodoptera littoralis and a treatment with S. littoralis egg extract on the plants to analyze any role of TIRP during these attacks. We found that both A. brassicicola and V. dahliae infections increased TIRP gene expression systemically. The salicylic acid content was higher in the TIRP overexpressing line, corresponding to a better S. littoralis larval growth performance in feeding assays. However, since we never observed clear infection-related differences in jasmonate or salicylic acid levels between the wild type and the two transgenic Arabidopsis lines, our results rule out the possibility that TIRP acts via the regulation of phytohormone synthesis and accumulation.
Collapse
Affiliation(s)
- Shraddha Neufeld
- Research Group Plant Defense Physiology, Max-Planck Institute for Chemical Ecology, 07745 Jena, Germany;
- Department of Molecular and Cellular Biology, Adam Mickiewicz University, 61-712 Poznan, Poland;
| | - Michael Reichelt
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, 07745 Jena, Germany;
| | - Sandra S. Scholz
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University, 07743 Jena, Germany;
| | - Przemysław Wojtaszek
- Department of Molecular and Cellular Biology, Adam Mickiewicz University, 61-712 Poznan, Poland;
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max-Planck Institute for Chemical Ecology, 07745 Jena, Germany;
| |
Collapse
|
2
|
Zaccaron AZ, Chen LH, Stergiopoulos I. Transcriptome analysis of two isolates of the tomato pathogen Cladosporium fulvum, uncovers genome-wide patterns of alternative splicing during a host infection cycle. PLoS Pathog 2024; 20:e1012791. [PMID: 39693392 DOI: 10.1371/journal.ppat.1012791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/02/2025] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
Alternative splicing (AS) is a key element of eukaryotic gene expression that increases transcript and proteome diversity in cells, thereby altering their responses to external stimuli and stresses. While AS has been intensively researched in plants and animals, its frequency, conservation, and putative impact on virulence, are relatively still understudied in plant pathogenic fungi. Here, we profiled the AS events occurring in genes of Cladosporium fulvum isolates Race 5 and Race 4, during nearly a complete compatible infection cycle on their tomato host. Our studies revealed extensive heterogeneity in the transcript isoforms assembled from different isolates, infections, and infection timepoints, as over 80% of the transcript isoforms were singletons that were detected in only a single sample. Despite that, nearly 40% of the protein-coding genes in each isolate were predicted to be recurrently AS across the disparate infection timepoints, infections, and the two isolates. Of these, 37.5% were common to both isolates and 59% resulted in multiple protein isoforms, thereby putatively increasing proteome diversity in the pathogen by 31% during infections. An enrichment analysis showed that AS mostly affected genes likely to be involved in the transport of nutrients, regulation of gene expression, and monooxygenase activity, suggesting a role for AS in finetuning adaptation of C. fulvum on its tomato host during infections. Tracing the location of the AS genes on the fungal chromosomes showed that they were mostly located in repeat-rich regions of the core chromosomes, indicating a causal connection between gene location on the genome and propensity to AS. Finally, multiple cases of differential isoform usage in AS genes of C. fulvum were identified, suggesting that modulation of AS at different infection stages may be another way by which pathogens refine infections on their hosts.
Collapse
Affiliation(s)
- Alex Z Zaccaron
- Department of Plant Pathology, University of California Davis (UC Davis), Davis, California United States of America
- Integrative Genetics and Genomics Graduate Group, University of California Davis (UC Davis), California, United States of America
| | - Li-Hung Chen
- Department of Plant Pathology, University of California Davis (UC Davis), Davis, California United States of America
| | - Ioannis Stergiopoulos
- Department of Plant Pathology, University of California Davis (UC Davis), Davis, California United States of America
| |
Collapse
|
3
|
Guimaraes PM, Quintana AC, Mota APZ, Berbert PS, Ferreira DDS, de Aguiar MN, Pereira BM, de Araújo ACG, Brasileiro ACM. Engineering Resistance against Sclerotinia sclerotiorum Using a Truncated NLR (TNx) and a Defense-Priming Gene. PLANTS (BASEL, SWITZERLAND) 2022; 11:3483. [PMID: 36559595 PMCID: PMC9786959 DOI: 10.3390/plants11243483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The association of both cell-surface PRRs (Pattern Recognition Receptors) and intracellular receptor NLRs (Nucleotide-Binding Leucine-Rich Repeat) in engineered plants have the potential to activate strong defenses against a broad range of pathogens. Here, we describe the identification, characterization, and in planta functional analysis of a novel truncated NLR (TNx) gene from the wild species Arachis stenosperma (AsTIR19), with a protein structure lacking the C-terminal LRR (Leucine Rich Repeat) domain involved in pathogen perception. Overexpression of AsTIR19 in tobacco plants led to a significant reduction in infection caused by Sclerotinia sclerotiorum, with a further reduction in pyramid lines containing an expansin-like B gene (AdEXLB8) potentially involved in defense priming. Transcription analysis of tobacco transgenic lines revealed induction of hormone defense pathways (SA; JA-ET) and PRs (Pathogenesis-Related proteins) production. The strong upregulation of the respiratory burst oxidase homolog D (RbohD) gene in the pyramid lines suggests its central role in mediating immune responses in plants co-expressing the two transgenes, with reactive oxygen species (ROS) production enhanced by AdEXLB8 cues leading to stronger defense response. Here, we demonstrate that the association of potential priming elicitors and truncated NLRs can produce a synergistic effect on fungal resistance, constituting a promising strategy for improved, non-specific resistance to plant pathogens.
Collapse
Affiliation(s)
- Patricia Messenberg Guimaraes
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Brasilia 70770-917, Brazil
| | | | - Ana Paula Zotta Mota
- INRAE, Institut Sophia Agrobiotech, CNRS, Université Côte d’Azur, 06903 Sophia Antipolis, France
| | | | | | | | | | | | - Ana Cristina Miranda Brasileiro
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Brasilia 70770-917, Brazil
| |
Collapse
|
4
|
Yang H, Mohd Saad NS, Ibrahim MI, Bayer PE, Neik TX, Severn-Ellis AA, Pradhan A, Tirnaz S, Edwards D, Batley J. Candidate Rlm6 resistance genes against Leptosphaeria. maculans identified through a genome-wide association study in Brassica juncea (L.) Czern. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2035-2050. [PMID: 33768283 DOI: 10.1007/s00122-021-03803-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
One hundred and sixty-seven B. juncea varieties were genotyped on the 90K Brassica assay (42,914 SNPs), which led to the identification of sixteen candidate genes for Rlm6. Brassica species are at high risk of severe crop loss due to pathogens, especially Leptosphaeria maculans (the causal agent of blackleg). Brassica juncea (L.) Czern is an important germplasm resource for canola improvement, due to its good agronomic traits, such as heat and drought tolerance and high blackleg resistance. The present study is the first using genome-wide association studies to identify candidate genes for blackleg resistance in B. juncea based on genome-wide SNPs obtained from the Illumina Infinium 90 K Brassica SNP array. The verification of Rlm6 in B. juncea was performed through a cotyledon infection test. Genotyping 42,914 single nucleotide polymorphisms (SNPs) in a panel of 167 B. juncea lines revealed a total of seven SNPs significantly associated with Rlm6 on chromosomes A07 and B04 in B. juncea. Furthermore, 16 candidate Rlm6 genes were found in these regions, defined as nucleotide binding site leucine-rich-repeat (NLR), leucine-rich repeat RLK (LRR-RLK) and LRR-RLP genes. This study will give insights into the blackleg resistance in B. juncea and facilitate identification of functional blackleg resistance genes which can be used in Brassica breeding.
Collapse
Affiliation(s)
- Hua Yang
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | | | | | - Philipp E Bayer
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Ting Xiang Neik
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Anita A Severn-Ellis
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Aneeta Pradhan
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Soodeh Tirnaz
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - David Edwards
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
5
|
Rashid Z, Sofi M, Harlapur SI, Kachapur RM, Dar ZA, Singh PK, Zaidi PH, Vivek BS, Nair SK. Genome-wide association studies in tropical maize germplasm reveal novel and known genomic regions for resistance to Northern corn leaf blight. Sci Rep 2020; 10:21949. [PMID: 33319847 PMCID: PMC7738672 DOI: 10.1038/s41598-020-78928-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/26/2020] [Indexed: 02/08/2023] Open
Abstract
Northern Corn Leaf Blight (NCLB) caused by Setosphaeria turcica, is one of the most important diseases of maize world-wide, and one of the major reasons behind yield losses in maize crop in Asia. In the present investigation, a high-resolution genome wide association study (GWAS) was conducted for NCLB resistance in three association mapping panels, predominantly consisting of tropical lines adapted to different agro-ecologies. These panels were phenotyped for disease severity across three locations with high disease prevalence in India. High density SNPs from Genotyping-by-sequencing were used in GWAS, after controlling for population structure and kinship matrices, based on single locus mixed linear model (MLM). Twenty-two SNPs were identified, that revealed a significant association with NCLB in the three mapping panels. Haplotype regression analysis revealed association of 17 significant haplotypes at FDR ≤ 0.05, with two common haplotypes across three maize panels. Several of the significantly associated SNPs/haplotypes were found to be co-located in chromosomal bins previously reported for major genes like Ht2, Ht3 and Htn1 and QTL for NCLB resistance and multiple foliar disease resistance. Phenotypic variance explained by these significant SNPs/haplotypes ranged from low to moderate, suggesting a breeding strategy of combining multiple resistance alleles towards resistance for NCLB.
Collapse
Affiliation(s)
- Zerka Rashid
- International Maize and Wheat Improvement Center (CIMMYT), ICRISAT Campus, Patancheru, Greater Hyderabad Telangana, 502324, India
| | - Mehrajuddin Sofi
- High Mountain Arid Agricultural Research Institute (HMAARI) Stakna, SKUAST-Kashmir, Leh, 194101, India
| | - Sharanappa I Harlapur
- University of Agricultural Sciences, Krishi Nagar, Dharwad, Karnataka, 580005, India
| | | | - Zahoor Ahmed Dar
- Sher-E-Kashmir University of Agriculture Sciences and Technology (SKUAST), Srinagar, Jammu and Kashmir, 190001, India
| | - Pradeep Kumar Singh
- International Maize and Wheat Improvement Center (CIMMYT), ICRISAT Campus, Patancheru, Greater Hyderabad Telangana, 502324, India
| | - Pervez Haider Zaidi
- International Maize and Wheat Improvement Center (CIMMYT), ICRISAT Campus, Patancheru, Greater Hyderabad Telangana, 502324, India
| | - Bindiganavile Sampath Vivek
- International Maize and Wheat Improvement Center (CIMMYT), ICRISAT Campus, Patancheru, Greater Hyderabad Telangana, 502324, India
| | - Sudha Krishnan Nair
- International Maize and Wheat Improvement Center (CIMMYT), ICRISAT Campus, Patancheru, Greater Hyderabad Telangana, 502324, India.
| |
Collapse
|
6
|
Warmerdam S, Sterken MG, Sukarta OCA, van Schaik CC, Oortwijn MEP, Lozano-Torres JL, Bakker J, Smant G, Goverse A. The TIR-NB-LRR pair DSC1 and WRKY19 contributes to basal immunity of Arabidopsis to the root-knot nematode Meloidogyne incognita. BMC PLANT BIOLOGY 2020; 20:73. [PMID: 32054439 PMCID: PMC7020509 DOI: 10.1186/s12870-020-2285-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/07/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Root-knot nematodes transform vascular host cells into permanent feeding structures to withdraw nutrients from the host plant. Ecotypes of Arabidopsis thaliana can display large quantitative variation in susceptibility to the root-knot nematode Meloidogyne incognita, which is thought to be independent of dominant major resistance genes. However, in an earlier genome-wide association study of the interaction between Arabidopsis and M. incognita we identified a quantitative trait locus harboring homologs of dominant resistance genes but with minor effect on susceptibility to the M. incognita population tested. RESULTS Here, we report on the characterization of two of these genes encoding the TIR-NB-LRR immune receptor DSC1 (DOMINANT SUPPRESSOR OF Camta 3 NUMBER 1) and the TIR-NB-LRR-WRKY-MAPx protein WRKY19 in nematode-infected Arabidopsis roots. Nematode infection studies and whole transcriptome analyses using the Arabidopsis mutants showed that DSC1 and WRKY19 co-regulate susceptibility of Arabidopsis to M. incognita. CONCLUSION Given the head-to-head orientation of DSC1 and WRKY19 in the Arabidopsis genome our data suggests that both genes may function as a TIR-NB-LRR immune receptor pair. Unlike other TIR-NB-LRR pairs involved in dominant disease resistance in plants, DSC1 and WRKY19 most likely regulate basal levels of immunity to root-knot nematodes.
Collapse
Affiliation(s)
- Sonja Warmerdam
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Mark G. Sterken
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Octavina C. A. Sukarta
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Casper C. van Schaik
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Marian E. P. Oortwijn
- Laboratory of Plant breeding, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jose L. Lozano-Torres
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jaap Bakker
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Geert Smant
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Aska Goverse
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
7
|
Becker MG, Haddadi P, Wan J, Adam L, Walker P, Larkan NJ, Daayf F, Borhan MH, Belmonte MF. Transcriptome Analysis of Rlm2-Mediated Host Immunity in the Brassica napus- Leptosphaeria maculans Pathosystem. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1001-1012. [PMID: 30938576 DOI: 10.1094/mpmi-01-19-0028-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Our study investigated disease resistance in the Brassica napus-Leptosphaeria maculans pathosystem using a combination of laser microdissection, dual RNA sequencing, and physiological validations of large-scale gene sets. The use of laser microdissection improved pathogen detection and identified putative L. maculans effectors and lytic enzymes operative during host colonization. Within 24 h of inoculation, we detected large shifts in gene activity in resistant cotyledons associated with jasmonic acid and calcium signaling pathways that accelerated the plant defense response. Sequencing data were validated through the direct quantification of endogenous jasmonic acid levels. Additionally, resistance against L. maculans was abolished when the calcium chelator EGTA was applied to the inoculation site, providing physiological evidence of the role of calcium in B. napus immunity against L. maculans. We integrated gene expression data with all available information on cis-regulatory elements and transcription factor binding affinities to better understand the gene regulatory networks underpinning plant resistance to hemibiotrophic pathogens. These in silico analyses point to early cellular reprogramming during host immunity that are coordinated by CAMTA, BZIP, and bHLH transcription factors. Together, we provide compelling genetic and physiological evidence into the programming of plant resistance against fungal pathogens.
Collapse
Affiliation(s)
- Michael G Becker
- 1Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Parham Haddadi
- 2Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - Joey Wan
- 1Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Lorne Adam
- 3Department of Plant Science, University of Manitoba
| | - Philip Walker
- 1Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | - Fouad Daayf
- 3Department of Plant Science, University of Manitoba
| | - M Hossein Borhan
- 2Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - Mark F Belmonte
- 1Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
8
|
Raman H, Raman R, Coombes N, Song J, Diffey S, Kilian A, Lindbeck K, Barbulescu DM, Batley J, Edwards D, Salisbury PA, Marcroft S. Genome-wide Association Study Identifies New Loci for Resistance to Leptosphaeria maculans in Canola. FRONTIERS IN PLANT SCIENCE 2016; 7:1513. [PMID: 27822217 PMCID: PMC5075532 DOI: 10.3389/fpls.2016.01513] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 09/23/2016] [Indexed: 05/18/2023]
Abstract
Key message "We identified both quantitative and quantitative resistance loci to Leptosphaeria maculans, a fungal pathogen, causing blackleg disease in canola. Several genome-wide significant associations were detected at known and new loci for blackleg resistance. We further validated statistically significant associations in four genetic mapping populations, demonstrating that GWAS marker loci are indeed associated with resistance to L. maculans. One of the novel loci identified for the first time, Rlm12, conveys adult plant resistance in canola." Blackleg, caused by Leptosphaeria maculans, is a significant disease which affects the sustainable production of canola (Brassica napus). This study reports a genome-wide association study based on 18,804 polymorphic SNPs to identify loci associated with qualitative and quantitative resistance to L. maculans. Genomic regions delimited with 694 significant SNP markers, that are associated with resistance evaluated using 12 single spore isolates and pathotypes from four canola stubble were identified. Several significant associations were detected at known disease resistance loci including in the vicinity of recently cloned Rlm2/LepR3 genes, and at new loci on chromosomes A01/C01, A02/C02, A03/C03, A05/C05, A06, A08, and A09. In addition, we validated statistically significant associations on A01, A07, and A10 in four genetic mapping populations, demonstrating that GWAS marker loci are indeed associated with resistance to L. maculans. One of the novel loci identified for the first time, Rlm12, conveys adult plant resistance and mapped within 13.2 kb from Arabidopsis R gene of TIR-NBS class. We showed that resistance loci are located in the vicinity of R genes of Arabidopsis thaliana and Brassica napus on the sequenced genome of B. napus cv. Darmor-bzh. Significantly associated SNP markers provide a valuable tool to enrich germplasm for favorable alleles in order to improve the level of resistance to L. maculans in canola.
Collapse
Affiliation(s)
- Harsh Raman
- Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga Agricultural Institute, Wagga WaggaNSW, Australia
| | - Rosy Raman
- Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga Agricultural Institute, Wagga WaggaNSW, Australia
| | - Neil Coombes
- Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga Agricultural Institute, Wagga WaggaNSW, Australia
| | - Jie Song
- Diversity Array Technology P/L, University of Canberra, CanberraACT, Australia
| | - Simon Diffey
- Centre for Bioinformatics and Biometrics, University of Wollongong, WollongongNSW, Australia
| | - Andrzej Kilian
- Diversity Array Technology P/L, University of Canberra, CanberraACT, Australia
| | - Kurt Lindbeck
- Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga Agricultural Institute, Wagga WaggaNSW, Australia
| | - Denise M. Barbulescu
- Department of Economic Development, Jobs, Transport and Resources, HorshamVIC, Australia
| | - Jacqueline Batley
- School of Plant Biology, University of Western Australia, CrawleyWA, Australia
| | - David Edwards
- School of Plant Biology, University of Western Australia, CrawleyWA, Australia
- Institute of Agriculture, University of Western Australia, CrawleyWA, Australia
| | - Phil A. Salisbury
- Department of Economic Development, Jobs, Transport and Resources, HorshamVIC, Australia
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, ParkvilleVIC, Australia
| | | |
Collapse
|
9
|
Guerra D, Crosatti C, Khoshro HH, Mastrangelo AM, Mica E, Mazzucotelli E. Post-transcriptional and post-translational regulations of drought and heat response in plants: a spider's web of mechanisms. FRONTIERS IN PLANT SCIENCE 2015; 6:57. [PMID: 25717333 PMCID: PMC4324062 DOI: 10.3389/fpls.2015.00057] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/22/2015] [Indexed: 05/14/2023]
Abstract
Drought and heat tolerance are complex quantitative traits. Moreover, the adaptive significance of some stress-related traits is more related to plant survival than to agronomic performance. A web of regulatory mechanisms fine-tunes the expression of stress-related traits and integrates both environmental and developmental signals. Both post-transcriptional and post-translational modifications contribute substantially to this network with a pivotal regulatory function of the transcriptional changes related to cellular and plant stress response. Alternative splicing and RNA-mediated silencing control the amount of specific transcripts, while ubiquitin and SUMO modify activity, sub-cellular localization and half-life of proteins. Interactions across these modification mechanisms ensure temporally and spatially appropriate patterns of downstream-gene expression. For key molecular components of these regulatory mechanisms, natural genetic diversity exists among genotypes with different behavior in terms of stress tolerance, with effects upon the expression of adaptive morphological and/or physiological target traits.
Collapse
Affiliation(s)
- Davide Guerra
- Genomics Research Centre, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Fiorenzuola d’Arda, Piacenza, Italy
| | - Cristina Crosatti
- Genomics Research Centre, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Fiorenzuola d’Arda, Piacenza, Italy
| | - Hamid H. Khoshro
- Department of Agronomy and Plant Breeding, Ilam University, Ilam, Iran
| | - Anna M. Mastrangelo
- Cereal Research Centre, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Foggia, Italy
| | - Erica Mica
- Genomics Research Centre, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Fiorenzuola d’Arda, Piacenza, Italy
| | - Elisabetta Mazzucotelli
- Genomics Research Centre, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Fiorenzuola d’Arda, Piacenza, Italy
| |
Collapse
|
10
|
Carvalho RF, Feijão CV, Duque P. On the physiological significance of alternative splicing events in higher plants. PROTOPLASMA 2013; 250:639-50. [PMID: 22961303 DOI: 10.1007/s00709-012-0448-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 08/16/2012] [Indexed: 05/05/2023]
Abstract
Alternative splicing, which generates multiple transcripts from the same gene and potentially different protein isoforms, is a key posttranscriptional regulatory mechanism for expanding proteomic diversity and functional complexity in higher eukaryotes. The most recent estimates, based on whole transcriptome sequencing, indicate that about 95 % of human and 60 % of Arabidopsis multi-exon genes undergo alternative splicing, suggesting important roles for this mechanism in biological processes. However, while the misregulation of alternative splicing has been associated with many human diseases, its biological relevance in plant systems is just beginning to unfold. We review here the few plant genes for which the production of multiple splice isoforms has been reported to have a clear in vivo functional impact. These case studies implicate alternative splicing in the control of a wide range of physiological and developmental processes, including photosynthetic and starch metabolism, hormone signaling, seed germination, root growth and flowering, as well as in biotic and abiotic stress responses. Future functional characterization of alternative splicing events and identification of the transcripts targeted by major regulators of this versatile means of modulating gene expression should uncover the breadth of its physiological significance in higher plants.
Collapse
Affiliation(s)
- Raquel F Carvalho
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | | | | |
Collapse
|
11
|
Marone D, Russo MA, Laidò G, De Leonardis AM, Mastrangelo AM. Plant nucleotide binding site-leucine-rich repeat (NBS-LRR) genes: active guardians in host defense responses. Int J Mol Sci 2013; 14:7302-26. [PMID: 23549266 PMCID: PMC3645687 DOI: 10.3390/ijms14047302] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 03/21/2013] [Accepted: 03/26/2013] [Indexed: 11/16/2022] Open
Abstract
The most represented group of resistance genes are those of the nucleotide binding site-leucine-rich repeat (NBS-LRR) class. These genes are very numerous in the plant genome, and they often occur in clusters at specific loci following gene duplication and amplification events. To date, hundreds of resistance genes and relatively few quantitative trait loci for plant resistance to pathogens have been mapped in different species, with some also cloned. When these NBS-LRR genes have been physically or genetically mapped, many cases have shown co-localization between resistance loci and NBS-LRR genes. This has allowed the identification of candidate genes for resistance, and the development of molecular markers linked to R genes. This review is focused on recent genomics studies that have described the abundance, distribution and evolution of NBS-LRR genes in plant genomes. Furthermore, in terms of their expression, NBS-LRR genes are under fine regulation by cis- and trans-acting elements. Recent findings have provided insights into the roles of alternative splicing, the ubiquitin/ proteasome system, and miRNAs and secondary siRNAs in the regulation of NBS-LRR gene expression at the post-transcriptional, post-translational and epigenetic levels. The possibility to use this knowledge for genetic improvement of plant resistance to pathogens is discussed.
Collapse
Affiliation(s)
- Daniela Marone
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Agricultural Research Council-Cereal Research Centre (CRA-CER), SS 16 km 675, 71122 Foggia, Italy.
| | | | | | | | | |
Collapse
|
12
|
Mastrangelo AM, Marone D, Laidò G, De Leonardis AM, De Vita P. Alternative splicing: enhancing ability to cope with stress via transcriptome plasticity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 185-186:40-9. [PMID: 22325865 DOI: 10.1016/j.plantsci.2011.09.006] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 09/18/2011] [Accepted: 09/20/2011] [Indexed: 05/20/2023]
Abstract
Alternative splicing is a mechanism for the regulation of gene expression that is widespread in higher eukaryotes. Genome-wide approaches, based on comparison of expressed and genomic sequences, on tiling arrays, and on next-generation sequencing, have provided growing knowledge of the extent, distribution and association of alternative splicing with stress-related genes in plants. The functional meaning of alternative splicing in response to stress has been defined for many genes, and in particular for those involved in the regulation of the stress responses, such as protein kinases, transcription factors, splicing regulators and pathogen-resistance genes. The production of proteins with diverse domain rearrangements from the same gene is the main alternative splicing mechanism for pathogen-resistance genes. The plant response to abiotic stress is also characterized by a second mechanism, which consists of the expression of alternative transcripts that are targeted to nonsense-mediated decay. These quantitatively regulate stress-related gene expression. Many alternative splicing events are well conserved among plant species, and also across kingdoms, especially those observed in response to stress, for genes encoding splicing regulators, and other classes of RNA-binding proteins. Nevertheless, non-conserved events indicate that alternative splicing represents an evolutionary strategy that rapidly increases genome plasticity and develops new gene functions, along with other mechanisms such as gene duplication. Finally, the study of the naturally occurring variability of alternative splicing and the identification of genomic regions involved in the regulation of alternative splicing in crops are proposed as strategies for selecting genotypes with superior performance under adverse environmental conditions.
Collapse
|
13
|
Laluk K, Mengiste T. Necrotroph attacks on plants: wanton destruction or covert extortion? THE ARABIDOPSIS BOOK 2010; 8:e0136. [PMID: 22303261 PMCID: PMC3244965 DOI: 10.1199/tab.0136] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Necrotrophic pathogens cause major pre- and post-harvest diseases in numerous agronomic and horticultural crops inflicting significant economic losses. In contrast to biotrophs, obligate plant parasites that infect and feed on living cells, necrotrophs promote the destruction of host cells to feed on their contents. This difference underpins the divergent pathogenesis strategies and plant immune responses to biotrophic and necrotrophic infections. This chapter focuses on Arabidopsis immunity to necrotrophic pathogens. The strategies of infection, virulence and suppression of host defenses recruited by necrotrophs and the variation in host resistance mechanisms are highlighted. The multiplicity of intraspecific virulence factors and species diversity in necrotrophic organisms corresponds to variations in host resistance strategies. Resistance to host-specific necrotophs is monogenic whereas defense against broad host necrotrophs is complex, requiring the involvement of many genes and pathways for full resistance. Mechanisms and components of immunity such as the role of plant hormones, secondary metabolites, and pathogenesis proteins are presented. We will discuss the current state of knowledge of Arabidopsis immune responses to necrotrophic pathogens, the interactions of these responses with other defense pathways, and contemplate on the directions of future research.
Collapse
Affiliation(s)
- Kristin Laluk
- Purdue University, Department of Botany and Plant Pathology, 915 W. State Street, West Lafayette, IN 47907
- Address correspondence to
and
| | - Tesfaye Mengiste
- Purdue University, Department of Botany and Plant Pathology, 915 W. State Street, West Lafayette, IN 47907
- Address correspondence to
and
| |
Collapse
|