1
|
Axelrod CJ, Urquhart EM, Mahabir PN, Carlson BA, Gordon SP. Diversity of Intraspecific Patterns of Brain Region Size Covariation in Fish. Integr Comp Biol 2024; 64:506-519. [PMID: 38886128 DOI: 10.1093/icb/icae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Traits often do not evolve in isolation or vary independently of other traits. Instead, they can be affected by covariation, both within and across species. However, the importance of within-species trait covariation and, critically, the degree to which it varies between species has yet to be thoroughly studied. Brain morphology is a trait of great ecological and behavioral importance, with regions that are hypothesized to vary in size based on behavioral and cognitive demands. Sizes of brain regions have also been shown to covary with each other across various taxa. Here, we test the degree to which covariation in brain region sizes within species has been conserved across 10 teleost fish species. These 10 species span five orders, allowing us to examine how phylogenetic proximity influences similarities in intraspecific trait covariation. Our results showed a trend that similar patterns of brain region size covariation occur in more closely related species. Interestingly, there were certain brain region pairs that showed similar levels of covariation across all species regardless of phylogenetic distance, such as the telencephalon and optic tectum, while others, such as the olfactory bulb and the hypothalamus, varied more independently. Ultimately, the patterns of brain region covariation shown here suggest that evolutionary mechanisms or constraints can act on specific brain regions independently, and that these constraints can change over evolutionary time.
Collapse
Affiliation(s)
- Caleb J Axelrod
- Department of Ecology and Evolution, Cornell University, E145, 215 Tower Rd Dale R. Corson Hall, Ithaca, NY 14853, USA
| | - Ellen M Urquhart
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63105, USA
| | - Pria N Mahabir
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bruce A Carlson
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63105, USA
| | - Swanne P Gordon
- Department of Ecology and Evolution, Cornell University, E145, 215 Tower Rd Dale R. Corson Hall, Ithaca, NY 14853, USA
| |
Collapse
|
2
|
Lessner EJ, Dollman KN, Clark JM, Xu X, Holliday CM. Ecomorphological patterns in trigeminal canal branching among sauropsids reveal sensory shift in suchians. J Anat 2023; 242:927-952. [PMID: 36680380 PMCID: PMC10093182 DOI: 10.1111/joa.13826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/22/2023] Open
Abstract
The vertebrate trigeminal nerve is the primary mediator of somatosensory information from nerve endings across the face, extending nerve branches through bony canals in the face and mandibles, terminating in sensory receptors. Reptiles evolved several extreme forms of cranial somatosensation in which enhanced trigeminal tissues are present in species engaging in unique mechanosensory behaviors. However, morphology varies by clade and ecology among reptiles. Few lineages approach the extreme degree of tactile somatosensation possessed by crocodylians, the only remaining members of a clade that underwent an ecological transition from the terrestrial to semiaquatic habitat, also evolving a specialized trigeminal system. It remains to be understood how trigeminal osteological correlates inform how adaptations for enhanced cranial sensation evolved in crocodylians. Here we identify an increase in sensory abilities in Early Jurassic crocodylomorphs, preceding the transitions to a semiaquatic habitat. Through quantification of trigeminal neurovascular canal branching patterns in an extant phylogenetic bracket we quantify and identify morphologies associated with sensory behaviors in representative fossil taxa, we find stepwise progression of increasing neurovascular canal density, complexity, and distribution from the primitive archosaurian to the derived crocodilian condition. Model-based inferences of sensory ecologies tested on quantified morphologies of extant taxa with known sensory behaviors indicate a parallel increase in sensory abilities among pseudosuchians. These findings establish patterns of reptile trigeminal ecomorphology, revealing evolutionary patterns of somatosensory ecology.
Collapse
Affiliation(s)
- Emily J. Lessner
- Department of Pathology and Anatomical SciencesUniversity of MissouriColumbiaMissouriUSA
| | | | - James M. Clark
- Department of Biological SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Xing Xu
- Centre for Vertebrate Evolutionary BiologyYunnan UniversityKunmingChina
- Institute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina
| | - Casey M. Holliday
- Department of Pathology and Anatomical SciencesUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
3
|
Schumacher EL, Carlson BA. Convergent mosaic brain evolution is associated with the evolution of novel electrosensory systems in teleost fishes. eLife 2022; 11:74159. [PMID: 35713403 PMCID: PMC9333993 DOI: 10.7554/elife.74159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Brain region size generally scales allometrically with brain size, but mosaic shifts in brain region size independent of brain size have been found in several lineages and may be related to the evolution of behavioral novelty. African weakly electric fishes (Mormyroidea) evolved a mosaically enlarged cerebellum and hindbrain, yet the relationship to their behaviorally novel electrosensory system remains unclear. We addressed this by studying South American weakly electric fishes (Gymnotiformes) and weakly electric catfishes (Synodontis spp.), which evolved varying aspects of electrosensory systems, independent of mormyroids. If the mormyroid mosaic increases are related to evolving an electrosensory system, we should find similar mosaic shifts in gymnotiforms and Synodontis. Using micro-computed tomography scans, we quantified brain region scaling for multiple electrogenic, electroreceptive, and non-electrosensing species. We found mosaic increases in cerebellum in all three electrogenic lineages relative to non-electric lineages and mosaic increases in torus semicircularis and hindbrain associated with the evolution of electrogenesis and electroreceptor type. These results show that evolving novel electrosensory systems is repeatedly and independently associated with changes in the sizes of individual major brain regions independent of brain size, suggesting that selection can impact structural brain composition to favor specific regions involved in novel behaviors. Larger animals tend to have larger brains and smaller animals tend to have smaller ones. However, some species do not fit the pattern that would be expected based on their body size. This variation between species can also apply to individual brain regions. This may be due to evolutionary forces shaping the brain when favouring particular behaviours. However, it is difficult to directly link changes in species behaviour and variations in brain structure. One way to understand the impact of evolutionary adaptations is to study species that have developed new behaviours and compare them to related ones that lack such a behaviour. An opportunity to do this lies in the ability of several species of fish to produce and sense electric fields in water. While this system is not found in most fish, it has evolved multiple times independently in distantly-related lineages. Schumacher and Carlson examined whether differences in the size of brains and individual regions between species were associated with the evolution of electric field generation and sensing. Micro-computed tomography, or μCT, scans of the brains of multiple fish species revealed that the species that can produce electricity – also known as ‘electrogenic’ species’ – have more similar brain structures to each other than to their close relatives that lack this ability. The brain regions involved in producing and detecting electrical charges were larger in these electrogenic fish. This similarity was apparent despite variations in how total brain size has evolved with body size across species. These results demonstrate how evolutionary forces acting on particular behaviours can lead to predictable changes in brain structure. Understanding how and why brains evolve will allow researchers to better predict how species’ brains and behaviours may adapt as human activities alter their environments.
Collapse
Affiliation(s)
- Erika L Schumacher
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| | - Bruce A Carlson
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| |
Collapse
|
4
|
Why Osteoglossomorpha is one of the most peculiar groups of fish - a review. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Osteoglossomorpha is a significant taxon for studies of evolution and various aspects of fish biology as an evolutionarily old group of fish. The taxon exhibits anatomical, morphological and physiological diversity and various adaptations such as air breathing or electroreception as well as modifications visible in sight and olfactory organs. A peculiarity of this group is the presence of four types of spermatozoa, namely complex introsperm and uni-, bi-, and aflagellate aquasperm. Given the unique morphology and large dimensions of some species, osteoglossomorphs are popular in aquaristics as ornamental fish, and in fisheries because they are an important source of food in many countries. The aim of this paper is to focus on some aspects of the biology and unique features as well as the importance for humans of this unusual group of fish.
Collapse
|
5
|
Pedraja F, Herzog H, Engelmann J, Jung SN. The Use of Supervised Learning Models in Studying Agonistic Behavior and Communication in Weakly Electric Fish. Front Behav Neurosci 2021; 15:718491. [PMID: 34707485 PMCID: PMC8542711 DOI: 10.3389/fnbeh.2021.718491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/25/2021] [Indexed: 12/02/2022] Open
Abstract
Despite considerable advances, studying electrocommunication of weakly electric fish, particularly in pulse-type species, is challenging as very short signal epochs at variable intervals from a few hertz up to more than 100 Hz need to be assigned to individuals. In this study, we show that supervised learning approaches offer a promising tool to automate or semiautomate the workflow, and thereby allowing the analysis of much longer episodes of behavior in a reasonable amount of time. We provide a detailed workflow mainly based on open resource software. We demonstrate the usefulness by applying the approach to the analysis of dyadic interactions of Gnathonemus petersii. Coupling of the proposed methods with a boundary element modeling approach, we are thereby able to model the information gained and provided during agonistic encounters. The data indicate that the passive electrosensory input, in particular, provides sufficient information to localize a contender during the pre-contest phase, fish did not use or rely on the theoretically also available sensory information of the contest outcome-determining size difference between contenders before engaging in agonistic behavior.
Collapse
Affiliation(s)
- Federico Pedraja
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Hendrik Herzog
- Department of Neuroethology/Sensory Ecology, Institute for Zoology, University of Bonn, Bonn, Germany
| | - Jacob Engelmann
- Active Sensing, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Sarah Nicola Jung
- Active Sensing, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
6
|
Koenig LA, Gallant JR. Sperm competition, sexual selection and the diverse reproductive biology of Osteoglossiformes. JOURNAL OF FISH BIOLOGY 2021; 99:740-754. [PMID: 33973234 DOI: 10.1111/jfb.14779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/23/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Osteoglossiformes are an order of "bony tongue" fish considered the most primitive living order of teleosts. This review seeks to consolidate known hypotheses and identify gaps in the literature regarding the adaptive significance of diverse reproductive traits and behaviour of osteoglossiforms within the context of sperm competition and the wider lens of sexual selection. Many of the unusual traits observed in osteoglossiforms indicate low levels of sperm competition; most species have unpaired gonads, and mormyroids are the only known vertebrate species with aflagellate sperm. Several osteoglossiform families have reproductive anatomy associated with internal fertilization but perform external fertilization, which may be representative of the evolutionary transition from external to internal fertilization and putative trade-offs between sperm competition and the environment. They also employ every type of parental care seen in vertebrates. Geographically widespread and basally situated within teleosts, osteoglossiforms present an effective study system for understanding how sperm competition and sexual selection have shaped the evolution of teleost reproductive behaviour, sperm and gonad morphology, fertilization strategies, courtship and paternal care, and sexual conflict. The authors suggest that the patterns seen in osteoglossiform reproduction are a microcosm of teleost reproductive diversity, potentially signifying the genetic plasticity that contributed to the adaptive radiation of teleost fishes.
Collapse
Affiliation(s)
- Lauren A Koenig
- Department of Integrative Biology, Graduate Program in Ecology, Evolution and Behavior, Michigan State University, East Lansing, Michigan, USA
| | - Jason R Gallant
- Department of Integrative Biology, Graduate Program in Ecology, Evolution and Behavior, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
7
|
Neural divergence and hybrid disruption between ecologically isolated Heliconius butterflies. Proc Natl Acad Sci U S A 2021; 118:2015102118. [PMID: 33547240 DOI: 10.1073/pnas.2015102118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The importance of behavioral evolution during speciation is well established, but we know little about how this is manifest in sensory and neural systems. A handful of studies have linked specific neural changes to divergence in host or mate preferences associated with speciation. However, the degree to which brains are adapted to local environmental conditions, and whether this contributes to reproductive isolation between close relatives that have diverged in ecology, remains unknown. Here, we examine divergence in brain morphology and neural gene expression between closely related, but ecologically distinct, Heliconius butterflies. Despite ongoing gene flow, sympatric species pairs within the melpomene-cydno complex are consistently separated across a gradient of open to closed forest and decreasing light intensity. By generating quantitative neuroanatomical data for 107 butterflies, we show that Heliconius melpomene and Heliconius cydno clades have substantial shifts in brain morphology across their geographic range, with divergent structures clustered in the visual system. These neuroanatomical differences are mirrored by extensive divergence in neural gene expression. Differences in both neural morphology and gene expression are heritable, exceed expected rates of neutral divergence, and result in intermediate traits in first-generation hybrid offspring. Strong evidence of divergent selection implies local adaptation to distinct selective optima in each parental microhabitat, suggesting the intermediate traits of hybrids are poorly matched to either condition. Neural traits may therefore contribute to coincident barriers to gene flow, thereby helping to facilitate speciation.
Collapse
|
8
|
Picq S, Sperling J, Cheng CJ, Carlson BA, Gallant JR. Genetic drift does not sufficiently explain patterns of electric signal variation among populations of the mormyrid electric fish Paramormyrops kingsleyae. Evolution 2020; 74:911-935. [PMID: 32187650 PMCID: PMC7816287 DOI: 10.1111/evo.13953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 02/13/2020] [Accepted: 02/20/2020] [Indexed: 11/28/2022]
Abstract
Communication signals serve crucial survival and reproductive functions. In Gabon, the widely distributed mormyrid fish Paramormyrops kingsleyae emits an electric organ discharge (EOD) signal with a dual role in communication and electrolocation that exhibits remarkable variation: populations of P. kingsleyae have either biphasic or triphasic EODs, a feature that characterizes interspecific signal diversity among the Paramormyrops genus. We quantified variation in EODs of 327 P. kingsleyae from nine populations and compared it to genetic variation estimated from microsatellite loci. We found no correlation between electric signal and genetic distances, suggesting that EOD divergence cannot be explained by drift alone. An alternative hypothesis is that EOD differences are used for mate discrimination, which would require P. kingsleyae be capable of differentiating between divergent EOD waveforms. Using a habituation-dishabituation assay, we found that P. kingsleyae can discriminate between biphasic and triphasic EOD types. Nonetheless, patterns of genetic and electric organ morphology divergence provide evidence for hybridization between these signal types. Although reproductive isolation with respect to signal type is incomplete, our results suggest that EOD variation in P. kingsleyae could be a cue for assortative mating.
Collapse
Affiliation(s)
- Sophie Picq
- Michigan State University Department of Integrative Biology, East Lansing MI 48824 USA
| | - Joshua Sperling
- Cornell University Department of Neurobiology and Behavior, Ithaca NY 14853 USA
| | - Catherine J. Cheng
- Cornell University Department of Neurobiology and Behavior, Ithaca NY 14853 USA
| | - Bruce A. Carlson
- Washington University in St. Louis Department of Biology, St. Louis, MO 63130 USA
| | - Jason R. Gallant
- Michigan State University Department of Integrative Biology, East Lansing MI 48824 USA
| |
Collapse
|
9
|
Simanovsky S, Medvedev D, Tefera F, Golubtsov A. First cytogenetic information for five Nilotic elephantfishes and a problem of ancestral karyotype of the family Mormyridae (Osteoglossiformes). COMPARATIVE CYTOGENETICS 2020; 14:387-397. [PMID: 32904050 PMCID: PMC7449985 DOI: 10.3897/compcytogen.14i3.52727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/23/2020] [Indexed: 05/17/2023]
Abstract
The elephantfish family Mormyridae is the most diverse lineage of the primitive teleostean clade Osteoglossomorpha distributed in inland waters of all continents except Antarctica and Europe. The family Mormyridae is endemic to Africa and includes 22 genera and almost 230 species. The evolutionary radiation of mormyrids most probably should be attributed to their capability of both generating and receiving weak electric signals. Up-to-date cytogenetic studies have revealed substantial karyotype differentiation among the nine investigated elephantfish species and genera (a single species studied per each genus). In the present study, karyotypes of five species representing five mormyrid genera (four unexplored ones) collected from the White Nile system in southwestern Ethiopia are described for the first time. The results show substantial variety of the diploid chromosome and fundamental numbers: 2n = 48 and FN = 54 in Brevimyrus niger (Günther, 1866), 2n = 50 and FN = 72 in Cyphomyrus petherici (Boulenger, 1898), 2n = 50 and FN = 78 in Hippopotamyrus pictus (Marcusen, 1864), 2n = 50 and FN = 76 in Marcusenius cyprinoides (Linnaeus, 1758), 2n = 52 and FN = 52 in Mormyrops anguilloides (Linnaeus, 1758). Karyotype structure in the latter species seems to be close to the ancestral condition for the family. This hypothesis is discussed in the light of available data on karyotype diversity and phylogeny of mormyrids.
Collapse
Affiliation(s)
- Sergey Simanovsky
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskij prosp., Moscow, 119071, RussiaRussian Academy of SciencesMoscowRussia
| | - Dmitry Medvedev
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskij prosp., Moscow, 119071, RussiaRussian Academy of SciencesMoscowRussia
| | - Fekadu Tefera
- National Fishery and Aquatic Life Research Center, Ethiopian Institute of Agricultural Research, Sebeta, P.O. Box 64, EthiopiaEthiopian Institute of Agricultural ResearchSebetaEthiopia
| | - Alexander Golubtsov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskij prosp., Moscow, 119071, RussiaRussian Academy of SciencesMoscowRussia
| |
Collapse
|
10
|
Sukhum KV, Freiler MK, Carlson BA. Intraspecific Energetic Trade-Offs and Costs of Encephalization Vary from Interspecific Relationships in Three Species of Mormyrid Electric Fishes. BRAIN, BEHAVIOR AND EVOLUTION 2019; 93:196-205. [PMID: 31352440 DOI: 10.1159/000501233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 05/27/2019] [Indexed: 11/19/2022]
Abstract
The evolution of increased encephalization comes with an energetic cost. Across species, this cost may be paid for by an increase in metabolic rate or by energetic trade-offs between the brain and other energy-expensive tissues. However, it remains unclear whether these solutions to deal with the energetic requirements of an enlarged brain are related to direct physiological constraints or other evolved co-adaptations. We studied the highly encephalized mormyrid fishes, which have extensive species diversity in relative brain size. We previously found a correlation between resting metabolic rate and relative brain size across species; however, it is unknown how this interspecific relationship evolved. To address this issue, we measured intraspecific variation in relative brain size, the sizes of other organs, metabolic rate, and hypoxia tolerance to determine if intraspecific relationships between brain size and organismal energetics are similar to interspecific relationships. We found that 3 species of mormyrids with varying degrees of encephalization had no intraspecific relationships between relative brain size and relative metabolic rate or relative sizes of other organs, and only 1 species had a relationship between relative brain size and hypoxia tolerance. These species-specific differences suggest that the interspecific relationship between metabolic rate and relative brain size is not the result of direct physiological constraints or strong stabilizing selection, but is instead due to other species level co-adaptations. We conclude that variation within species must be considered when determining the energetic costs and trade-offs underlying the evolution of extreme encephalization.
Collapse
Affiliation(s)
- Kimberley V Sukhum
- Department of Biology, Washington University, Saint Louis, Missouri, USA
| | - Megan K Freiler
- Department of Biology, Washington University, Saint Louis, Missouri, USA
| | - Bruce A Carlson
- Department of Biology, Washington University, Saint Louis, Missouri, USA,
| |
Collapse
|
11
|
Extreme Enlargement of the Cerebellum in a Clade of Teleost Fishes that Evolved a Novel Active Sensory System. Curr Biol 2018; 28:3857-3863.e3. [PMID: 30449664 DOI: 10.1016/j.cub.2018.10.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/26/2018] [Accepted: 10/15/2018] [Indexed: 11/23/2022]
Abstract
Brains, and the distinct regions that make up brains, vary widely in size across vertebrates [1, 2]. Two prominent hypotheses have been proposed to explain brain region scaling evolution. The mosaic hypothesis proposes that changes in the relative sizes of particular brain regions are the result of selection acting independently on those regions [2, 3]. The concerted hypothesis proposes that the brain evolves as a coordinated structure due to developmental constraints [4]. These hypotheses have been widely debated [3-7], and recent studies suggest a combination of the two best describes vertebrate brain region scaling [8-10]. However, no study has addressed how the mosaic and concerted models relate to the evolution of novel behavioral phenotypes. We addressed this question using African mormyroid fishes. The mormyroids have evolved a novel active electrosensory system and are well known for having extreme encephalization [11] and a large cerebellum [2, 12], which is cited as a possible example of mosaic evolution [2]. We found that compared to outgroups without active electrosensing, mormyroids experienced mosaic increases in the sizes of the cerebellum and hindbrain, and mosaic decreases in the sizes of the telencephalon, optic tectum, and olfactory bulb. However, the evolution of extreme encephalization within mormyroids was associated with concerted changes in the sizes of all brain regions. This suggests that mosaic evolutionary change in the regional composition of the brain is most likely to occur alongside the evolution of novel behavioral functions, but not with the evolution of extreme encephalization.
Collapse
|
12
|
Synaptic organization and division of labor in the exceptionally polymorphic ant Pheidole rhea. Neurosci Lett 2018; 676:46-50. [PMID: 29625207 DOI: 10.1016/j.neulet.2018.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/18/2018] [Accepted: 04/01/2018] [Indexed: 11/22/2022]
Abstract
Social insect polyphenisms provide models to examine the neural basis of division of labor and anatomy of the invertebrate social brain. Worker size-related behavior is hypothesized to enhance task performance, raising questions concerning the integration of morphology, behavior, and cellular neuroarchitecture, and how variation in sensory inputs and cognitive demands of behaviorally differentiated workers is reflected in higher-order processing ability. We used the highly polymorphic ant Pheidole rhea, which has three distinct worker size classes - minors, soldiers, and supersoldiers - to examine variation in synaptic circuitry across worker size and social role. We hypothesized that the density and size of synaptic complexes (microglomeruli, MG) would be positively associated with behavioral repertoire and the relative size of the mushroom bodies (MB). Supersoldiers had significantly larger and less dense MG in the lip (olfactory region) of the MB calyx (MBC), and larger MG in the collar (visual region) compared to minors. Soldiers were intermediate in synaptic phenotype: they did not differ significantly in MG density from minors and supersoldiers, had MG of similar size to minors in the lip, and did not differ from these two worker groups in MG size in the collar. Results suggest a complex relationship between MG density, size, behavior, and worker body size involving a conserved and plastic neurobiological development plan, although workers show strong variation in size and social role.
Collapse
|
13
|
Sukhum KV, Freiler MK, Wang R, Carlson BA. The costs of a big brain: extreme encephalization results in higher energetic demand and reduced hypoxia tolerance in weakly electric African fishes. Proc Biol Sci 2017; 283:rspb.2016.2157. [PMID: 28003448 DOI: 10.1098/rspb.2016.2157] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/28/2016] [Indexed: 12/29/2022] Open
Abstract
A large brain can offer several cognitive advantages. However, brain tissue has an especially high metabolic rate. Thus, evolving an enlarged brain requires either a decrease in other energetic requirements, or an increase in overall energy consumption. Previous studies have found conflicting evidence for these hypotheses, leaving the metabolic costs and constraints in the evolution of increased encephalization unclear. Mormyrid electric fishes have extreme encephalization comparable to that of primates. Here, we show that brain size varies widely among mormyrid species, and that there is little evidence for a trade-off with organ size, but instead a correlation between brain size and resting oxygen consumption rate. Additionally, we show that increased brain size correlates with decreased hypoxia tolerance. Our data thus provide a non-mammalian example of extreme encephalization that is accommodated by an increase in overall energy consumption. Previous studies have found energetic trade-offs with variation in brain size in taxa that have not experienced extreme encephalization comparable with that of primates and mormyrids. Therefore, we suggest that energetic trade-offs can only explain the evolution of moderate increases in brain size, and that the energetic requirements of extreme encephalization may necessitate increased overall energy investment.
Collapse
Affiliation(s)
- Kimberley V Sukhum
- Department of Biology, Washington University in Saint Louis, 1 Brookings Drive, Campus Box 1137, St. Louis, MO 63130-4899, USA
| | - Megan K Freiler
- Department of Biology, Washington University in Saint Louis, 1 Brookings Drive, Campus Box 1137, St. Louis, MO 63130-4899, USA
| | - Robert Wang
- Department of Biology, Washington University in Saint Louis, 1 Brookings Drive, Campus Box 1137, St. Louis, MO 63130-4899, USA
| | - Bruce A Carlson
- Department of Biology, Washington University in Saint Louis, 1 Brookings Drive, Campus Box 1137, St. Louis, MO 63130-4899, USA
| |
Collapse
|
14
|
Vélez A, Kohashi T, Lu A, Carlson BA. The cellular and circuit basis for evolutionary change in sensory perception in mormyrid fishes. Sci Rep 2017. [PMID: 28630408 PMCID: PMC5476679 DOI: 10.1038/s41598-017-03951-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Species differences in perception have been linked to divergence in gross neuroanatomical features of sensory pathways. The anatomical and physiological basis of evolutionary change in sensory processing at cellular and circuit levels, however, is poorly understood. Here, we show how specific changes to a sensory microcircuit are associated with the evolution of a novel perceptual ability. In mormyrid fishes, the ability to detect variation in electric communication signals is correlated with an enlargement of the midbrain exterolateral nucleus (EL), and a differentiation into separate anterior (ELa) and posterior (ELp) regions. We show that the same cell types and connectivity are found in both EL and ELa/ELp. The evolution of ELa/ELp, and the concomitant ability to detect signal variation, is associated with a lengthening of incoming hindbrain axons to form delay lines, allowing for fine temporal analysis of signals. The enlargement of this brain region is also likely due to an overall increase in cell numbers, which would allow for processing of a wider range of timing information.
Collapse
Affiliation(s)
- Alejandro Vélez
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Tsunehiko Kohashi
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA.,Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Anan Lu
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Bruce A Carlson
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
15
|
Vélez A, Carlson BA. Detection of transient synchrony across oscillating receptors by the central electrosensory system of mormyrid fish. eLife 2016; 5. [PMID: 27328322 PMCID: PMC4954753 DOI: 10.7554/elife.16851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/20/2016] [Indexed: 12/28/2022] Open
Abstract
Recently, we reported evidence for a novel mechanism of peripheral sensory coding based on oscillatory synchrony. Spontaneously oscillating electroreceptors in weakly electric fish (Mormyridae) respond to electrosensory stimuli with a phase reset that results in transient synchrony across the receptor population (Baker et al., 2015). Here, we asked whether the central electrosensory system actually detects the occurrence of synchronous oscillations among receptors. We found that electrosensory stimulation elicited evoked potentials in the midbrain exterolateral nucleus at a short latency following receptor synchronization. Frequency tuning in the midbrain resembled peripheral frequency tuning, which matches the intrinsic oscillation frequencies of the receptors. These frequencies are lower than those in individual conspecific signals, and instead match those found in collective signals produced by groups of conspecifics. Our results provide further support for a novel mechanism for sensory coding based on the detection of oscillatory synchrony among peripheral receptors. DOI:http://dx.doi.org/10.7554/eLife.16851.001
Collapse
Affiliation(s)
- Alejandro Vélez
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| | - Bruce A Carlson
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| |
Collapse
|
16
|
Carlson BA. Differences in electrosensory anatomy and social behavior in an area of sympatry between two species of mormyrid electric fishes. ACTA ACUST UNITED AC 2015; 219:31-43. [PMID: 26567347 DOI: 10.1242/jeb.127720] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/23/2015] [Indexed: 01/15/2023]
Abstract
Sensory systems play a key role in social behavior by mediating the detection and analysis of communication signals. In mormyrid fishes, electric signals are processed within a dedicated sensory pathway, providing a unique opportunity to relate sensory biology to social behavior. Evolutionary changes within this pathway led to new perceptual abilities that have been linked to increased rates of signal evolution and species diversification in a lineage called 'clade A'. Previous field observations suggest that clade-A species tend to be solitary and territorial, whereas non-clade-A species tend to be clustered in high densities suggestive of schooling or shoaling. To explore behavioral differences between species in these lineages in greater detail, I studied population densities, social interactions, and electric signaling in two mormyrid species, Gnathonemus victoriae (clade A) and Petrocephalus degeni (non-clade A), from Lwamunda Swamp, Uganda. Petrocephalus degeni was found at higher population densities, but intraspecific diversity in electric signal waveform was greater in G. victoriae. In the laboratory, G. victoriae exhibited strong shelter-seeking behavior and competition for shelter, whereas P. degeni were more likely to abandon shelter in the presence of conspecifics as well as electric mimics of signaling conspecifics. In other words, P. degeni exhibited social affiliation whereas G. victoriae exhibited social competition. Further, P. degeni showed correlated electric signaling behavior whereas G. victoriae showed anti-correlated signaling behavior. These findings extend previous reports of social spacing, territoriality, and habitat preference among mormyrid species, suggesting that evolutionary divergence in electrosensory processing relates to differences in social behavior.
Collapse
Affiliation(s)
- Bruce A Carlson
- Department of Biology, Washington University in St Louis, St Louis, MO 63130-4899, USA
| |
Collapse
|
17
|
Boyle KS, Colleye O, Parmentier E. Sound production to electric discharge: sonic muscle evolution in progress in Synodontis spp. catfishes (Mochokidae). Proc Biol Sci 2015; 281:20141197. [PMID: 25080341 DOI: 10.1098/rspb.2014.1197] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Elucidating the origins of complex biological structures has been one of the major challenges of evolutionary studies. Within vertebrates, the capacity to produce regular coordinated electric organ discharges (EODs) has evolved independently in different fish lineages. Intermediate stages, however, are not known. We show that, within a single catfish genus, some species are able to produce sounds, electric discharges or both signals (though not simultaneously). We highlight that both acoustic and electric communication result from actions of the same muscle. In parallel to their abilities, the studied species show different degrees of myofibril development in the sonic and electric muscle. The lowest myofibril density was observed in Synodontis nigriventris, which produced EODs but no swim bladder sounds, whereas the greatest myofibril density was observed in Synodontis grandiops, the species that produced the longest sound trains but did not emit EODs. Additionally, S. grandiops exhibited the lowest auditory thresholds. Swim bladder sounds were similar among species, while EODs were distinctive at the species level. We hypothesize that communication with conspecifics favoured the development of species-specific EOD signals and suggest an evolutionary explanation for the transition from a fast sonic muscle to electrocytes.
Collapse
Affiliation(s)
- Kelly S Boyle
- Laboratoire de Morphologie Fonctionnelle et Evolutive, Université de Liège, Allée de la Chimie 3, Liège 4000, Belgium
| | - Orphal Colleye
- Laboratoire de Morphologie Fonctionnelle et Evolutive, Université de Liège, Allée de la Chimie 3, Liège 4000, Belgium
| | - Eric Parmentier
- Laboratoire de Morphologie Fonctionnelle et Evolutive, Université de Liège, Allée de la Chimie 3, Liège 4000, Belgium
| |
Collapse
|
18
|
Baker CA, Huck KR, Carlson BA. Peripheral sensory coding through oscillatory synchrony in weakly electric fish. eLife 2015; 4:e08163. [PMID: 26238277 PMCID: PMC4522468 DOI: 10.7554/elife.08163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/08/2015] [Indexed: 01/28/2023] Open
Abstract
Adaptations to an organism's environment often involve sensory system modifications. In this study, we address how evolutionary divergence in sensory perception relates to the physiological coding of stimuli. Mormyrid fishes that can detect subtle variations in electric communication signals encode signal waveform into spike-timing differences between sensory receptors. In contrast, the receptors of species insensitive to waveform variation produce spontaneously oscillating potentials. We found that oscillating receptors respond to electric pulses by resetting their phase, resulting in transient synchrony among receptors that encodes signal timing and location, but not waveform. These receptors were most sensitive to frequencies found only in the collective signals of groups of conspecifics, and this was correlated with increased behavioral responses to these frequencies. Thus, different perceptual capabilities correspond to different receptor physiologies. We hypothesize that these divergent mechanisms represent adaptations for different social environments. Our findings provide the first evidence for sensory coding through oscillatory synchrony.
Collapse
Affiliation(s)
- Christa A Baker
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| | - Kevin R Huck
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| | - Bruce A Carlson
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| |
Collapse
|
19
|
Lavoué S, Sullivan JP. Petrocephalus boboto and Petrocephalus arnegardi, two new species of African electric fish (Osteoglossomorpha, Mormyridae) from the Congo River basin. Zookeys 2014:43-65. [PMID: 24843255 PMCID: PMC4023242 DOI: 10.3897/zookeys.400.6743] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/26/2014] [Indexed: 11/23/2022] Open
Abstract
A specimen of the African weakly electric fish genus Petrocephalus (Osteoglossomorpha, Mormyridae) collected in the Congo River at Yangambi, Orientale Province, Democratic Republic of Congo, is described as a new species. Petrocephalus bobotosp. n. can be distinguished from other Central African species of Petrocephalus by a combination of the following characteristics: three distinct black spots on the body, one at the origin of the pectoral fin, one at the origin of the caudal fin and one below the anterior base of the dorsal fin; Nakenrosette and Khelrosette electroreceptor clusters distinct on head but Augenrosette cluster reduced in size; 23 branched dorsal rays, 34 branched anal rays, and electric organ discharge waveform triphasic. Petrocephalus bobotosp. n. most closely resembles the holotype of Petrocephalus binotatus but is easily distinguished from it by its smaller mouth. A comparative molecular analysis including 21 other Petrocephalus species shows Petrocephalus bobotosp. n. to be genetically distinctive and to represent a deep lineage in the genus. Two specimens of Petrocephalus collected at Yangambi are morphologically similar and genetically closely related to specimens previously assigned to Petrocephalus binotatus, collected in the northwestern Congo River basin within Odzala-Kokua National Park, Republic of the Congo. This prompts us to formally describe a new species from these collections, Petrocephalus arnegardisp. n., that, although similar to the holotype of Petrocephalus binotatus, can be distinguished from it by its smaller mouth and shorter interorbital width.
Collapse
Affiliation(s)
- Sébastien Lavoué
- Institute of Oceanography, National Taiwan University, Roosevelt Road, Taipei 10617, Taiwan
| | - John P Sullivan
- Cornell University Museum of Vertebrates, 159 Sapsucker Woods Road, Ithaca, New York 14850 USA
| |
Collapse
|
20
|
Baker CA, Kohashi T, Lyons-Warren AM, Ma X, Carlson BA. Multiplexed temporal coding of electric communication signals in mormyrid fishes. ACTA ACUST UNITED AC 2014; 216:2365-79. [PMID: 23761462 DOI: 10.1242/jeb.082289] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The coding of stimulus information into patterns of spike times occurs widely in sensory systems. Determining how temporally coded information is decoded by central neurons is essential to understanding how brains process sensory stimuli. Mormyrid weakly electric fishes are experts at time coding, making them an exemplary organism for addressing this question. Mormyrids generate brief, stereotyped electric pulses. Pulse waveform carries information about sender identity, and it is encoded into submillisecond-to-millisecond differences in spike timing between receptors. Mormyrids vary the time between pulses to communicate behavioral state, and these intervals are encoded into the sequence of interspike intervals within receptors. Thus, the responses of peripheral electroreceptors establish a temporally multiplexed code for communication signals, one consisting of spike timing differences between receptors and a second consisting of interspike intervals within receptors. These signals are processed in a dedicated sensory pathway, and recent studies have shed light on the mechanisms by which central circuits can extract behaviorally relevant information from multiplexed temporal codes. Evolutionary change in the anatomy of this pathway is related to differences in electrosensory perception, which appears to have influenced the diversification of electric signals and species. However, it remains unknown how this evolutionary change relates to differences in sensory coding schemes, neuronal circuitry and central sensory processing. The mormyrid electric communication pathway is a powerful model for integrating mechanistic studies of temporal coding with evolutionary studies of correlated differences in brain and behavior to investigate neural mechanisms for processing temporal codes.
Collapse
Affiliation(s)
- Christa A Baker
- Department of Biology, Washington University in St Louis, St Louis, MO, USA
| | | | | | | | | |
Collapse
|
21
|
Carlson BA, Gallant JR. From sequence to spike to spark: evo-devo-neuroethology of electric communication in mormyrid fishes. J Neurogenet 2013; 27:106-29. [PMID: 23802152 DOI: 10.3109/01677063.2013.799670] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mormyrid fishes communicate using pulses of electricity, conveying information about their identity, behavioral state, and location. They have long been used as neuroethological model systems because they are uniquely suited to identifying cellular mechanisms for behavior. They are also remarkably diverse, and they have recently emerged as a model system for studying how communication systems may influence the process of speciation. These two lines of inquiry have now converged, generating insights into the neural basis of evolutionary change in behavior, as well as the influence of sensory and motor systems on behavioral diversification and speciation. Here, we review the mechanisms of electric signal generation, reception, and analysis and relate these to our current understanding of the evolution and development of electromotor and electrosensory systems. We highlight the enormous potential of mormyrids for studying evolutionary developmental mechanisms of behavioral diversification, and make the case for developing genomic and transcriptomic resources. A complete mormyrid genome sequence would enable studies that extend our understanding of mormyrid behavior to the molecular level by linking morphological and physiological mechanisms to their genetic basis. Applied in a comparative framework, genomic resources would facilitate analysis of evolutionary processes underlying mormyrid diversification, reveal the genetic basis of species differences in behavior, and illuminate the origins of a novel vertebrate sensory and motor system. Genomic approaches to studying the evo-devo-neuroethology of mormyrid communication represent a deeply integrative approach to understanding the evolution, function, development, and mechanisms of behavior.
Collapse
Affiliation(s)
- Bruce A Carlson
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130-4899, USA.
| | | |
Collapse
|
22
|
Lavoué S, Miya M, Arnegard ME, Sullivan JP, Hopkins CD, Nishida M. Comparable ages for the independent origins of electrogenesis in African and South American weakly electric fishes. PLoS One 2012; 7:e36287. [PMID: 22606250 PMCID: PMC3351409 DOI: 10.1371/journal.pone.0036287] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 03/29/2012] [Indexed: 11/26/2022] Open
Abstract
One of the most remarkable examples of convergent evolution among vertebrates is illustrated by the independent origins of an active electric sense in South American and African weakly electric fishes, the Gymnotiformes and Mormyroidea, respectively. These groups independently evolved similar complex systems for object localization and communication via the generation and reception of weak electric fields. While good estimates of divergence times are critical to understanding the temporal context for the evolution and diversification of these two groups, their respective ages have been difficult to estimate due to the absence of an informative fossil record, use of strict molecular clock models in previous studies, and/or incomplete taxonomic sampling. Here, we examine the timing of the origins of the Gymnotiformes and the Mormyroidea using complete mitogenome sequences and a parametric bayesian method for divergence time reconstruction. Under two different fossil-based calibration methods, we estimated similar ages for the independent origins of the Mormyroidea and Gymnotiformes. Our absolute estimates for the origins of these groups either slightly postdate, or just predate, the final separation of Africa and South America by continental drift. The most recent common ancestor of the Mormyroidea and Gymnotiformes was found to be a non-electrogenic basal teleost living more than 85 millions years earlier. For both electric fish lineages, we also estimated similar intervals (16-19 or 22-26 million years, depending on calibration method) between the appearance of electroreception and the origin of myogenic electric organs, providing rough upper estimates for the time periods during which these complex electric organs evolved de novo from skeletal muscle precursors. The fact that the Gymnotiformes and Mormyroidea are of similar age enhances the comparative value of the weakly electric fish system for investigating pathways to evolutionary novelty, as well as the influences of key innovations in communication on the process of species radiation.
Collapse
Affiliation(s)
- Sébastien Lavoué
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan.
| | | | | | | | | | | |
Collapse
|