1
|
Moreno-Santillán DD, Machain-Williams C, Hernández-Montes G, Ortega J. Transcriptomic analysis elucidates evolution of the major histocompatibility complex class I in neotropical bats. J Mammal 2022. [DOI: 10.1093/jmammal/gyac052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
The Order Chiroptera comprises more than 1,400 species, each with its evolutionary history and under unique selective pressures, among which are the host–pathogen interactions. Bats have coped with complex interactions with a broad spectrum of microbes throughout their evolutionary history, prompting the development of unique adaptations that allow them to co-exist with microbes with pathogenic potential more efficiently than other nonadapted species. In this sense, an extraordinary immune system with unique adaptations has been hypothesized in bats. To explore this, we focused on the major histocompatibility complex (MHC), which plays a crucial role in pathogen recognition and presentation to T cells to trigger the adaptive immune response. We analyzed MHC class I transcripts in five species, each from different families of New World bats. From RNA-seq data, we assembled a partial region of the MHC-I comprising the α1 and α2 domains, which are responsible for peptide binding and recognition. We described five putative functional variants, two of which have two independent insertions at the α2 domain. Our results suggest that this insertion appeared after the divergence of the order Chiroptera and may have an adaptive function in the defense against intracellular pathogens, providing evidence of positive selection and trans-specific polymorphism on the peptide-binding sites.
Collapse
Affiliation(s)
- Diana D Moreno-Santillán
- Department of Integrative Biology, University of California , Berkeley, California 94720-3200 , USA
| | - Carlos Machain-Williams
- Universidad Autónoma de Yucatán, Laboratorio de Arbovirología , Mérida, Yucatán 97000 , México
| | - Georgina Hernández-Montes
- Universidad Nacional Autónoma de México, Red de apoyo a la Investigación, Coordinación de la Investigación Científica entre Universidad y Red de Apoyo , Ciudad de México 14080 , México
| | - Jorge Ortega
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Departamento de Zoología, Posgrado en Ciencias Quimicobiológicas , Ciudad de México 11350 , México
| |
Collapse
|
2
|
Sarri CA, Giannoulis T, Moutou KA, Mamuris Z. HLA class II peptide-binding-region analysis reveals funneling of polymorphism in action. Immunol Lett 2021; 238:75-95. [PMID: 34329645 DOI: 10.1016/j.imlet.2021.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/05/2021] [Accepted: 07/17/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND HLA-class II proteins hold important roles in key physiological processes. The purpose of this study was to compile all class II alleles reported in human population and investigate patterns in pocket variants and their combinations, focusing on the peptide-binding region (PBR). METHODS For this purpose, all protein sequences of DPA1, DQA1, DPB1, DQB1 and DRB1 were selected and filtered, in order to have full PBR sequences. Proportional representation was used for pocket variants while population data were also used. RESULTS All pocket variants and PBR sequences were retrieved and analyzed based on the preference of amino acids and their properties in all pocket positions. The observed number of pocket variants combinations was much lower than the possible inferred, suggesting that PBR formation is under strict funneling. Also, although class II proteins are very polymorphic, in the majority of the reported alleles in all populations, a significantly less polymorphic pocket core was found. CONCLUSIONS Pocket variability of five HLA class II proteins was studied revealing favorable properties of each protein. The actual PBR sequences of HLA class II proteins appear to be governed by restrictions that lead to the establishment of only a fraction of the possible combinations and the polymorphism recorded is the result of intense funneling based on function.
Collapse
Affiliation(s)
- Constantina A Sarri
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece
| | - Themistoklis Giannoulis
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece; Department of Animal Science, University of Thessaly, Trikallon 224, 43100 Karditsa, Greece
| | - Katerina A Moutou
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece
| | - Zissis Mamuris
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece.
| |
Collapse
|
3
|
Dawkins RL, Lloyd SS. MHC Genomics and Disease: Looking Back to Go Forward. Cells 2019; 8:cells8090944. [PMID: 31438577 PMCID: PMC6769595 DOI: 10.3390/cells8090944] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
Ancestral haplotypes are conserved but extremely polymorphic kilobase sequences, which have been faithfully inherited over at least hundreds of generations in spite of migration and admixture. They carry susceptibility and resistance to diverse diseases, including deficiencies of CYP21 hydroxylase (47.1) and complement components (18.1), as well as numerous autoimmune diseases (8.1). The haplotypes are detected by segregation within ethnic groups rather than by SNPs and GWAS. Susceptibility to some other diseases is carried by specific alleles shared by multiple ancestral haplotypes, e.g., ankylosing spondylitis and narcolepsy. The difference between these two types of association may explain the disappointment with many GWAS. Here we propose a pathway for combining the two different approaches. SNP typing is most useful after the conserved ancestral haplotypes have been defined by other methods.
Collapse
Affiliation(s)
- Roger L Dawkins
- Centre for Innovation in Agriculture, Murdoch University and C Y O'Connor ERADE Village Foundation, North Dandalup 6207, Western Australia, Australia.
| | - Sally S Lloyd
- Centre for Innovation in Agriculture, Murdoch University and C Y O'Connor ERADE Village Foundation, North Dandalup 6207, Western Australia, Australia
| |
Collapse
|
4
|
Gonzalez-Quevedo C, Davies RG, Phillips KP, Spurgin LG, Richardson DS. Landscape-scale variation in an anthropogenic factor shapes immune gene variation within a wild population. Mol Ecol 2016; 25:4234-46. [PMID: 27411090 DOI: 10.1111/mec.13759] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/23/2016] [Accepted: 07/05/2016] [Indexed: 02/03/2023]
Abstract
Understanding the spatial scale at which selection acts upon adaptive genetic variation in natural populations is fundamental to our understanding of evolutionary ecology, and has important ramifications for conservation. The environmental factors to which individuals of a population are exposed can vary at fine spatial scales, potentially generating localized patterns of adaptation. Here, we compared patterns of neutral and major histocompatibility complex (MHC) variation within an island population of Berthelot's pipit (Anthus berthelotii) to assess whether landscape-level differences in pathogen-mediated selection generate fine-scale spatial structuring in these immune genes. Specifically, we tested for spatial associations between the distribution of avian malaria, and the factors previously shown to influence that distribution, and MHC variation within resident individuals. Although we found no overall genetic structure across the population for either neutral or MHC loci, we did find localized associations between environmental factors and MHC variation. One MHC class I allele (ANBE48) was directly associated with malaria infection risk, while the presence of the ANBE48 and ANBE38 alleles within individuals correlated (positively and negatively, respectively) with distance to the nearest poultry farm, an anthropogenic factor previously shown to be an important determinant of disease distribution in the study population. Our findings highlight the importance of considering small spatial scales when studying the patterns and processes involved in evolution at adaptive loci.
Collapse
Affiliation(s)
- Catalina Gonzalez-Quevedo
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,Grupo Ecología y Evolución de Vertebrados, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia
| | - Richard G Davies
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Karl P Phillips
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,Evolutionary Biology Group, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
5
|
Gillingham MAF, Courtiol A, Teixeira M, Galan M, Bechet A, Cezilly F. Evidence of gene orthology and trans-species polymorphism, but not of parallel evolution, despite high levels of concerted evolution in the major histocompatibility complex of flamingo species. J Evol Biol 2015; 29:438-54. [DOI: 10.1111/jeb.12798] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 11/12/2015] [Accepted: 11/15/2015] [Indexed: 11/30/2022]
Affiliation(s)
- M. A. F. Gillingham
- Equipe Ecologie Evolutive; UMR CNRS 6282 Biogéosciences; Université de Bourgogne; Dijon France
- Centre de Recherche de la Tour du Valat; Arles France
- Department of Evolutionary Genetics; Leibniz Institute for Zoo and Wildlife Research; Berlin Germany
- Institute of Evolutionary Ecology and Conservation Genomics; University of Ulm; Ulm Germany
| | - A. Courtiol
- Department of Evolutionary Genetics; Leibniz Institute for Zoo and Wildlife Research; Berlin Germany
| | - M. Teixeira
- Equipe Ecologie Evolutive; UMR CNRS 6282 Biogéosciences; Université de Bourgogne; Dijon France
| | - M. Galan
- UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro); INRA EFPA; Montferrier-sur-Lez Cedex France
| | - A. Bechet
- Centre de Recherche de la Tour du Valat; Arles France
| | - F. Cezilly
- Equipe Ecologie Evolutive; UMR CNRS 6282 Biogéosciences; Université de Bourgogne; Dijon France
| |
Collapse
|
6
|
454 screening of individual MHC variation in an endemic island passerine. Immunogenetics 2014; 67:149-62. [PMID: 25515684 PMCID: PMC4325181 DOI: 10.1007/s00251-014-0822-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/28/2014] [Indexed: 11/03/2022]
Abstract
Genes of the major histocompatibility complex (MHC) code for receptors that are central to the adaptive immune response of vertebrates. These genes are therefore important genetic markers with which to study adaptive genetic variation in the wild. Next-generation sequencing (NGS) has increasingly been used in the last decade to genotype the MHC. However, NGS methods are highly prone to sequencing errors, and although several methodologies have been proposed to deal with this, until recently there have been no standard guidelines for the validation of putative MHC alleles. In this study, we used the 454 NGS platform to screen MHC class I exon 3 variation in a population of the island endemic Berthelot's pipit (Anthus berthelotii). We were able to characterise MHC genotypes across 309 individuals with high levels of repeatability. We were also able to determine alleles that had low amplification efficiencies, whose identification within individuals may thus be less reliable. At the population level we found lower levels of MHC diversity in Berthelot's pipit than in its widespread continental sister species the tawny pipit (Anthus campestris), and observed trans-species polymorphism. Using the sequence data, we identified signatures of gene conversion and evidence of maintenance of functionally divergent alleles in Berthelot's pipit. We also detected positive selection at 10 codons. The present study therefore shows that we have an efficient method for screening individual MHC variation across large datasets in Berthelot's pipit, and provides data that can be used in future studies investigating spatio-temporal patterns and scales of selection on the MHC.
Collapse
|
7
|
Lighten J, van Oosterhout C, Bentzen P. Critical review of NGS analyses for de novo genotyping multigene families. Mol Ecol 2014; 23:3957-72. [DOI: 10.1111/mec.12843] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/08/2014] [Accepted: 06/17/2014] [Indexed: 01/16/2023]
Affiliation(s)
- Jackie Lighten
- Department of Biology; Marine Gene Probe Laboratory; Dalhousie University; Halifax Nova Scotia Canada
| | - Cock van Oosterhout
- School of Environmental Sciences; University of East Anglia; Norwich Research Park; Norwich UK
| | - Paul Bentzen
- Department of Biology; Marine Gene Probe Laboratory; Dalhousie University; Halifax Nova Scotia Canada
| |
Collapse
|
8
|
Yao YF, Dai QX, Li J, Ni QY, Zhang MW, Xu HL. Genetic diversity and differentiation of the rhesus macaque (Macaca mulatta) population in western Sichuan, China, based on the second exon of the major histocompatibility complex class II DQB (MhcMamu-DQB1) alleles. BMC Evol Biol 2014; 14:130. [PMID: 24930092 PMCID: PMC4070090 DOI: 10.1186/1471-2148-14-130] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 06/02/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rhesus macaques living in western Sichuan, China, have been separated into several isolated populations due to habitat fragmentation. Previous studies based on the neutral or nearly neutral markers (mitochondrial DNA or microsatellites) showed high levels of genetic diversity and moderate genetic differentiation in the Sichuan rhesus macaques. Variation at the major histocompatibility complex (MHC) loci is widely accepted as being maintained by balancing selection, even with a low level of neutral variability in some species. However, in small and isolated or bottlenecked populations, balancing selection may be overwhelmed by genetic drift. To estimate microevolutionary forces acting on the isolated rhesus macaque populations, we examined genetic variation at Mhc-DQB1 loci in 119 wild rhesus macaques from five geographically isolated populations in western Sichuan, China, and compared the levels of MHC variation and differentiation among populations with that previously observed at neutral microsatellite markers. RESULTS 23 Mamu-DQB1 alleles were identified in 119 rhesus macaques in western Sichuan, China. These macaques exhibited relatively high levels of genetic diversity at Mamu-DQB1. The Hanyuan population presented the highest genetic variation, whereas the Heishui population was the lowest. Analysis of molecular variance (AMOVA) and pairwise FST values showed moderate genetic differentiation occurring among the five populations at the Mhc-DQB1 locus. Non-synonymous substitutions occurred at a higher frequency than synonymous substitutions in the peptide binding region. Levels of MHC variation within rhesus macaque populations are concordant with microsatellite variation. On the phylogenetic tree for the rhesus and crab-eating macaques, extensive allele or allelic lineage sharing is observed between the two species. CONCLUSIONS Phylogenetic analyses confirm the apparent trans-species model of evolution of the Mhc-DQB1 genes in these macaques. Balancing selection plays an important role in sharing allelic lineages between species, but genetic drift may share balancing selection dominance to maintain MHC diversity. Great divergence at neutral or adaptive markers showed that moderate genetic differentiation had occurred in rhesus macaque populations in western Sichuan, China, due to the habitat fragmentation caused by long-term geographic barriers and human activity. The Heishui population should be paid more attention for its lowest level of genetic diversity and relatively great divergence from others.
Collapse
Affiliation(s)
- Yong-Fang Yao
- College of Animal Science and Technology, Sichuan Agricultural University, Ya´an 625014, China
| | - Qiu-Xia Dai
- College of Animal Science and Technology, Sichuan Agricultural University, Ya´an 625014, China
| | - Jing Li
- College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Qing-Yong Ni
- College of Animal Science and Technology, Sichuan Agricultural University, Ya´an 625014, China
| | - Ming-Wang Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Ya´an 625014, China
| | - Huai-Liang Xu
- College of Animal Science and Technology, Sichuan Agricultural University, Ya´an 625014, China
- Experimental Animal Engineering Center/National Experimental Macaque Reproduce Laboratory, Sichuan Agricultural Universiy, Ya′an 625014, China
| |
Collapse
|
9
|
Alcaide M, Liu M, Edwards SV. Major histocompatibility complex class I evolution in songbirds: universal primers, rapid evolution and base compositional shifts in exon 3. PeerJ 2013; 1:e86. [PMID: 23781408 PMCID: PMC3685324 DOI: 10.7717/peerj.86] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/23/2013] [Indexed: 01/04/2023] Open
Abstract
Genes of the Major Histocompatibility Complex (MHC) have become an important marker for the investigation of adaptive genetic variation in vertebrates because of their critical role in pathogen resistance. However, despite significant advances in the last few years the characterization of MHC variation in non-model species still remains a challenging task due to the redundancy and high variation of this gene complex. Here we report the utility of a single pair of primers for the cross-amplification of the third exon of MHC class I genes, which encodes the more polymorphic half of the peptide-binding region (PBR), in oscine passerines (songbirds; Aves: Passeriformes), a group especially challenging for MHC characterization due to the presence of large and complex MHC multigene families. In our survey, although the primers failed to amplify exon 3 from two suboscine passerine birds, they amplified exon 3 of multiple MHC class I genes in all 16 species of oscine songbirds tested, yielding a total of 120 sequences. The 16 songbird species belong to 14 different families, primarily within the Passerida, but also in the Corvida. Using a conservative approach based on the analysis of cloned amplicons (n = 16) from each species, we found between 3 and 10 MHC sequences per individual. Each allele repertoire was highly divergent, with the overall number of polymorphic sites per species ranging from 33 to 108 (out of 264 sites) and the average number of nucleotide differences between alleles ranging from 14.67 to 43.67. Our survey in songbirds allowed us to compare macroevolutionary dynamics of exon 3 between songbirds and non-passerine birds. We found compelling evidence of positive selection acting specifically upon peptide-binding codons across birds, and we estimate the strength of diversifying selection in songbirds to be about twice that in non-passerines. Analysis using comparative methods suggest weaker evidence for a higher GC content in the 3rd codon position of exon 3 in non-passerine birds, a pattern that contrasts with among-clade GC patterns found in other avian studies and may suggests different mutational mechanisms. Our primers represent a useful tool for the characterization of functional and evolutionarily relevant MHC variation across the hyperdiverse songbirds.
Collapse
Affiliation(s)
- Miguel Alcaide
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Mark Liu
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
10
|
Yao YF, Zhao JJ, Dai QX, Li JY, Zhou L, Wang YT, Ni QY, Zhang MW, Xu HL. Identification and characterization of the major histocompatibility complex class II DQB (MhcMath-DQB1) alleles in Tibetan macaques (Macaca thibetana). ACTA ACUST UNITED AC 2013; 82:113-21. [PMID: 23745600 DOI: 10.1111/tan.12145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/25/2013] [Accepted: 05/19/2013] [Indexed: 11/26/2022]
Abstract
Tibetan macaque (Macaca thibetana), an endangered primate species endemic to China, have been used as experimental animal model for various human diseases. Major histocompatibility complex (MHC) genes play a crucial role in the susceptibility and/or resistance to many human diseases, but little is known about Tibetan macaques. To gain an insight into the MHC background and to facilitate the experimental use of Tibetan macaques, the second exon of Mhc-DQB1 gene was sequenced in a cohort of wild Tibetan macaques living in the Sichuan province of China. A total of 23 MhcMath-DQB1 alleles were identified for the first time, illustrating a marked allelic polymorphism at the DQB1 locus for these macaques. Most of the sequences (74%) observed in this study belong to DQB1*06 (9 alleles) and DQB1*18 (8 alleles) lineages, and the rest (26%) belong to DQB1*15 (3 alleles) and DQB1*17 (3 alleles) lineages. The most frequent alleles detected among these macaques were MhcMath-DQB1*15:02:02 (17.9%), followed by Math-DQB1*06:06, 17:03 and 18:01, which were detected in 9 (16.1%) of the monkeys, respectively. Non-synonymous substitutions occurred at a significantly higher frequency than synonymous substitutions in the peptide-binding region, suggesting balancing selection for maintaining polymorphisms at the MHC class II DQB1 locus. Phylogenetic analyses confirms the trans-species model of evolution of the Mhc-DQB1 genes in non-human primates, and in particular, the extensive allele sharing is observed between Tibetan and other macaque species.
Collapse
Affiliation(s)
- Y-F Yao
- College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Buhler S, Sanchez-Mazas A. HLA DNA sequence variation among human populations: molecular signatures of demographic and selective events. PLoS One 2011; 6:e14643. [PMID: 21408106 PMCID: PMC3051395 DOI: 10.1371/journal.pone.0014643] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 12/21/2010] [Indexed: 12/14/2022] Open
Abstract
Molecular differences between HLA alleles vary up to 57 nucleotides within the peptide binding coding region of human Major Histocompatibility Complex (MHC) genes, but it is still unclear whether this variation results from a stochastic process or from selective constraints related to functional differences among HLA molecules. Although HLA alleles are generally treated as equidistant molecular units in population genetic studies, DNA sequence diversity among populations is also crucial to interpret the observed HLA polymorphism. In this study, we used a large dataset of 2,062 DNA sequences defined for the different HLA alleles to analyze nucleotide diversity of seven HLA genes in 23,500 individuals of about 200 populations spread worldwide. We first analyzed the HLA molecular structure and diversity of these populations in relation to geographic variation and we further investigated possible departures from selective neutrality through Tajima's tests and mismatch distributions. All results were compared to those obtained by classical approaches applied to HLA allele frequencies.Our study shows that the global patterns of HLA nucleotide diversity among populations are significantly correlated to geography, although in some specific cases the molecular information reveals unexpected genetic relationships. At all loci except HLA-DPB1, populations have accumulated a high proportion of very divergent alleles, suggesting an advantage of heterozygotes expressing molecularly distant HLA molecules (asymmetric overdominant selection model). However, both different intensities of selection and unequal levels of gene conversion may explain the heterogeneous mismatch distributions observed among the loci. Also, distinctive patterns of sequence divergence observed at the HLA-DPB1 locus suggest current neutrality but old selective pressures on this gene. We conclude that HLA DNA sequences advantageously complement HLA allele frequencies as a source of data used to explore the genetic history of human populations, and that their analysis allows a more thorough investigation of human MHC molecular evolution.
Collapse
Affiliation(s)
- Stéphane Buhler
- Laboratory of Anthropology, Genetics and Peopling History, Department of Anthropology, University of Geneva, Geneva, Switzerland.
| | | |
Collapse
|