1
|
Miranda-Alban J, Sanchez-Luege N, Valbuena FM, Rangel C, Rebay I. The Abelson kinase and the Nedd4 family E3 ligases co-regulate Notch trafficking to limit signaling. J Cell Biol 2025; 224:e202407066. [PMID: 40183942 PMCID: PMC11970431 DOI: 10.1083/jcb.202407066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/25/2025] [Accepted: 03/05/2025] [Indexed: 04/05/2025] Open
Abstract
Precise output from the conserved Notch signaling pathway governs a plethora of cellular processes and developmental transitions. Unlike other pathways that use a cytoplasmic relay, the Notch cell surface receptor transduces signaling directly to the nucleus, with endocytic trafficking providing critical regulatory nodes. Here we report that the cytoplasmic tyrosine kinase Abelson (Abl) facilitates Notch internalization into late endosomes/multivesicular bodies (LEs), thereby limiting signaling output in both ligand-dependent and -independent contexts. Abl phosphorylates the PPxY motif within Notch, a molecular target for its degradation via Nedd4 family ubiquitin ligases. We show that Su(dx), a family member, mediates the Abl-directed LE regulation of Notch via the PPxY, while another family member, Nedd4Lo, contributes to Notch internalization into LEs through both PPxY-dependent and -independent mechanisms. Our findings demonstrate how a network of posttranslational modifiers converging at LEs cooperatively modulates Notch signaling to ensure the precision and robustness of its cellular and developmental functions.
Collapse
Affiliation(s)
- Julio Miranda-Alban
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, USA
| | - Nicelio Sanchez-Luege
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, USA
| | - Fernando M. Valbuena
- Cell and Molecular Biology Graduate Program, University of Chicago, Chicago, IL, USA
| | - Chyan Rangel
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Ilaria Rebay
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, USA
- Cell and Molecular Biology Graduate Program, University of Chicago, Chicago, IL, USA
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
Kobia FM, Castro E Almeida L, Paganoni AJ, Carminati F, Andronache A, Lavezzari F, Wade M, Vaccari T. Novel determinants of NOTCH1 trafficking and signaling in breast epithelial cells. Life Sci Alliance 2025; 8:e202403122. [PMID: 39663000 PMCID: PMC11633778 DOI: 10.26508/lsa.202403122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024] Open
Abstract
The evolutionarily conserved Notch signaling pathway controls cell-cell communication, enacting cell fate decisions during development and tissue homeostasis. Its dysregulation is associated with a wide range of diseases, including congenital disorders and cancers. Signaling outputs depend on maturation of Notch receptors and trafficking to the plasma membrane, endocytic uptake and sorting, lysosomal and proteasomal degradation, and ligand-dependent and independent proteolytic cleavages. We devised assays to follow quantitatively the trafficking and signaling of endogenous human NOTCH1 receptor in breast epithelial cells in culture. Based on such analyses, we executed a high-content screen of 2,749 human genes to identify new regulators of Notch that might be amenable to pharmacologic intervention. We uncovered 39 new NOTCH1 modulators for NOTCH1 trafficking and signaling. Among them, we find that PTPN23 and HCN2 act as positive NOTCH1 regulators by promoting endocytic trafficking and NOTCH1 maturation in the Golgi apparatus, respectively, whereas SGK3 serves as a negative regulator that can be modulated by pharmacologic inhibition. Our findings might be relevant in the search of new strategies to counteract pathologic Notch signaling.
Collapse
Affiliation(s)
- Francis M Kobia
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | | | - Alyssa Jj Paganoni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | | | - Adrian Andronache
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | | | - Mark Wade
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Thomas Vaccari
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
3
|
Huang X, Chen W, Wang Y, Shytikov D, Wang Y, Zhu W, Chen R, He Y, Yang Y, Guo W. Canonical and noncanonical NOTCH signaling in the nongenetic resistance of cancer: distinct and concerted control. Front Med 2025; 19:23-52. [PMID: 39745621 DOI: 10.1007/s11684-024-1107-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/18/2024] [Indexed: 02/27/2025]
Abstract
Therapeutic resistance in cancer is responsible for numerous cancer deaths in clinical practice. While target mutations are well recognized as the basis of genetic resistance to targeted therapy, nontarget mutation resistance (or nongenetic resistance) remains poorly characterized. Despite its complex and unintegrated mechanisms in the literature, nongenetic resistance is considered from our perspective to be a collective response of innate or acquired resistant subpopulations in heterogeneous tumors to therapy. These subpopulations, e.g., cancer stem-like cells, cancer cells with epithelial-to-mesenchymal transition, and drug-tolerant persisters, are protected by their resistance traits at cellular and molecular levels. This review summarizes recent advances in the research on resistant populations and their resistance traits. NOTCH signaling, as a central regulator of nongenetic resistance, is discussed with a special focus on its canonical maintenance of resistant cancer cells and noncanonical regulation of their resistance traits. This novel view of canonical and noncanonical NOTCH signaling pathways is translated into our proposal of reshaping therapeutic strategies targeting NOTCH signaling in resistant cancer cells. We hope that this review will lead researchers to study the canonical and noncanonical arms of NOTCH signaling as an integrated resistant mechanism, thus promoting the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Xianzhe Huang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Wenwei Chen
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Yanyan Wang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Dmytro Shytikov
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Yanwen Wang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Wangyi Zhu
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Ruyi Chen
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Yuwei He
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Yanjia Yang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Wei Guo
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China.
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- Biomedical and Health Translational Research Center of Zhejiang Province, Jiaxing, 314400, China.
| |
Collapse
|
4
|
O'Hare M, Miller WP, Arevalo-Alquichire S, Amarnani D, Apryani E, Perez-Corredor P, Marino C, Shu DY, Vanderleest TE, Muriel-Torres A, Gordon HB, Gunawan AL, Kaplan BA, Barake KW, Bejjani RP, Doan TH, Lin R, Delgado-Tirado S, Gonzalez-Buendia L, Rossin EJ, Zhao G, Eliott D, Weinl-Tenbruck C, Chevessier-Tünnesen F, Rejman J, Montrasio F, Kim LA, Arboleda-Velasquez JF. An mRNA-encoded dominant-negative inhibitor of transcription factor RUNX1 suppresses vitreoretinal disease in experimental models. Sci Transl Med 2024; 16:eadh0994. [PMID: 39602510 DOI: 10.1126/scitranslmed.adh0994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/06/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
Messenger RNA (mRNA)-based therapies are a promising approach to medical treatment. Except for infectious diseases, no other disease has mRNA-based therapies available. The eye is an ideal model for mRNA therapeutic development because it requires limited dosing. Proliferative vitreoretinopathy (PVR) is a blinding condition caused by retinal detachment that now lacks available medical treatment, with surgery as the only treatment option. We previously implicated runt-related transcription factor-1 (RUNX1) as a driver of epithelial-to-mesenchymal transition (EMT) in PVR and as a critical mediator of aberrant ocular angiogenesis when up-regulated. On the basis of these findings, an mRNA was designed to express a dominant-negative inhibitor of RUNX1 (RUNX1-Trap). We show that RUNX1-Trap delivered in polymer-lipidoid complexes or lipid nanoparticles sequestered RUNX1 in the cytosol and strongly reduced proliferation in primary cell cultures established from fibrotic membranes derived from patients with PVR. We assessed the preclinical efficacy of intraocular delivery of mRNA-encoded RUNX1-Trap in a rabbit model of PVR and in a laser-induced mouse model of aberrant angiogenesis often used to study wet age-related macular degeneration. mRNA-encoded RUNX1-Trap suppressed ocular pathology, measured as pathological scores in the rabbit PVR model and leakage and lesion size in the laser-induced choroidal neovascularization mouse model. mRNA-encoded RUNX1-Trap also strongly reduced proliferation in a human ex vivo explant model of PVR. These data demonstrate the therapeutic potential of mRNA-encoded therapeutic molecules with dominant-negative properties, highlighting the potential of mRNA-based therapies beyond standard gene supplementation approaches.
Collapse
Affiliation(s)
- Michael O'Hare
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - William P Miller
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Said Arevalo-Alquichire
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Dhanesh Amarnani
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Evhy Apryani
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Paula Perez-Corredor
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Claudia Marino
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Daisy Y Shu
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Timothy E Vanderleest
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Andres Muriel-Torres
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Harper B Gordon
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Audrey L Gunawan
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Bryan A Kaplan
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Karim W Barake
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Romy P Bejjani
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Tri H Doan
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Rose Lin
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Santiago Delgado-Tirado
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Lucia Gonzalez-Buendia
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Elizabeth J Rossin
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Guannan Zhao
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Dean Eliott
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | - Leo A Kim
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| | - Joseph F Arboleda-Velasquez
- Schepens Eye Research Institute of Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
5
|
Ray A, Rai Y, Inamdar MS. The Endosomal Sorting Complex, ESCRT, has diverse roles in blood progenitor maintenance, lineage choice and immune response. Biol Open 2024; 13:bio060412. [PMID: 38828842 PMCID: PMC11212638 DOI: 10.1242/bio.060412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
Most hematological malignancies are associated with reduced expression of one or more components of the Endosomal Sorting Complex Required for Transport (ESCRT). However, the roles of ESCRT in stem cell and progenitor maintenance are not resolved. Parsing signaling pathways in relation to the canonical role of ESCRT poses a challenge. The Drosophila hematopoietic organ, the larval lymph gland, provides a path to dissect the roles of cellular trafficking pathways such as ESCRT in blood development and maintenance. Drosophila has 13 core ESCRT components. Knockdown of individual ESCRTs showed that only Vps28 and Vp36 were required in all lymph gland progenitors. Using the well-conserved ESCRT-II complex as an example of the range of phenotypes seen upon ESCRT depletion, we show that ESCRTs have cell-autonomous as well as non-autonomous roles in progenitor maintenance and differentiation. ESCRT depletion also sensitized posterior lobe progenitors to respond to immunogenic wasp infestation. We also identify key heterotypic roles for ESCRT in position-dependent control of Notch activation to suppress crystal cell differentiation. Our study shows that the cargo sorting machinery determines the identity of progenitors and their adaptability to the dynamic microenvironment. These mechanisms for control of cell fate may tailor developmental diversity in multiple contexts.
Collapse
Affiliation(s)
- Arindam Ray
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Yashashwinee Rai
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Maneesha S. Inamdar
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), GKVK Post, Bellary Road, Bangalore 560065, India
| |
Collapse
|
6
|
Carter AA, Ramsey KM, Hatem CL, Sherry KP, Majumdar A, Barrick D. Structural features of the Notch ankyrin domain-Deltex WWE 2 domain heterodimer determined by NMR spectroscopy and functional implications. Structure 2023; 31:584-594.e5. [PMID: 36977409 PMCID: PMC10338078 DOI: 10.1016/j.str.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 11/14/2022] [Accepted: 03/02/2023] [Indexed: 03/29/2023]
Abstract
The Notch signaling pathway, an important cell fate determination pathway, is modulated by the ubiquitin ligase Deltex. Here, we investigate the structural basis for Deltex-Notch interaction. We used nuclear magnetic resonance (NMR) spectroscopy to assign the backbone of the Drosophila Deltex WWE2 domain and mapped the binding site of the Notch ankyrin (ANK) domain to the N-terminal WWEA motif. Using cultured Drosophila S2R+ cells, we find that point substitutions within the ANK-binding surface of Deltex disrupt Deltex-mediated enhancement of Notch transcriptional activation and disrupt ANK binding in cells and in vitro. Likewise, ANK substitutions that disrupt Notch-Deltex heterodimer formation in vitro block disrupt Deltex-mediated stimulation of Notch transcription activation and diminish interaction with full-length Deltex in cells. Surprisingly, the Deltex-Notch intracellular domain (NICD) interaction is not disrupted by deletion of the Deltex WWE2 domain, suggesting a secondary Notch-Deltex interaction. These results show the importance of the WWEA:ANK interaction in enhancing Notch signaling.
Collapse
Affiliation(s)
- Andrea A Carter
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Kristen M Ramsey
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Christine L Hatem
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Kathryn P Sherry
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Ananya Majumdar
- Biomolecular NMR Center, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Doug Barrick
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA.
| |
Collapse
|
7
|
Wang L, Sun X, He J, Liu Z. Functions and Molecular Mechanisms of Deltex Family Ubiquitin E3 Ligases in Development and Disease. Front Cell Dev Biol 2021; 9:706997. [PMID: 34513839 PMCID: PMC8424196 DOI: 10.3389/fcell.2021.706997] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
Ubiquitination is a posttranslational modification of proteins that significantly affects protein stability and function. The specificity of substrate recognition is determined by ubiquitin E3 ligase during ubiquitination. Human Deltex (DTX) protein family, which functions as ubiquitin E3 ligases, comprises five members, namely, DTX1, DTX2, DTX3, DTX3L, and DTX4. The characteristics and functional diversity of the DTX family proteins have attracted significant attention over the last decade. DTX proteins have several physiological and pathological roles and are closely associated with cell signal transduction, growth, differentiation, and apoptosis, as well as the occurrence and development of various tumors. Although they have been extensively studied in various species, data on structural features, biological functions, and potential mechanisms of action of the DTX family proteins remain limited. In this review, recent research progress on each member of the DTX family is summarized, providing insights into future research directions and potential strategies in disease diagnosis and therapy.
Collapse
Affiliation(s)
- Lidong Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaodan Sun
- Postdoctoral Research Workstation, Jilin Cancer Hospital, Changchun, China
| | - Jingni He
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhen Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Dutta D, Sharma V, Mutsuddi M, Mukherjee A. Regulation of Notch signaling by E3 ubiquitin ligases. FEBS J 2021; 289:937-954. [PMID: 33644958 DOI: 10.1111/febs.15792] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/07/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022]
Abstract
Notch signaling is an evolutionarily conserved pathway that is widely used for multiple cellular events during development. Activation of the Notch pathway occurs when the ligand from a neighboring cell binds to the Notch receptor and induces cleavage of the intracellular domain of Notch, which further translocates into the nucleus to activate its downstream genes. The involvement of the Notch pathway in diverse biological events is possible due to the complexity in its regulation. In order to maintain tight spatiotemporal regulation, the Notch receptor, as well as its ligand, undergoes a series of physical and biochemical modifications that, in turn, helps in proper maintenance and fine-tuning of the signaling outcome. Ubiquitination is the post-translational addition of a ubiquitin molecule to a substrate protein, and the process is regulated by E3 ubiquitin ligases. The present review describes the involvement of different E3 ubiquitin ligases that play an important role in the regulation and maintenance of proper Notch signaling and how perturbation in ubiquitination results in abnormal Notch signaling leading to a number of human diseases.
Collapse
Affiliation(s)
- Debdeep Dutta
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vartika Sharma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
9
|
Baeumers M, Ruhnau K, Breuer T, Pannen H, Goerlich B, Kniebel A, Haensch S, Weidtkamp-Peters S, Schmitt L, Klein T. Lethal (2) giant discs (Lgd)/CC2D1 is required for the full activity of the ESCRT machinery. BMC Biol 2020; 18:200. [PMID: 33349255 PMCID: PMC7754597 DOI: 10.1186/s12915-020-00933-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/24/2020] [Indexed: 01/10/2023] Open
Abstract
Background A major task of the endosomal sorting complex required for transport (ESCRT) machinery is the pinching off of cargo-loaded intraluminal vesicles (ILVs) into the lumen of maturing endosomes (MEs), which is essential for the complete degradation of transmembrane proteins in the lysosome. The ESCRT machinery is also required for the termination of signalling through activated signalling receptors, as it separates their intracellular domains from the cytosol. At the heart of the machinery lies the ESCRT-III complex, which is required for an increasing number of processes where membrane regions are abscised away from the cytosol. The core of ESCRT-III, comprising four members of the CHMP protein family, organises the assembly of a homopolymer of CHMP4, Shrub in Drosophila, that is essential for abscission. We and others identified the tumour-suppressor lethal (2) giant discs (Lgd)/CC2D1 as a physical interactor of Shrub/CHMP4 in Drosophila and mammals, respectively. Results Here, we show that the loss of function of lgd constitutes a state of reduced activity of Shrub/CHMP4/ESCRT-III. This hypomorphic shrub mutant situation causes a slight decrease in the rate of ILV formation that appears to result in incomplete incorporation of Notch into ILVs. We found that the forced incorporation in ILVs of lgd mutant MEs suppresses the uncontrolled and ligand-independent activation of Notch. Moreover, the analysis of Su(dx) lgd double mutants clarifies their relationship and suggests that they are not operating in a linear pathway. We could show that, despite prolonged lifetime, the MEs of lgd mutants have a similar ILV density as wild-type but less than rab7 mutant MEs, suggesting the rate in lgd mutants is slightly reduced. The analysis of the MEs of wild-type and mutant cells in the electron microscope revealed that the ESCRT-containing electron-dense microdomains of ILV formation at the limiting membrane are elongated, indicating a change in ESCRT activity. Since lgd mutants can be rescued to normal adult flies if extra copies of shrub (or its mammalian ortholog CHMP4B) are added into the genome, we conclude that the net activity of Shrub is reduced upon loss of lgd function. Finally, we show that, in solution, CHMP4B/Shrub exists in two conformations. LGD1/Lgd binding does not affect the conformational state of Shrub, suggesting that Lgd is not a chaperone for Shrub/CHMP4B. Conclusion Our results suggest that Lgd is required for the full activity of Shrub/ESCRT-III. In its absence, the activity of the ESCRT machinery is reduced. This reduction causes the escape of a fraction of cargo, among it Notch, from incorporation into ILVs, which in turn leads to an activation of this fraction of Notch after fusion of the ME with the lysosome. Our results highlight the importance of the incorporation of Notch into ILV not only to assure complete degradation, but also to avoid uncontrolled activation of the pathway.
Collapse
Affiliation(s)
- Miriam Baeumers
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Kristina Ruhnau
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Thomas Breuer
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Hendrik Pannen
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Bastian Goerlich
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Anna Kniebel
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Sebastian Haensch
- Center of Advanced Imaging (CAi), Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Stefanie Weidtkamp-Peters
- Center of Advanced Imaging (CAi), Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry I, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Thomas Klein
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany.
| |
Collapse
|
10
|
Phosphatidic acid increases Notch signalling by affecting Sanpodo trafficking during Drosophila sensory organ development. Sci Rep 2020; 10:21731. [PMID: 33303974 PMCID: PMC7729928 DOI: 10.1038/s41598-020-78831-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/27/2020] [Indexed: 11/08/2022] Open
Abstract
Organ cell diversity depends on binary cell-fate decisions mediated by the Notch signalling pathway during development and tissue homeostasis. A clear example is the series of binary cell-fate decisions that take place during asymmetric cell divisions that give rise to the sensory organs of Drosophila melanogaster. The regulated trafficking of Sanpodo, a transmembrane protein that potentiates receptor activity, plays a pivotal role in this process. Membrane lipids can regulate many signalling pathways by affecting receptor and ligand trafficking. It remains unknown, however, whether phosphatidic acid regulates Notch-mediated binary cell-fate decisions during asymmetric cell divisions, and what are the cellular mechanisms involved. Here we show that increased phosphatidic acid derived from Phospholipase D leads to defects in binary cell-fate decisions that are compatible with ectopic Notch activation in precursor cells, where it is normally inactive. Null mutants of numb or the α-subunit of Adaptor Protein complex-2 enhance dominantly this phenotype while removing a copy of Notch or sanpodo suppresses it. In vivo analyses show that Sanpodo localization decreases at acidic compartments, associated with increased internalization of Notch. We propose that Phospholipase D-derived phosphatidic acid promotes ectopic Notch signalling by increasing receptor endocytosis and inhibiting Sanpodo trafficking towards acidic endosomes.
Collapse
|
11
|
Venzin OF, Oates AC. What are you synching about? Emerging complexity of Notch signaling in the segmentation clock. Dev Biol 2020; 460:40-54. [DOI: 10.1016/j.ydbio.2019.06.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/30/2019] [Accepted: 06/30/2019] [Indexed: 10/26/2022]
|
12
|
Insulin-dependent Non-canonical Activation of Notch in Drosophila: A Story of Notch-Induced Muscle Stem Cell Proliferation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1227:131-144. [PMID: 32072503 DOI: 10.1007/978-3-030-36422-9_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Notch plays multiple roles both in development and in adult tissue homeostasis. Notch was first identified in Drosophila in which it has then been extensively studied. Among the flag-ship Notch functions we could mention its capacity to keep precursor and stem cells in a nondifferentiated state but also its ability to activate cell proliferation that in some contexts could led to cancer. In general, both these functions involve, canonical, ligand-dependent Notch activation. However, a ligand-independent Notch activation has also been described in a few cellular contexts. Here, we focus on one of such contexts, Drosophila muscle stem cells, called AMPs, and discuss how insulin-dependent noncanonical activation of Notch pushes quiescent AMPs to proliferation.
Collapse
|
13
|
Regulation of Notch Signaling in Drosophila melanogaster: The Role of the Heterogeneous Nuclear Ribonucleoprotein Hrp48 and Deltex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1227:95-105. [DOI: 10.1007/978-3-030-36422-9_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Agnusdei V, Minuzzo S, Pinazza M, Gasparini A, Pezzè L, Amaro AA, Pasqualini L, Bianco PD, Tognon M, Frasson C, Palumbo P, Ciribilli Y, Pfeffer U, Carella M, Amadori A, Indraccolo S. Dissecting molecular mechanisms of resistance to NOTCH1-targeted therapy in T-cell acute lymphoblastic leukemia xenografts. Haematologica 2019; 105:1317-1328. [PMID: 31467126 PMCID: PMC7193477 DOI: 10.3324/haematol.2019.217687] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 08/26/2019] [Indexed: 12/15/2022] Open
Abstract
Despite substantial progress in treatment of T-cell acute lymphoblastic leukemia (T-ALL), mortality remains relatively high, mainly due to primary or acquired resistance to chemotherapy. Further improvements in survival demand better understanding of T-ALL biology and development of new therapeutic strategies. The Notch pathway has been involved in the pathogenesis of this disease and various therapeutic strategies are currently under development, including selective targeting of NOTCH receptors by inhibitory antibodies. We previously demonstrated that the NOTCH1-specific neutralizing antibody OMP52M51 prolongs survival in TALL patient-derived xenografts bearing NOTCH1/FBW7 mutations. However, acquired resistance to OMP52M51 eventually developed and we used patient-derived xenografts models to investigate this phenomenon. Multi-level molecular characterization of T-ALL cells resistant to NOTCH1 blockade and serial transplantation experiments uncovered heterogeneous types of resistance, not previously reported with other Notch inhibitors. In one model, resistance appeared after 156 days of treatment, it was stable and associated with loss of Notch inhibition, reduced mutational load and acquired NOTCH1 mutations potentially affecting the stability of the heterodimerization domain. Conversely, in another model resistance developed after only 43 days of treatment despite persistent down-regulation of Notch signaling and it was accompanied by modulation of lipid metabolism and reduced surface expression of NOTCH1. Our findings shed light on heterogeneous mechanisms adopted by the tumor to evade NOTCH1 blockade and support clinical implementation of antibody-based target therapy for Notch-addicted tumors.
Collapse
Affiliation(s)
| | - Sonia Minuzzo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova
| | | | | | - Laura Pezzè
- Laboratory of Molecular Cancer Genetics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento
| | | | | | | | | | - Chiara Frasson
- Istituto di Ricerca Pediatrica, Fondazione Città della Speranza, Padova
| | - Pietro Palumbo
- Medical Genetics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Yari Ciribilli
- Laboratory of Molecular Cancer Genetics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento
| | - Ulrich Pfeffer
- Tumor Epigenetics, IRCCS Ospedale Policlinico San Martino, Genova
| | - Massimo Carella
- Medical Genetics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Alberto Amadori
- Istituto Oncologico Veneto IOV - IRCCS, Padova.,Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova
| | | |
Collapse
|
15
|
Driessen RCH, Stassen OMJA, Sjöqvist M, Suarez Rodriguez F, Grolleman J, Bouten CVC, Sahlgren CM. Shear stress induces expression, intracellular reorganization and enhanced Notch activation potential of Jagged1. Integr Biol (Camb) 2018; 10:719-726. [PMID: 30328449 PMCID: PMC6256362 DOI: 10.1039/c8ib00036k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/15/2018] [Indexed: 01/20/2023]
Abstract
Notch signaling and blood flow regulate vascular formation and maturation, but how shear stress affects the different components of the Notch pathway in endothelial cells is poorly understood. We show that laminar shear stress results in a ligand specific gene expression profile in endothelial cells (HUVEC). JAG1 expression increases while DLL4 expression decreases. Jagged1 shows a unique response by clustering intracellularly six to nine hours after the onset of flow. The formation of the Jagged1 clusters requires protein production, ER export and endocytosis. Clustering is associated with reduced membrane levels but is not affected by Notch signaling activity. Jagged1 relocalization is reversible, the clusters disappear and membrane levels increase upon removal of shear stress. We further demonstrate that the signaling potential of endothelial cells is enhanced after exposure to shear stress. Together we demonstrate a Jagged1 specific shear stress response for Notch signaling in endothelial cells.
Collapse
Affiliation(s)
- R. C. H. Driessen
- Department of Biomedical Engineering, Eindhoven University of Technology
,
Eindhoven
, The Netherlands
.
- Institute for Complex Molecular Systems, Eindhoven University of Technology
,
Eindhoven
, The Netherlands
| | - O. M. J. A. Stassen
- Department of Biomedical Engineering, Eindhoven University of Technology
,
Eindhoven
, The Netherlands
.
| | - M. Sjöqvist
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University
,
Turku
, Finland
| | - F. Suarez Rodriguez
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University
,
Turku
, Finland
| | - J. Grolleman
- Department of Biomedical Engineering, Eindhoven University of Technology
,
Eindhoven
, The Netherlands
.
| | - C. V. C. Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology
,
Eindhoven
, The Netherlands
.
- Institute for Complex Molecular Systems, Eindhoven University of Technology
,
Eindhoven
, The Netherlands
| | - C. M. Sahlgren
- Department of Biomedical Engineering, Eindhoven University of Technology
,
Eindhoven
, The Netherlands
.
- Institute for Complex Molecular Systems, Eindhoven University of Technology
,
Eindhoven
, The Netherlands
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University
,
Turku
, Finland
| |
Collapse
|
16
|
Dutta D, Singh A, Paul MS, Sharma V, Mutsuddi M, Mukherjee A. Deltex interacts with Eiger and consequently influences the cell death in Drosophila melanogaster. Cell Signal 2018; 49:17-29. [DOI: 10.1016/j.cellsig.2018.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/25/2018] [Accepted: 05/13/2018] [Indexed: 10/16/2022]
|
17
|
Attenuated Notch signaling in schizophrenia and bipolar disorder. Sci Rep 2018; 8:5349. [PMID: 29593239 PMCID: PMC5871764 DOI: 10.1038/s41598-018-23703-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/15/2018] [Indexed: 12/11/2022] Open
Abstract
The Notch signaling pathway plays a crucial role in neurodevelopment and in adult brain homeostasis. We aimed to further investigate Notch pathway activity in bipolar disorder (BD) and schizophrenia (SCZ) by conducting a pathway analysis. We measured plasma levels of Notch ligands (DLL1 and DLK1) using enzyme immunoassays in a large sample of patients (SCZ n = 551, BD n = 246) and healthy controls (HC n = 639). We also determined Notch pathway related gene expression levels by microarray analyses from whole blood in a subsample (SCZ n = 338, BD n = 241 and HC n = 263). We found significantly elevated Notch ligand levels in plasma in both SCZ and BD compared to HC. Significant gene expression findings included increased levels of RFNG and KAT2B (p < 0.001), and decreased levels of PSEN1 and CREBBP in both patient groups (p < 0.001). RBPJ was significantly lower in SCZ vs HC (p < 0.001), and patients using lithium had higher levels of RBPJ (p < 0.001). We provide evidence of altered Notch signaling in both SCZ and BD compared to HC, and suggest that Notch signaling pathway may be disturbed in these disorders. Lithium may ameliorate aberrant Notch signaling. We propose that drugs targeting Notch pathway could be relevant in the treatment of psychotic disorders.
Collapse
|
18
|
Endocytic Trafficking of the Notch Receptor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:99-122. [DOI: 10.1007/978-3-319-89512-3_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Abstract
The Notch signalling cascade is an evolutionarily conserved pathway that has a crucial role in regulating development and homeostasis in various tissues. The cellular processes and events that it controls are diverse, and continued investigation over recent decades has revealed how the role of Notch signalling is multifaceted and highly context dependent. Consistent with the far-reaching impact that Notch has on development and homeostasis, aberrant activity of the pathway is also linked to the initiation and progression of several malignancies, and Notch can in fact be either oncogenic or tumour suppressive depending on the tissue and cellular context. The Notch pathway therefore represents an important target for therapeutic agents designed to treat many types of cancer. In this Review, we focus on the latest developments relating specifically to the tumour-suppressor activity of Notch signalling and discuss the potential mechanisms by which Notch can inhibit carcinogenesis in various tissues. Potential therapeutic strategies aimed at restoring or augmenting Notch-mediated tumour suppression will also be highlighted.
Collapse
Affiliation(s)
- Craig S Nowell
- CMU, Department for Pathology and Immunology, University of Geneva, Rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Freddy Radtke
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, Lausanne, Vaud 1015, Switzerland
| |
Collapse
|
20
|
Nemetschke L, Knust E. Drosophila Crumbs prevents ectopic Notch activation in developing wings by inhibiting ligand-independent endocytosis. Development 2016; 143:4543-4553. [DOI: 10.1242/dev.141762] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/21/2016] [Indexed: 12/13/2022]
Abstract
Many signalling components are apically restricted in epithelial cells, and receptor localisation and abundance is key for morphogenesis and tissue homeostasis. Hence, controlling apicobasal epithelial polarity is crucial for proper signalling. Notch is a ubiquitously expressed, apically localised receptor, which performs a plethora of functions; therefore, its activity has to be tightly regulated. Here, we show that Drosophila Crumbs, an evolutionarily conserved polarity determinant, prevents Notch endocytosis in developing wings through direct interaction between the two proteins. Notch endocytosis in the absence of Crumbs results in the activation of the ligand-independent, Deltex-dependent Notch signalling pathway, and does not require the ligands Delta and Serrate or γ-secretase activity. This function of Crumbs is not due to general defects in apicobasal polarity, as localisation of other apical proteins is unaffected. Our data reveal a mechanism to explain how Crumbs directly controls localisation and trafficking of the potent Notch receptor, and adds yet another aspect of Crumbs regulation in Notch pathway activity. Furthermore, our data highlight a close link between the apical determinant Crumbs, receptor trafficking and tissue homeostasis.
Collapse
Affiliation(s)
- Linda Nemetschke
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Elisabeth Knust
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| |
Collapse
|
21
|
Zhou W, He Q, Zhang C, He X, Cui Z, Liu F, Li W. BLOS2 negatively regulates Notch signaling during neural and hematopoietic stem and progenitor cell development. eLife 2016; 5. [PMID: 27719760 PMCID: PMC5094856 DOI: 10.7554/elife.18108] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/04/2016] [Indexed: 12/28/2022] Open
Abstract
Notch signaling plays a crucial role in controling the proliferation and differentiation of stem and progenitor cells during embryogenesis or organogenesis, but its regulation is incompletely understood. BLOS2, encoded by the Bloc1s2 gene, is a shared subunit of two lysosomal trafficking complexes, biogenesis of lysosome-related organelles complex-1 (BLOC-1) and BLOC-1-related complex (BORC). Bloc1s2-/- mice were embryonic lethal and exhibited defects in cortical development and hematopoiesis. Loss of BLOS2 resulted in elevated Notch signaling, which consequently increased the proliferation of neural progenitor cells and inhibited neuronal differentiation in cortices. Likewise, ablation of bloc1s2 in zebrafish or mice led to increased hematopoietic stem and progenitor cell production in the aorta-gonad-mesonephros region. BLOS2 physically interacted with Notch1 in endo-lysosomal trafficking of Notch1. Our findings suggest that BLOS2 is a novel negative player in regulating Notch signaling through lysosomal trafficking to control multiple stem and progenitor cell homeostasis in vertebrates.
Collapse
Affiliation(s)
- Wenwen Zhou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiuping He
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chunxia Zhang
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zongbin Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Beijing, China
| | - Feng Liu
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Center for Medical Genetics, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Beijing, China.,Beijing Pediatric Research Institute, Beijing, China
| |
Collapse
|
22
|
Pasut A, Chang NC, Gurriaran-Rodriguez U, Faulkes S, Yin H, Lacaria M, Ming H, Rudnicki MA. Notch Signaling Rescues Loss of Satellite Cells Lacking Pax7 and Promotes Brown Adipogenic Differentiation. Cell Rep 2016; 16:333-343. [PMID: 27346341 DOI: 10.1016/j.celrep.2016.06.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 04/22/2016] [Accepted: 05/21/2016] [Indexed: 12/22/2022] Open
Abstract
Pax7 is a nodal transcription factor that is essential for regulating the maintenance, expansion, and myogenic identity of satellite cells during both neonatal and adult myogenesis. Deletion of Pax7 results in loss of satellite cells and impaired muscle regeneration. Here, we show that ectopic expression of the constitutively active intracellular domain of Notch1 (NICD1) rescues the loss of Pax7-deficient satellite cells and restores their proliferative potential. Strikingly NICD1-expressing satellite cells do not undergo myogenic differentiation and instead acquire a brown adipogenic fate both in vivo and in vitro. NICD-expressing Pax7(-/-) satellite cells fail to upregulate MyoD and instead express the brown adipogenic marker PRDM16. Overall, these results show that Notch1 activation compensates for the loss of Pax7 in the quiescent state and acts as a molecular switch to promote brown adipogenesis in adult skeletal muscle.
Collapse
Affiliation(s)
- Alessandra Pasut
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H8M5, Canada
| | - Natasha C Chang
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada
| | - Uxia Gurriaran-Rodriguez
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada
| | - Sharlene Faulkes
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada
| | - Hang Yin
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada
| | - Melanie Lacaria
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada
| | - Hong Ming
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada
| | - Michael A Rudnicki
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H8M5, Canada.
| |
Collapse
|
23
|
Jean-Charles PY, Freedman NJ, Shenoy SK. Chapter Nine - Cellular Roles of Beta-Arrestins as Substrates and Adaptors of Ubiquitination and Deubiquitination. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:339-69. [PMID: 27378762 DOI: 10.1016/bs.pmbts.2016.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
β-Arrestin1 and β-arrestin2 are homologous adaptor proteins that are ubiquitously expressed in mammalian cells. They belong to a four-member family of arrestins that regulate the vast family of seven-transmembrane receptors that couple to heterotrimeric G proteins (7TMRs or GPCRs), and that modulate 7TMR signal transduction. β-Arrestins were originally identified in the context of signal inhibition via the 7TMRs because they competed with and thereby blocked G protein coupling to 7TMRs. Currently, in addition to their role as desensitizers of signaling, β-arrestins are appreciated as multifunctional adaptors that mediate trafficking and signal transduction of not only 7TMRs, but a growing list of additional receptors, ion channels, and nonreceptor proteins. β-Arrestins' interactions with their multifarious partners are based on their dynamic conformational states rather than particular domain-domain interactions. β-Arrestins adopt activated conformations upon 7TMR association. In addition, β-arrestins undergo various posttranslational modifications that are choreographed by activated 7TMRs, including phosphorylation, ubiquitination, acetylation, nitrosylation, and SUMOylation. Ubiquitination of β-arrestins is critical for their high-affinity interaction with 7TMRs as well as with endocytic adaptor proteins and signaling kinases. β-Arrestins also function as critical adaptors for ubiquitination and deubiquitination of various cellular proteins, and thereby affect the longevity of signal transducers and the intensity of signal transmission.
Collapse
Affiliation(s)
- P-Y Jean-Charles
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, United States
| | - N J Freedman
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, United States; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States
| | - S K Shenoy
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, United States; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States.
| |
Collapse
|
24
|
Li H, Koo Y, Mao X, Sifuentes-Dominguez L, Morris LL, Jia D, Miyata N, Faulkner RA, van Deursen JM, Vooijs M, Billadeau DD, van de Sluis B, Cleaver O, Burstein E. Endosomal sorting of Notch receptors through COMMD9-dependent pathways modulates Notch signaling. J Cell Biol 2016; 211:605-17. [PMID: 26553930 PMCID: PMC4639872 DOI: 10.1083/jcb.201505108] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
COMMD protein family member COMMD9 regulates the endosome to plasma membrane trafficking of Notch through a unique COMMD–CCDC22–CCDC93 (CCC) complex. Notch family members are transmembrane receptors that mediate essential developmental programs. Upon ligand binding, a proteolytic event releases the intracellular domain of Notch, which translocates to the nucleus to regulate gene transcription. In addition, Notch trafficking across the endolysosomal system is critical in its regulation. In this study we report that Notch recycling to the cell surface is dependent on the COMMD–CCDC22–CCDC93 (CCC) complex, a recently identified regulator of endosomal trafficking. Disruption in this system leads to intracellular accumulation of Notch2 and concomitant reduction in Notch signaling. Interestingly, among the 10 copper metabolism MURR1 domain containing (COMMD) family members that can associate with the CCC complex, only COMMD9 and its binding partner, COMMD5, have substantial effects on Notch. Furthermore, Commd9 deletion in mice leads to embryonic lethality and complex cardiovascular alterations that bear hallmarks of Notch deficiency. Altogether, these studies highlight that the CCC complex controls Notch activation by modulating its intracellular trafficking and demonstrate cargo-specific effects for members of the COMMD protein family.
Collapse
Affiliation(s)
- Haiying Li
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Yeon Koo
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Xicheng Mao
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | | | - Lindsey L Morris
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Da Jia
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Naoteru Miyata
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Rebecca A Faulkner
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jan M van Deursen
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905 Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905
| | - Marc Vooijs
- Department of Radiotherapy (MAASTRO)/GROW-School for Developmental Biology and Oncology, Maastricht University, 6229 ER Maastricht, Netherlands
| | - Daniel D Billadeau
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 Department of Immunology, Mayo Clinic, Rochester, MN 55905
| | - Bart van de Sluis
- Molecular Genetics Section - Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, Netherlands
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ezra Burstein
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390 Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
25
|
Jean-Charles PY, Rajiv V, Shenoy SK. Ubiquitin-Related Roles of β-Arrestins in Endocytic Trafficking and Signal Transduction. J Cell Physiol 2016; 231:2071-80. [PMID: 26790995 DOI: 10.1002/jcp.25317] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 12/25/2022]
Abstract
The non-visual arrestins, β-arrestin1, and β-arrestin2 were originally identified as proteins that bind to seven-transmembrane receptors (7TMRs, also called G protein-coupled receptors, GPCRs) and block heterotrimeric G protein activation, thus leading to desensitization of transmembrane signaling. However, as subsequent discoveries have continually demonstrated, their functionality is not constrained to desensitization. They are now recognized for their critical roles in mediating intracellular trafficking of 7TMRs, growth factor receptors, ion transporters, ion channels, nuclear receptors, and non-receptor proteins. Additionally, they function as crucial mediators of ubiquitination of 7TMRs as well as other receptors and non-receptor proteins. Recently, emerging studies suggest that a class of proteins with predicted structural features of β-arrestins regulate substrate ubiquitination in yeast and higher mammals, lending support to the idea that the adaptor role of β-arrestins in protein ubiquitination is evolutionarily conserved. β-arrestins also function as scaffolds for kinases and transduce signals from 7TMRs through pathways that do not require G protein activation. Remarkably, the endocytic and scaffolding functions of β-arrestin are intertwined with its ubiquitination status; the dynamic and site specific ubiquitination on β-arrestin plays a critical role in stabilizing β-arrestin-7TMR association and the formation of signalosomes. This review summarizes the current findings on ubiquitin-dependent regulation of 7TMRs as well as β-arrestins and the potential role of reversible ubiquitination as a "biological switch" in signal transduction. J. Cell. Physiol. 231: 2071-2080, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Vishwaesh Rajiv
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina
| | - Sudha K Shenoy
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina.,Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
26
|
Palmer WH, Deng WM. Ligand-Independent Mechanisms of Notch Activity. Trends Cell Biol 2015; 25:697-707. [PMID: 26437585 DOI: 10.1016/j.tcb.2015.07.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/10/2015] [Accepted: 07/29/2015] [Indexed: 10/23/2022]
Abstract
Interaction between the Notch receptor and Delta-Serrate-Lag2 (DSL) ligands is generally deemed to be the starting point of the Notch signaling cascade, after which, Notch is cleaved and the intracellular domain acts as a transcriptional coactivator. By contrast, Notch protein can become activated independent of ligand stimulus through recently identified endosomal trafficking routes as well as through aberrant regulation of Notch components during Notch trafficking, ubiquitination, and degradation. In this review, we summarize genes implicated in ligand-independent Notch activity and remark on the mechanisms by which this process could occur.
Collapse
Affiliation(s)
- William Hunt Palmer
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA; Current Address: Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA.
| |
Collapse
|
27
|
Palmer WH, Jia D, Deng WM. Cis-interactions between Notch and its ligands block ligand-independent Notch activity. eLife 2014; 3. [PMID: 25486593 PMCID: PMC4286723 DOI: 10.7554/elife.04415] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/06/2014] [Indexed: 01/01/2023] Open
Abstract
The Notch pathway is integrated into numerous developmental processes and therefore is fine-tuned on many levels, including receptor production, endocytosis, and degradation. Notch is further characterized by a twofold relationship with its Delta-Serrate (DSL) ligands, as ligands from opposing cells (trans-ligands) activate Notch, whereas ligands expressed in the same cell (cis-ligands) inhibit signaling. We show that cells without both cis- and trans-ligands can mediate Notch-dependent developmental events during Drosophila oogenesis, indicating ligand-independent Notch activity occurs when the receptor is free of cis- and trans-ligands. Furthermore, cis-ligands can reduce Notch activity in endogenous and genetically induced situations of elevated trans-ligand-independent Notch signaling. We conclude that cis-expressed ligands exert their repressive effect on Notch signaling in cases of trans-ligand-independent activation, and propose a new function of cis-inhibition which buffers cells against accidental Notch activity. DOI:http://dx.doi.org/10.7554/eLife.04415.001 Many biological processes require cells to send messages to one another. Typically, this is achieved when molecules are released from one cell and make contact with companion molecules on another cell. This triggers a chemical or biological reaction in the receiving cell. One of the most common examples of this is the Notch pathway, which is used throughout the animal kingdom and plays an important role in helping cells and embryos to develop. The Notch protein itself is a ‘receptor’ protein that is embedded in the surface of a cell, and relays signals from outside the cell to activate certain genes inside the cell. In fruit flies, two proteins called Serrate and Delta act as ‘ligands’ for Notch—by binding to Notch, they can change how this receptor works. If Serrate or Delta are present on the outside of one cell, they can activate Notch (and hence the Notch signaling pathway) in an adjacent cell. However, if the Serrate or Delta ligands are present on the surface of the same cell as Notch they turn the receptor off, rather than activate it. Notch can also work without being activated by Serrate or Delta, but whether the ligands can inhibit this ‘ligand-independent’ Notch activation if they are on the surface of the same cell as the Notch receptor was unknown. Palmer et al. study Notch signaling in the fruit fly equivalent of the ovary, in cells that are naturally deficient in Serrate and from which Delta was artificially removed. The Notch protein was activated when these ligands were not present. Furthermore, the developmental processes that are activated by Notch were able to proceed as normal when triggered by ligand-independent Notch signaling. In total, Palmer et al. investigated three different types of fruit fly cell, and found that ligand-independent Notch signaling can occur in all of them. Reintroducing Delta to the same cell as Notch turns the receptor off, suggesting that ligands on the surface of the same cell as the receptor can inhibit ligand-independent Notch activity. Many genetic diseases and cancers have been linked to Notch being activated when it should not be; therefore, understanding how Notch is controlled could help guide the development of new treatments for these conditions. DOI:http://dx.doi.org/10.7554/eLife.04415.002
Collapse
Affiliation(s)
- William Hunt Palmer
- Department of Biological Science, Florida State University, Tallahassee, United States
| | - Dongyu Jia
- Department of Biological Science, Florida State University, Tallahassee, United States
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, United States
| |
Collapse
|
28
|
Formosa-Jordan P, Ibañes M. Competition in notch signaling with cis enriches cell fate decisions. PLoS One 2014; 9:e95744. [PMID: 24781918 PMCID: PMC4004554 DOI: 10.1371/journal.pone.0095744] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 03/31/2014] [Indexed: 12/05/2022] Open
Abstract
Notch signaling is involved in cell fate choices during the embryonic development of Metazoa. Commonly, Notch signaling arises from the binding of the Notch receptor to its ligands in adjacent cells driving cell-to-cell communication. Yet, cell-autonomous control of Notch signaling through both ligand-dependent and ligand-independent mechanisms is known to occur as well. Examples include Notch signaling arising in the absence of ligand binding, and cis-inhibition of Notch signaling by titration of the Notch receptor upon binding to its ligands within a single cell. Increasing experimental evidences support that the binding of the Notch receptor with its ligands within a cell (cis-interactions) can also trigger a cell-autonomous Notch signal (cis-signaling), whose potential effects on cell fate decisions and patterning remain poorly understood. To address this question, herein we mathematically and computationally investigate the cell states arising from the combination of cis-signaling with additional Notch signaling sources, which are either cell-autonomous or involve cell-to-cell communication. Our study shows that cis-signaling can switch from driving cis-activation to effectively perform cis-inhibition and identifies under which conditions this switch occurs. This switch relies on the competition between Notch signaling sources, which share the same receptor but differ in their signaling efficiency. We propose that the role of cis-interactions and their signaling on fine-grained patterning and cell fate decisions is dependent on whether they drive cis-inhibition or cis-activation, which could be controlled during development. Specifically, cis-inhibition and not cis-activation facilitates patterning and enriches it by modulating the ratio of cells in the high-ligand expression state, by enabling additional periodic patterns like stripes and by allowing localized patterning highly sensitive to the precursor state and cell-autonomous bistability. Our study exemplifies the complexity of regulations when multiple signaling sources share the same receptor and provides the tools for their characterization.
Collapse
Affiliation(s)
- Pau Formosa-Jordan
- Dept. Estructura i Constituents de la Matèria, Facultat de Física, Universitat de Barcelona, Barcelona, Spain
| | - Marta Ibañes
- Dept. Estructura i Constituents de la Matèria, Facultat de Física, Universitat de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
29
|
Abstract
Notch signaling is probably the most widely used intercellular communication pathway. The Notch mutant in the fruit fly Drosophila melanogaster was isolated about 100 years ago at the dawn of genetics. Since then, research on Notch and its related genes in flies, worms, mice, and human has led to the establishment of an evolutionarily conserved signaling pathway, the Notch signaling pathway. In the past few decades, molecular cloning of the Notch signaling components as well as genetic, cell biological, biochemical, structural, and bioinformatic approaches have uncovered the basic molecular logic of the pathway. In addition, genetic screens and systems approaches have led to the expansion of the list of genes that interact and fine-tune the pathway in a context specific manner. Furthermore, recent human genetic and genomic studies have led to the discovery that Notch plays a role in numerous diseases such as congenital disorders, stroke, and especially cancer. Pharmacological studies are actively pursuing key components of the pathway as drug targets for potential therapy. In this chapter, we will provide a brief historical overview of Notch signaling research and discuss the basic principles of Notch signaling, focusing on the unique features of this pathway when compared to other signaling pathways. Further studies to understand and manipulate Notch signaling in vivo in model organisms and in clinical settings will require a combination of a number of different approaches that are discussed throughout this book.
Collapse
|
30
|
Yang B, Tang Q, Post J, Zhou H, Huang XB, Zhang XD, Wang Q, Sun YM, Fan FY. Effect of radiation on the Notch signaling pathway in osteoblasts. Int J Mol Med 2013; 31:698-706. [PMID: 23340672 DOI: 10.3892/ijmm.2013.1255] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 12/28/2012] [Indexed: 11/06/2022] Open
Abstract
Notch signaling has been shown to be important in osteoblast differentiation. Therapeutic radiation has been shown to alter the skeletal system, yet little information is available on the changes in Notch signaling in irradiated osteoblasts. The purpose of this study was to analyze the effect of radiation therapy with 2 and 4 Gy on Notch signaling in osteoblasts. In order to assess the radiation damage on osteoblast differentiation, total RNA and protein were collected three days after exposure to radiation. The effects of radiation on Notch signaling at the early and terminal stages of osteoblastic MC3T3-E1 cell differentiation was analyzed by qRT-PCR and western blot analysis. Our study applied a previously established method to induce MC3T3-E1 cell differentiation into osteoblasts and osteoblast precursors. Our results showed that the expression of Notch receptors (Notch1-4), ligands (Jagged1, Jagged2 and Delta1), target of Notch signaling (Hes1) and markers (ALP, M-CSF, RANKL and OPG) were altered following 2 and 4 Gy of irradiation. The present research did not indicate a strong relationship between Notch1 regulation and suppression of osteoblast differentiation. We found Hes1 may play a role in the radiation effect on osteoblast differentiation. Our results indicate that radiated osteoblast precursors and osteoblasts promoted osteoclast differentiation and proliferation.
Collapse
Affiliation(s)
- Bing Yang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|