1
|
Huang Y, Zhang L, Sun Y, Liu Q, Chen J, Qian X, Gao X, Zhu GJ, Wan G. A human-specific cytotoxic neopeptide generated by the deafness gene Cingulin. J Genet Genomics 2024; 51:1215-1227. [PMID: 39098598 DOI: 10.1016/j.jgg.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Accumulation of mutant proteins in cells can induce proteinopathies and cause functional damage to organs. Recently, the Cingulin (CGN) protein has been shown to maintain the morphology of cuticular plates of inner ear hair cells and a frameshift mutation in CGN causes autosomal dominant non-syndromic hearing loss. Here, we find that the mutant CGN proteins form insoluble aggregates which accumulate intracellularly and lead to cell death. Expression of the mutant CGN in the inner ear results in severe hair cell death and hearing loss in mice, resembling the auditory phenotype in human patients. Interestingly, a human-specific residue (V1112) in the neopeptide generated by the frameshift mutation is critical for the aggregation and cytotoxicity of the mutant human CGN. Moreover, the expression of heat shock factor 1 (HSF1) decreases the accumulation of insoluble mutant CGN aggregates and rescues cell death. In summary, these findings identify mutant-specific toxic polypeptides as a disease-causing mechanism of the deafness mutation in CGN, which can be targeted by the expression of the cell chaperone response regulator HSF1.
Collapse
Affiliation(s)
- Yuhang Huang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China; Jiangsu Key Laboratory of Molecular Medicine and National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, Jiangsu 210061, China
| | - Linqing Zhang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China; Jiangsu Key Laboratory of Molecular Medicine and National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, Jiangsu 210061, China
| | - Yuecen Sun
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China; Jiangsu Key Laboratory of Molecular Medicine and National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, Jiangsu 210061, China
| | - Qing Liu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China; Jiangsu Key Laboratory of Molecular Medicine and National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, Jiangsu 210061, China; Research Institute of Otolaryngology, No. 321 Zhongshan Road, Nanjing, Jiangsu 210061, China
| | - Jie Chen
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China; Research Institute of Otolaryngology, No. 321 Zhongshan Road, Nanjing, Jiangsu 210061, China
| | - Xiaoyun Qian
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China; Research Institute of Otolaryngology, No. 321 Zhongshan Road, Nanjing, Jiangsu 210061, China
| | - Xia Gao
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China; Research Institute of Otolaryngology, No. 321 Zhongshan Road, Nanjing, Jiangsu 210061, China.
| | - Guang-Jie Zhu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China; Research Institute of Otolaryngology, No. 321 Zhongshan Road, Nanjing, Jiangsu 210061, China.
| | - Guoqiang Wan
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China; Jiangsu Key Laboratory of Molecular Medicine and National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, Jiangsu 210061, China; Research Institute of Otolaryngology, No. 321 Zhongshan Road, Nanjing, Jiangsu 210061, China.
| |
Collapse
|
2
|
Zhao P, Malik S. The phosphorylation to acetylation/methylation cascade in transcriptional regulation: how kinases regulate transcriptional activities of DNA/histone-modifying enzymes. Cell Biosci 2022; 12:83. [PMID: 35659740 PMCID: PMC9164400 DOI: 10.1186/s13578-022-00821-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022] Open
Abstract
Transcription factors directly regulate gene expression by recognizing and binding to specific DNA sequences, involving the dynamic alterations of chromatin structure and the formation of a complex with different kinds of cofactors, like DNA/histone modifying-enzymes, chromatin remodeling factors, and cell cycle factors. Despite the significance of transcription factors, it remains unclear to determine how these cofactors are regulated to cooperate with transcription factors, especially DNA/histone modifying-enzymes. It has been known that DNA/histone modifying-enzymes are regulated by post-translational modifications. And the most common and important modification is phosphorylation. Even though various DNA/histone modifying-enzymes have been classified and partly explained how phosphorylated sites of these enzymes function characteristically in recent studies. It still needs to find out the relationship between phosphorylation of these enzymes and the diseases-associated transcriptional regulation. Here this review describes how phosphorylation affects the transcription activity of these enzymes and other functions, including protein stability, subcellular localization, binding to chromatin, and interaction with other proteins.
Collapse
|
3
|
Conserved Eukaryotic Kinase CK2 Chaperone Intrinsically Disordered Protein Interactions. Appl Environ Microbiol 2020; 86:AEM.02191-19. [PMID: 31676471 DOI: 10.1128/aem.02191-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 10/24/2019] [Indexed: 01/21/2023] Open
Abstract
CK2, a serine/threonine (Ser/Thr) kinase present in eukaryotic cells, is known to have a vast number of substrates. We have recently shown that it localizes to nuclei and at pores between hyphal compartments in Magnaporthe oryzae We performed a pulldown proteomics analysis of M. oryzae CK2 catalytic subunit MoCKa to detect interacting proteins. The MoCKa pulldown was enriched for septum and nucleolus proteins and intrinsically disordered proteins (IDPs) containing a CK2 phosphorylation motif that is proposed to destabilize and unfold α-helices. This points to a function for CK2 phosphorylation and corresponding phosphatase dephosphorylation in the formation of functional protein-protein aggregates and protein-RNA/DNA binding. To test this as widely as possible, we used secondary data downloaded from databases from a large range of M. oryzae experiments, as well as data for a relatively closely related plant-pathogenic fungus, Fusarium graminearum We found that CKa expression was strongly positively correlated with Ser/Thr phosphatases, as well as with disaggregases (HSP104, YDJ1, and SSA1) and an autophagy-indicating protein (ATG8). The latter points to increased protein aggregate formation at high levels of CKa expression. Our results suggest a general role for CK2 in chaperoning aggregation and disaggregation of IDPs and their binding to proteins, DNA, and RNA.IMPORTANCE CK2 is a eukaryotic conserved kinase enzyme complex that phosphorylates proteins. CK2 is known to phosphorylate a large number of proteins and is constitutively active, and thus a "normal" role for a kinase in a signaling cascade might not be the case for CK2. Previous results on localization and indications from the literature point to a function for CK2 phosphorylation in shaping and folding of proteins, especially intrinsically disordered proteins, which constitute about 30% of eukaryotic proteins. We used pulldown of interacting proteins and data downloaded from a large range of transcriptomic experiments in M. oryzae and complemented these with data downloaded from a large range of transcriptomic experiments in Fusarium graminearum We found support for a general role for CK2 in aggregation and disaggregation of IDPs and their binding to proteins, DNA, and RNA-interactions that could explain the importance of CK2 in eukaryotic cell function and disease.
Collapse
|
4
|
Abi Nahed R, Reynaud D, Lemaitre N, Lartigue S, Roelants C, Vaiman D, Benharouga M, Cochet C, Filhol O, Alfaidy N. Protein kinase CK2 contributes to placental development: physiological and pathological implications. J Mol Med (Berl) 2019; 98:123-133. [PMID: 31832700 DOI: 10.1007/s00109-019-01855-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/21/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022]
Abstract
Preeclampsia (PE) is the most threatening pathology of human pregnancy. Its development is thought to be due to a failure in the invasion of trophoblast cells that establish the feto-maternal circulation. Protein kinase CK2 is a ubiquitous enzyme reported to be involved in the control of cell invasion. CK2 consists of two subunits, a catalytic subunit, CK2α, and a regulatory subunit, CK2β. To date, no data exist regarding the expression and role of this enzyme in normal and PE pregnancies. We performed studies, at the clinical level using distinctive cohorts from early pregnancy (n = 24) and from PE (n = 23) and age-matched controls (n = 28); in vitro, using trophoblast cell lines; ex vivo, using placental explants; and in vivo, using PE mouse models. We demonstrated that (i) CK2 is more expressed during the late first trimester of pregnancy and is mainly localized in differentiated trophoblast cells, (ii) the inhibition of its enzymatic activity decreased the proliferation, migration, invasion, and syncytialization of trophoblast cells, both in 2D and 3D culture systems, and (iii) CK2 activity and the CK2α/CK2β protein ratio were increased in PE human placentas. The pattern and profile of CK2 expression were confirmed in gravid mice along with an increase in the PE mouse models. Altogether, our results demonstrate that CK2 plays an essential role in the establishment of the feto-maternal circulation and that its deregulation is associated with PE development. The increase in CK2 activity in PE might constitute a compensatory mechanism to ensure proper pregnancy progress.
Collapse
Affiliation(s)
- Roland Abi Nahed
- Institut National de la Santé et de la Recherche Médicale, Unité, 1036, Grenoble, France. .,Université Grenoble-Alpes, 38000, Grenoble, France. .,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Interdisciplinary Research Institure of Grenoble (IRIG), Grenoble, France.
| | - Deborah Reynaud
- Institut National de la Santé et de la Recherche Médicale, Unité, 1036, Grenoble, France.,Université Grenoble-Alpes, 38000, Grenoble, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Interdisciplinary Research Institure of Grenoble (IRIG), Grenoble, France
| | - Nicolas Lemaitre
- Institut National de la Santé et de la Recherche Médicale, Unité, 1036, Grenoble, France.,Université Grenoble-Alpes, 38000, Grenoble, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Interdisciplinary Research Institure of Grenoble (IRIG), Grenoble, France
| | - Solene Lartigue
- Institut National de la Santé et de la Recherche Médicale, Unité, 1036, Grenoble, France.,Université Grenoble-Alpes, 38000, Grenoble, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Interdisciplinary Research Institure of Grenoble (IRIG), Grenoble, France
| | - Caroline Roelants
- Institut National de la Santé et de la Recherche Médicale, Unité, 1036, Grenoble, France.,Université Grenoble-Alpes, 38000, Grenoble, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Interdisciplinary Research Institure of Grenoble (IRIG), Grenoble, France.,Inovarion, Paris, France
| | - Daniel Vaiman
- Genomics, Epigenetics and Physiopathology of Reproduction, Institut Cochin, U1016 Inserm- UMR 8104 CNRS - Paris-Descartes University, Paris, France
| | - Mohamed Benharouga
- Université Grenoble-Alpes, 38000, Grenoble, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Interdisciplinary Research Institure of Grenoble (IRIG), Grenoble, France.,Laboratoire de Chimie et Biologie des Métaux, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5249, Grenoble, France
| | - Claude Cochet
- Institut National de la Santé et de la Recherche Médicale, Unité, 1036, Grenoble, France.,Université Grenoble-Alpes, 38000, Grenoble, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Interdisciplinary Research Institure of Grenoble (IRIG), Grenoble, France
| | - Odile Filhol
- Institut National de la Santé et de la Recherche Médicale, Unité, 1036, Grenoble, France.,Université Grenoble-Alpes, 38000, Grenoble, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Interdisciplinary Research Institure of Grenoble (IRIG), Grenoble, France
| | - Nadia Alfaidy
- Institut National de la Santé et de la Recherche Médicale, Unité, 1036, Grenoble, France.,Université Grenoble-Alpes, 38000, Grenoble, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Interdisciplinary Research Institure of Grenoble (IRIG), Grenoble, France
| |
Collapse
|
5
|
Chiaradonna F, Cirulli C, Palorini R, Votta G, Alberghina L. New Insights into the Connection Between Histone Deacetylases, Cell Metabolism, and Cancer. Antioxid Redox Signal 2015; 23:30-50. [PMID: 24483782 DOI: 10.1089/ars.2014.5854] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Histone deacetylases (HDACs) activity and cell metabolism are considered important targets for cancer therapy, as both are deregulated and associated with the onset and maintenance of tumors. RECENT ADVANCES Besides the classical function of HDACs as HDAC enzymes controlling the transcription, it is becoming increasingly evident that these proteins are involved in the regulation of several other cellular processes by their ability to deacetylate hundreds of proteins with different functions in both the cytoplasm and the nucleus. Importantly, recent high-throughput studies have identified as important target proteins several enzymes involved in different metabolic pathways. Conversely, it has been also shown that metabolic intermediates may control HDACs activity. Consequently, the acetylation/deacetylation of metabolic enzymes and the ability of metabolic intermediates to modulate HDACs may represent a cross-talk connecting cell metabolism, transcription, and other HDACs-controlled processes in physiological and pathological conditions. CRITICAL ISSUES Since metabolic alterations and HDACs deregulation are important cancer hallmarks, disclosing connections among them may improve our understanding on cancer mechanisms and reveal novel therapeutic protocols against this disease. FUTURE DIRECTIONS High-throughput metabolic studies performed by using more sophisticated technologies applied to the available models of conditional deletion of HDACs in cell lines or in mice will fill the gap in the current understanding and open directions for future research.
Collapse
Affiliation(s)
- Ferdinando Chiaradonna
- 1 SYSBIO Centre of Systems Biology , Milan, Italy .,2 Department of Biotechnology and Biosciences, University of Milano-Bicocca , Milan, Italy
| | - Claudia Cirulli
- 1 SYSBIO Centre of Systems Biology , Milan, Italy .,2 Department of Biotechnology and Biosciences, University of Milano-Bicocca , Milan, Italy
| | - Roberta Palorini
- 1 SYSBIO Centre of Systems Biology , Milan, Italy .,2 Department of Biotechnology and Biosciences, University of Milano-Bicocca , Milan, Italy
| | - Giuseppina Votta
- 1 SYSBIO Centre of Systems Biology , Milan, Italy .,2 Department of Biotechnology and Biosciences, University of Milano-Bicocca , Milan, Italy
| | - Lilia Alberghina
- 1 SYSBIO Centre of Systems Biology , Milan, Italy .,2 Department of Biotechnology and Biosciences, University of Milano-Bicocca , Milan, Italy
| |
Collapse
|
6
|
Jia B, Wu Y, Zhou Y. 14-3-3 and aggresome formation: implications in neurodegenerative diseases. Prion 2014; 8:28123. [PMID: 24549097 DOI: 10.4161/pri.28123] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Protein misfolding and aggregation underlie the pathogenesis of many neurodegenerative diseases. In addition to chaperone-mediated refolding and proteasomal degradation, the aggresome-macroautophagy pathway has emerged as another defense mechanism for sequestration and clearance of toxic protein aggregates in cells. Previously, the 14-3-3 proteins were shown to be indispensable for the formation of aggresomes induced by mutant huntingtin proteins. In a recent study, we have determined that 14-3-3 functions as a molecular adaptor to recruit chaperone-associated misfolded proteins to dynein motors for transport to aggresomes. This molecular complex involves a dimeric binding of 14-3-3 to both the dynein-intermediate chain (DIC) and an Hsp70 co-chaperone Bcl-2-associated athanogene 3 (BAG3). As 14-3-3 has been implicated in various neurodegenerative diseases, our findings may provide mechanistic insights into its role in managing misfolded protein stress during the process of neurodegeneration.
Collapse
Affiliation(s)
- Baohui Jia
- Department of Biomedical Sciences; Florida State University College of Medicine; Tallahassee, FL USA; Guang An Men Hospital; Beijing PR China
| | - Yuying Wu
- Department of Biomedical Sciences; Florida State University College of Medicine; Tallahassee, FL USA
| | - Yi Zhou
- Department of Biomedical Sciences; Florida State University College of Medicine; Tallahassee, FL USA
| |
Collapse
|
7
|
Zhao A, Tsechansky M, Ellington AD, Marcotte EM. Revisiting and revising the purinosome. MOLECULAR BIOSYSTEMS 2014; 10:369-74. [PMID: 24413256 DOI: 10.1039/c3mb70397e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Some metabolic pathway enzymes are known to organize into multi-enzyme complexes for reasons of catalytic efficiency, metabolite channeling, and other advantages of compartmentalization. It has long been an appealing prospect that de novo purine biosynthesis enzymes form such a complex, termed the "purinosome." Early work characterizing these enzymes garnered scarce but encouraging evidence for its existence. Recent investigations led to the discovery in human cell lines of purinosome bodies-cytoplasmic puncta containing transfected purine biosynthesis enzymes, which were argued to correspond to purinosomes. New discoveries challenge both the functional and physiological relevance of these bodies in favor of protein aggregation.
Collapse
Affiliation(s)
- Alice Zhao
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | | | | | | |
Collapse
|