1
|
Santos-Sacchi J, Iwasa KH, Tan W. Outer hair cell electromotility is low-pass filtered relative to the molecular conformational changes that produce nonlinear capacitance. J Gen Physiol 2019; 151:1369-1385. [PMID: 31676485 PMCID: PMC6888751 DOI: 10.1085/jgp.201812280] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 08/24/2019] [Accepted: 09/30/2019] [Indexed: 11/20/2022] Open
Abstract
The outer hair cell (OHC) of the organ of Corti underlies a process that enhances hearing, termed cochlear amplification. The cell possesses a unique voltage-sensing protein, prestin, that changes conformation to cause cell length changes, a process termed electromotility (eM). The prestin voltage sensor generates a capacitance that is both voltage- and frequency-dependent, peaking at a characteristic membrane voltage (Vh), which can be greater than the linear capacitance of the OHC. Accordingly, the OHC membrane time constant depends upon resting potential and the frequency of AC stimulation. The confounding influence of this multifarious time constant on eM frequency response has never been addressed. After correcting for this influence on the whole-cell voltage clamp time constant, we find that both guinea pig and mouse OHC eM is low pass, substantially attenuating in magnitude within the frequency bandwidth of human speech. The frequency response is slowest at Vh, with a cut-off, approximated by single Lorentzian fits within that bandwidth, near 1.5 kHz for the guinea pig OHC and near 4.3 kHz for the mouse OHC, each increasing in a U-shaped manner as holding voltage deviates from Vh Nonlinear capacitance (NLC) measurements follow this pattern, with cut-offs about double that for eM. Macro-patch experiments on OHC lateral membranes, where voltage delivery has high fidelity, confirms low pass roll-off for NLC. The U-shaped voltage dependence of the eM roll-off frequency is consistent with prestin's voltage-dependent transition rates. Modeling indicates that the disparity in frequency cut-offs between eM and NLC may be attributed to viscoelastic coupling between prestin's molecular conformations and nanoscale movements of the cell, possibly via the cytoskeleton, indicating that eM is limited by the OHC's internal environment, as well as the external environment. Our data suggest that the influence of OHC eM on cochlear amplification at higher frequencies needs reassessment.
Collapse
Affiliation(s)
- Joseph Santos-Sacchi
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT
| | - Kuni H Iwasa
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD
| | - Winston Tan
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT
| |
Collapse
|
2
|
Santos-Sacchi J, Tan W. The Frequency Response of Outer Hair Cell Voltage-Dependent Motility Is Limited by Kinetics of Prestin. J Neurosci 2018; 38:5495-5506. [PMID: 29899032 PMCID: PMC6001036 DOI: 10.1523/jneurosci.0425-18.2018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 01/07/2023] Open
Abstract
The voltage-dependent protein SLC26a5 (prestin) underlies outer hair cell electromotility (eM), which is responsible for cochlear amplification in mammals. The electrical signature of eM is a bell-shaped nonlinear capacitance (NLC), deriving from prestin sensor-charge (Qp) movements, which peaks at the membrane voltage, Vh, where charge is distributed equally on either side of the membrane. Voltage dependencies of NLC and eM differ depending on interrogation frequency and intracellular chloride, revealing slow intermediate conformational transitions between anion binding and voltage-driven Qp movements. Consequently, NLC exhibits low-pass characteristics, substantially below prevailing estimates of eM frequency response. Here we study in guinea pig and mouse of either sex synchronous prestin electrical (NLC, Qp) and mechanical (eM) activity across frequencies under voltage clamp (whole cell and microchamber). We find that eM and Qp magnitude and phase correspond, indicating tight piezoelectric coupling. Electromechanical measures (both NLC and eM) show dual-Lorentzian, low-pass behavior, with a limiting (τ2) time constant at Vh of 32.6 and 24.8 μs, respectively. As expected for voltage-dependent kinetics, voltage excitation away from Vh has a faster, flatter frequency response, with our fastest measured τ2 for eM of 18.2 μs. Previous observations of ultrafast eM (τ ≈ 2 μs) were obtained at offsets far removed from Vh We hypothesize that trade-offs in eM gain-bandwith arising from voltage excitation at membrane potentials offset from Vh influence the effectiveness of cochlear amplification across frequencies.SIGNIFICANCE STATEMENT Of two types of hair cells within the organ of Corti, inner hair cells and outer hair cells, the latter evolved to boost sensitivity to sounds. Damage results in hearing loss of 40-60 dB, revealing amplification gains of 100-1000× that arise from voltage-dependent mechanical responses [electromotility (eM)]. eM, driven by the membrane protein prestin, may work beyond 70 kHz. However, this speed exceeds, by over an order of magnitude, kinetics of typical voltage-dependent membrane proteins. We find eM is actually low pass in nature, indicating that prestin bears kinetics typical of other membrane proteins. These observations highlight potential difficulties in providing sufficient amplification beyond a cutoff frequency near 20 kHz. Nevertheless, observed trade-offs in eM gain-bandwith may sustain cochlear amplification across frequency.
Collapse
Affiliation(s)
- Joseph Santos-Sacchi
- Department of Surgery (Otolaryngology),
- Department of Neuroscience, and
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510
| | | |
Collapse
|
3
|
Becker L, Schnee ME, Niwa M, Sun W, Maxeiner S, Talaei S, Kachar B, Rutherford MA, Ricci AJ. The presynaptic ribbon maintains vesicle populations at the hair cell afferent fiber synapse. eLife 2018; 7:30241. [PMID: 29328021 PMCID: PMC5794257 DOI: 10.7554/elife.30241] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/19/2017] [Indexed: 01/07/2023] Open
Abstract
The ribbon is the structural hallmark of cochlear inner hair cell (IHC) afferent synapses, yet its role in information transfer to spiral ganglion neurons (SGNs) remains unclear. We investigated the ribbon’s contribution to IHC synapse formation and function using KO mice lacking RIBEYE. Despite loss of the entire ribbon structure, synapses retained their spatiotemporal development and KO mice had a mild hearing deficit. IHCs of KO had fewer synaptic vesicles and reduced exocytosis in response to brief depolarization; a high stimulus level rescued exocytosis in KO. SGNs exhibited a lack of sustained excitatory postsynaptic currents (EPSCs). We observed larger postsynaptic glutamate receptor plaques, potentially compensating for the reduced EPSC rate in KO. Surprisingly, large-amplitude EPSCs were maintained in KO, while a small population of low-amplitude slower EPSCs was increased in number. The ribbon facilitates signal transduction at physiological stimulus levels by retaining a larger residency pool of synaptic vesicles.
Collapse
Affiliation(s)
- Lars Becker
- Department of Otolaryngology, Stanford University, Stanford, United States
| | - Michael E Schnee
- Department of Otolaryngology, Stanford University, Stanford, United States
| | - Mamiko Niwa
- Department of Otolaryngology, Stanford University, Stanford, United States
| | - Willy Sun
- National Institute of Deafness and Communicative Disorders, United States
| | - Stephan Maxeiner
- Molecular and Cellular Physiology, Stanford University, Stanford, United States
| | - Sara Talaei
- Department of Otolaryngology, Stanford University, Stanford, United States
| | - Bechara Kachar
- National Institute of Deafness and Communicative Disorders, United States
| | - Mark A Rutherford
- Department of Otolaryngology, Washington University, St. Louis, United States
| | - Anthony J Ricci
- Department of Otolaryngology, Stanford University, Stanford, United States.,Molecular and Cellular Physiology, Stanford University, Stanford, United States
| |
Collapse
|
4
|
Michalski N, Goutman JD, Auclair SM, Boutet de Monvel J, Tertrais M, Emptoz A, Parrin A, Nouaille S, Guillon M, Sachse M, Ciric D, Bahloul A, Hardelin JP, Sutton RB, Avan P, Krishnakumar SS, Rothman JE, Dulon D, Safieddine S, Petit C. Otoferlin acts as a Ca 2+ sensor for vesicle fusion and vesicle pool replenishment at auditory hair cell ribbon synapses. eLife 2017; 6:e31013. [PMID: 29111973 PMCID: PMC5700815 DOI: 10.7554/elife.31013] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/06/2017] [Indexed: 01/01/2023] Open
Abstract
Hearing relies on rapid, temporally precise, and sustained neurotransmitter release at the ribbon synapses of sensory cells, the inner hair cells (IHCs). This process requires otoferlin, a six C2-domain, Ca2+-binding transmembrane protein of synaptic vesicles. To decipher the role of otoferlin in the synaptic vesicle cycle, we produced knock-in mice (OtofAla515,Ala517/Ala515,Ala517) with lower Ca2+-binding affinity of the C2C domain. The IHC ribbon synapse structure, synaptic Ca2+ currents, and otoferlin distribution were unaffected in these mutant mice, but auditory brainstem response wave-I amplitude was reduced. Lower Ca2+ sensitivity and delay of the fast and sustained components of synaptic exocytosis were revealed by membrane capacitance measurement upon modulations of intracellular Ca2+ concentration, by varying Ca2+ influx through voltage-gated Ca2+-channels or Ca2+ uncaging. Otoferlin thus functions as a Ca2+ sensor, setting the rates of primed vesicle fusion with the presynaptic plasma membrane and synaptic vesicle pool replenishment in the IHC active zone.
Collapse
Affiliation(s)
- Nicolas Michalski
- Unité de Génétique et Physiologie de l’AuditionInstitut PasteurParisFrance
- UMRS 1120, Institut National de la Santé et de la Recherche MédicaleParisFrance
- Sorbonne Universités, UPMC Université Paris 06, Complexité du VivantParisFrance
| | - Juan D Goutman
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
| | - Sarah Marie Auclair
- Department of Cell BiologyYale University School of MedicineNew HavenUnited States
| | - Jacques Boutet de Monvel
- Unité de Génétique et Physiologie de l’AuditionInstitut PasteurParisFrance
- UMRS 1120, Institut National de la Santé et de la Recherche MédicaleParisFrance
- Sorbonne Universités, UPMC Université Paris 06, Complexité du VivantParisFrance
| | - Margot Tertrais
- UMRS 1120, Institut National de la Santé et de la Recherche MédicaleParisFrance
- Laboratoire de Neurophysiologie de la Synapse Auditive, Bordeaux NeurocampusUniversité de BordeauxBordeauxFrance
| | - Alice Emptoz
- Unité de Génétique et Physiologie de l’AuditionInstitut PasteurParisFrance
- UMRS 1120, Institut National de la Santé et de la Recherche MédicaleParisFrance
- Sorbonne Universités, UPMC Université Paris 06, Complexité du VivantParisFrance
| | - Alexandre Parrin
- Unité de Génétique et Physiologie de l’AuditionInstitut PasteurParisFrance
- UMRS 1120, Institut National de la Santé et de la Recherche MédicaleParisFrance
- Sorbonne Universités, UPMC Université Paris 06, Complexité du VivantParisFrance
| | - Sylvie Nouaille
- Unité de Génétique et Physiologie de l’AuditionInstitut PasteurParisFrance
- UMRS 1120, Institut National de la Santé et de la Recherche MédicaleParisFrance
- Sorbonne Universités, UPMC Université Paris 06, Complexité du VivantParisFrance
| | - Marc Guillon
- Wave Front Engineering Microscopy Group, Neurophotonics Laboratory, Centre National de la Recherche Scientifique, UMR 8250University Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Martin Sachse
- Center for Innovation & Technological ResearchUltrapole, Institut PasteurParisFrance
| | - Danica Ciric
- Unité de Génétique et Physiologie de l’AuditionInstitut PasteurParisFrance
- UMRS 1120, Institut National de la Santé et de la Recherche MédicaleParisFrance
- Sorbonne Universités, UPMC Université Paris 06, Complexité du VivantParisFrance
| | - Amel Bahloul
- Unité de Génétique et Physiologie de l’AuditionInstitut PasteurParisFrance
- UMRS 1120, Institut National de la Santé et de la Recherche MédicaleParisFrance
- Sorbonne Universités, UPMC Université Paris 06, Complexité du VivantParisFrance
- Centre National de la Recherche ScientifiqueFrance
| | - Jean-Pierre Hardelin
- Unité de Génétique et Physiologie de l’AuditionInstitut PasteurParisFrance
- UMRS 1120, Institut National de la Santé et de la Recherche MédicaleParisFrance
- Sorbonne Universités, UPMC Université Paris 06, Complexité du VivantParisFrance
| | - Roger Bryan Sutton
- Department of Cell Physiology and Molecular BiophysicsTexas Tech University Health Sciences CenterLubbockUnited States
- Center for Membrane Protein ResearchTexas Tech University Health Sciences CenterLubbockUnited States
| | - Paul Avan
- Laboratoire de Biophysique SensorielleUniversité Clermont AuvergneClermont-FerrandFrance
- UMR 1107, Institut National de la Santé et de la Recherche MédicaleClermont-FerrandFrance
- Centre Jean PerrinClermont-FerrandFrance
| | - Shyam S Krishnakumar
- Department of Cell BiologyYale University School of MedicineNew HavenUnited States
- Department of Clinical and Experimental EpilepsyInstitute of Neurology, University College LondonLondonUnited Kingdom
| | - James E Rothman
- Department of Cell BiologyYale University School of MedicineNew HavenUnited States
- Department of Clinical and Experimental EpilepsyInstitute of Neurology, University College LondonLondonUnited Kingdom
| | - Didier Dulon
- UMRS 1120, Institut National de la Santé et de la Recherche MédicaleParisFrance
- Laboratoire de Neurophysiologie de la Synapse Auditive, Bordeaux NeurocampusUniversité de BordeauxBordeauxFrance
| | - Saaid Safieddine
- Unité de Génétique et Physiologie de l’AuditionInstitut PasteurParisFrance
- UMRS 1120, Institut National de la Santé et de la Recherche MédicaleParisFrance
- Sorbonne Universités, UPMC Université Paris 06, Complexité du VivantParisFrance
- Centre National de la Recherche ScientifiqueFrance
| | - Christine Petit
- Unité de Génétique et Physiologie de l’AuditionInstitut PasteurParisFrance
- UMRS 1120, Institut National de la Santé et de la Recherche MédicaleParisFrance
- Sorbonne Universités, UPMC Université Paris 06, Complexité du VivantParisFrance
- Syndrome de Usher et Autres Atteintes Rétino-CochléairesInstitut de la VisionParisFrance
- Collège de FranceParisFrance
| |
Collapse
|
5
|
Santos-Sacchi J, Song L. Chloride Anions Regulate Kinetics but Not Voltage-Sensor Qmax of the Solute Carrier SLC26a5. Biophys J 2017; 110:2551-2561. [PMID: 27276272 DOI: 10.1016/j.bpj.2016.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/02/2016] [Accepted: 05/04/2016] [Indexed: 12/23/2022] Open
Abstract
In general, SLC26 solute carriers serve to transport a variety of anions across biological membranes. However, prestin (SLC26a5) has evolved, now serving as a motor protein in outer hair cells (OHCs) of the mammalian inner ear and is required for cochlear amplification, a mechanical feedback mechanism to boost auditory performance. The mechanical activity of the OHC imparted by prestin is driven by voltage and controlled by anions, chiefly intracellular chloride. Current opinion is that chloride anions control the Boltzmann characteristics of the voltage sensor responsible for prestin activity, including Qmax, the total sensor charge moved within the membrane, and Vh, a measure of prestin's operating voltage range. Here, we show that standard narrow-band, high-frequency admittance measures of nonlinear capacitance (NLC), an alternate representation of the sensor's charge-voltage (Q-V) relationship, is inadequate for assessment of Qmax, an estimate of the sum of unitary charges contributed by all voltage sensors within the membrane. Prestin's slow transition rates and chloride-binding kinetics adversely influence these estimates, contributing to the prevalent concept that intracellular chloride level controls the quantity of sensor charge moved. By monitoring charge movement across frequency, using measures of multifrequency admittance, expanded displacement current integration, and OHC electromotility, we find that chloride influences prestin kinetics, thereby controlling charge magnitude at any particular frequency of interrogation. Importantly, however, this chloride dependence vanishes as frequency decreases, with Qmax asymptoting at a level irrespective of the chloride level. These data indicate that prestin activity is significantly low-pass in the frequency domain, with important implications for cochlear amplification. We also note that the occurrence of voltage-dependent charge movements in other SLC26 family members may be hidden by inadequate interrogation timescales, and that revelation of such activity could highlight an evolutionary means for kinetic modifications within the family to address hearing requirements in mammals.
Collapse
Affiliation(s)
- Joseph Santos-Sacchi
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, Connecticut; Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut.
| | - Lei Song
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
6
|
Sundaresan S, Kong JH, Fang Q, Salles FT, Wangsawihardja F, Ricci AJ, Mustapha M. Thyroid hormone is required for pruning, functioning and long-term maintenance of afferent inner hair cell synapses. Eur J Neurosci 2015; 43:148-61. [PMID: 26386265 DOI: 10.1111/ejn.13081] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/09/2015] [Accepted: 09/14/2015] [Indexed: 12/16/2022]
Abstract
Functional maturation of afferent synaptic connections to inner hair cells (IHCs) involves pruning of excess synapses formed during development, as well as the strengthening and survival of the retained synapses. These events take place during the thyroid hormone (TH)-critical period of cochlear development, which is in the perinatal period for mice and in the third trimester for humans. Here, we used the hypothyroid Snell dwarf mouse (Pit1(dw)) as a model to study the role of TH in afferent type I synaptic refinement and functional maturation. We observed defects in afferent synaptic pruning and delays in calcium channel clustering in the IHCs of Pit1(dw) mice. Nevertheless, calcium currents and capacitance reached near normal levels in Pit1(dw) IHCs by the age of onset of hearing, despite the excess number of retained synapses. We restored normal synaptic pruning in Pit1(dw) IHCs by supplementing with TH from postnatal day (P)3 to P8, establishing this window as being critical for TH action on this process. Afferent terminals of older Pit1(dw) IHCs showed evidence of excitotoxic damage accompanied by a concomitant reduction in the levels of the glial glutamate transporter, GLAST. Our results indicate that a lack of TH during a critical period of inner ear development causes defects in pruning and long-term homeostatic maintenance of afferent synapses.
Collapse
Affiliation(s)
- Srividya Sundaresan
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, 300 Pasteur Drive, Room R111A, Stanford, CA, 94035, USA
| | - Jee-Hyun Kong
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, 300 Pasteur Drive, Room R111A, Stanford, CA, 94035, USA
| | - Qing Fang
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Felipe T Salles
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, 300 Pasteur Drive, Room R111A, Stanford, CA, 94035, USA
| | - Felix Wangsawihardja
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, 300 Pasteur Drive, Room R111A, Stanford, CA, 94035, USA
| | - Anthony J Ricci
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, 300 Pasteur Drive, Room R111A, Stanford, CA, 94035, USA
| | - Mirna Mustapha
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, 300 Pasteur Drive, Room R111A, Stanford, CA, 94035, USA
| |
Collapse
|
7
|
Castellano-Muñoz M, Ricci AJ. Role of intracellular calcium stores in hair-cell ribbon synapse. Front Cell Neurosci 2014; 8:162. [PMID: 24971053 PMCID: PMC4054790 DOI: 10.3389/fncel.2014.00162] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/28/2014] [Indexed: 11/13/2022] Open
Abstract
Intracellular calcium stores control many neuronal functions such as excitability, gene expression, synaptic plasticity, and synaptic release. Although the existence of calcium stores along with calcium-induced calcium release (CICR) has been demonstrated in conventional and ribbon synapses, functional significance and the cellular mechanisms underlying this role remains unclear. This review summarizes recent experimental evidence identifying contribution of CICR to synaptic transmission and synaptic plasticity in the CNS, retina and inner ear. In addition, the potential role of CICR in the recruitment of vesicles to releasable pools in hair-cell ribbon synapses will be specifically discussed.
Collapse
Affiliation(s)
| | - Anthony J Ricci
- Department of Otolaryngology, Stanford University School of Medicine Stanford, CA, USA ; Department of Molecular and Cellular Physiology, Stanford University School of Medicine Stanford, CA, USA
| |
Collapse
|
8
|
Abstract
Zebrafish are popular models for biological discovery. For investigators of the auditory and vestibular periphery, manipulations of hair cell and synaptic mechanisms have relied on inferences from extracellular recordings of physiological activity. We now provide data showing that hair cells and supporting cells of the lateral line can be directly patch-clamped, providing the first recordings of ionic channel activity, synaptic vesicle release, and gap junctional coupling in the neuromasts of living fish. Such capabilities will allow more detailed understanding of mechano-sensation of the zebrafish.
Collapse
|
9
|
Abstract
Following synaptic vesicle exocytosis, neurons retrieve the fused membrane by a process of endocytosis to provide a supply of vesicles for subsequent release and maintain the presynaptic active zone. Rod and cone photoreceptors use a specialized structure called the synaptic ribbon that enables them to sustain high rates of neurotransmitter release. They must also employ mechanisms of synaptic vesicle endocytosis capable of keeping up with release. While much is known about endocytosis at another retinal ribbon synapse, that of the goldfish Mb1 bipolar cell, less is known about endocytosis in photoreceptors. We used capacitance recording techniques to measure vesicle membrane fusion and retrieval in photoreceptors from salamander retinal slices. We found that application of brief depolarizing steps (<100 ms) to cones evoked exocytosis followed by rapid endocytosis with a time constant ∼250 ms. In some cases, the capacitance trace overshot the baseline, indicating excess endocytosis. Calcium had no effect on the time constant, but enhanced excess endocytosis resulting in a faster rate of membrane retrieval. Surprisingly, endocytosis was unaffected by blockers of dynamin, suggesting that cone endocytosis is dynamin independent. This contrasts with synaptic vesicle endocytosis in rods, which was inhibited by the dynamin inhibitor dynasore and GTPγS introduced through the patch pipette, suggesting that the two photoreceptor types employ distinct pathways for vesicle retrieval. The fast kinetics of synaptic vesicle endocytosis in photoreceptors likely enables these cells to maintain a high rate of transmitter release, allowing them to faithfully signal changes in illumination to second-order neurons.
Collapse
|