1
|
Li W, Chung WL, Kozlov MM, Medalia O, Geiger B, Bershadsky AD. Chiral growth of adherent filopodia. Biophys J 2023; 122:3704-3721. [PMID: 37301982 PMCID: PMC10541518 DOI: 10.1016/j.bpj.2023.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/03/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023] Open
Abstract
Adherent filopodia are elongated finger-like membrane protrusions, extending from the edges of diverse cell types and participating in cell adhesion, spreading, migration, and environmental sensing. The formation and elongation of filopodia are driven by the polymerization of parallel actin filaments, comprising the filopodia cytoskeletal core. Here, we report that adherent filopodia, formed during the spreading of cultured cells on galectin-8-coated substrates, tend to change the direction of their extension in a chiral fashion, acquiring a left-bent shape. Cryoelectron tomography examination indicated that turning of the filopodia tip to the left is accompanied by the displacement of the actin core bundle to the right of the filopodia midline. Reduction of the adhesion to galectin-8 by treatment with thiodigalactoside abolished this filopodia chirality. By modulating the expression of a variety of actin-associated filopodia proteins, we identified myosin-X and formin DAAM1 as major filopodia chirality promoting factors. Formin mDia1, actin filament elongation factor VASP, and actin filament cross-linker fascin were also shown to be involved. Thus, the simple actin cytoskeleton of filopodia, together with a small number of associated proteins are sufficient to drive a complex navigation process, manifested by the development of left-right asymmetry in these cellular protrusions.
Collapse
Affiliation(s)
- Wenhong Li
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Wen-Lu Chung
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Benjamin Geiger
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Alexander D Bershadsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel; Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
2
|
A current overview of RhoA, RhoB, and RhoC functions in vascular biology and pathology. Biochem Pharmacol 2022; 206:115321. [DOI: 10.1016/j.bcp.2022.115321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/24/2022]
|
3
|
Fuchs J, Bareesel S, Kroon C, Polyzou A, Eickholt BJ, Leondaritis G. Plasma membrane phospholipid phosphatase-related proteins as pleiotropic regulators of neuron growth and excitability. Front Mol Neurosci 2022; 15:984655. [PMID: 36187351 PMCID: PMC9520309 DOI: 10.3389/fnmol.2022.984655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neuronal plasma membrane proteins are essential for integrating cell extrinsic and cell intrinsic signals to orchestrate neuronal differentiation, growth and plasticity in the developing and adult nervous system. Here, we shed light on the family of plasma membrane proteins phospholipid phosphatase-related proteins (PLPPRs) (alternative name, PRGs; plasticity-related genes) that fine-tune neuronal growth and synaptic transmission in the central nervous system. Several studies uncovered essential functions of PLPPRs in filopodia formation, axon guidance and branching during nervous system development and regeneration, as well as in the control of dendritic spine number and excitability. Loss of PLPPR expression in knockout mice increases susceptibility to seizures, and results in defects in sensory information processing, development of psychiatric disorders, stress-related behaviors and abnormal social interaction. However, the exact function of PLPPRs in the context of neurological diseases is largely unclear. Although initially described as active lysophosphatidic acid (LPA) ecto-phosphatases that regulate the levels of this extracellular bioactive lipid, PLPPRs lack catalytic activity against LPA. Nevertheless, they emerge as atypical LPA modulators, by regulating LPA mediated signaling processes. In this review, we summarize the effects of this protein family on cellular morphology, generation and maintenance of cellular protrusions as well as highlight their known neuronal functions and phenotypes of KO mice. We discuss the molecular mechanisms of PLPPRs including the deployment of phospholipids, actin-cytoskeleton and small GTPase signaling pathways, with a focus on identifying gaps in our knowledge to stimulate interest in this understudied protein family.
Collapse
Affiliation(s)
- Joachim Fuchs
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Shannon Bareesel
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Cristina Kroon
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexandra Polyzou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Britta J. Eickholt
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- *Correspondence: Britta J. Eickholt,
| | - George Leondaritis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Institute of Biosciences, University Research Center Ioannina, University of Ioannina, Ioannina, Greece
- George Leondaritis,
| |
Collapse
|
4
|
FCHSD2 cooperates with CDC42 and N-WASP to regulate cell protrusion formation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119134. [PMID: 34520816 DOI: 10.1016/j.bbamcr.2021.119134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 11/23/2022]
Abstract
Actin-based, finger-like cell protrusions such as microvilli and filopodia play important roles in epithelial cells. Several proteins have been identified to regulate cell protrusion formation, which helps us to learn about the underlying mechanism of this process. FCH domain and double SH3 domains containing protein 2 (FCHSD2) belongs to the FCH and Bin-Amphiphysin-Rvs (F-BAR) protein family, containing an N-terminal F-BAR domain, two SH3 domains, and a C-terminal PDZ domain-binding interface (PBI). Previously, we found that FCHSD2 interacts with WASP/N-WASP and stimulates ARP2/3-mediated actin polymerization in vitro. In the present work, we show that FCHSD2 promotes the formation of apical and lateral cell protrusions in cultured cells. Our data suggest that FCHSD2 cooperates with CDC42 and N-WASP in regulating apical cell protrusion formation. In line with this, biochemical studies reveal that FCHSD2 and CDC42 simultaneously bind to N-WASP, forming a protein complex. Interestingly, the F-BAR domain of FCHSD2 induces lateral cell protrusion formation independently of N-WASP. Furthermore, we show that the ability of FCHSD2 to induce cell protrusion formation requires its plasma membrane-binding ability. In summary, our present work suggests that FCHSD2 cooperates with CDC42 and N-WASP to regulate cell protrusion formation in a membrane-dependent manner.
Collapse
|
5
|
Involvement of Actin and Actin-Binding Proteins in Carcinogenesis. Cells 2020; 9:cells9102245. [PMID: 33036298 PMCID: PMC7600575 DOI: 10.3390/cells9102245] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
The actin cytoskeleton plays a crucial role in many cellular processes while its reorganization is important in maintaining cell homeostasis. However, in the case of cancer cells, actin and ABPs (actin-binding proteins) are involved in all stages of carcinogenesis. Literature has reported that ABPs such as SATB1 (special AT-rich binding protein 1), WASP (Wiskott-Aldrich syndrome protein), nesprin, and villin take part in the initial step of carcinogenesis by regulating oncogene expression. Additionally, changes in actin localization promote cell proliferation by inhibiting apoptosis (SATB1). In turn, migration and invasion of cancer cells are based on the formation of actin-rich protrusions (Arp2/3 complex, filamin A, fascin, α-actinin, and cofilin). Importantly, more and more scientists suggest that microfilaments together with the associated proteins mediate tumor vascularization. Hence, the presented article aims to summarize literature reports in the context of the potential role of actin and ABPs in all steps of carcinogenesis.
Collapse
|
6
|
Gallop J. Filopodia and their links with membrane traffic and cell adhesion. Semin Cell Dev Biol 2020; 102:81-89. [DOI: 10.1016/j.semcdb.2019.11.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/14/2019] [Accepted: 11/28/2019] [Indexed: 01/24/2023]
|
7
|
Afewerki T, Ahmed S, Warren D. Emerging regulators of vascular smooth muscle cell migration. J Muscle Res Cell Motil 2019; 40:185-196. [PMID: 31254136 PMCID: PMC6726670 DOI: 10.1007/s10974-019-09531-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/21/2019] [Indexed: 12/30/2022]
Abstract
Vascular smooth muscle cells (VSMCs) are the predominant cell type in the blood vessel wall and normally adopt a quiescent, contractile phenotype. VSMC migration is tightly controlled, however, disease associated changes in the soluble and insoluble environment promote VSMC migration. Classically, studies investigating VSMC migration have described the influence of soluble factors. Emerging data has highlighted the importance of insoluble factors, including extracellular matrix stiffness and porosity. In this review, we will recap on the important signalling pathways that regulate VSMC migration and reflect on the potential importance of emerging regulators of VSMC function.
Collapse
Affiliation(s)
- TecLino Afewerki
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Sultan Ahmed
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Derek Warren
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| |
Collapse
|
8
|
Sahasrabudhe A, Ghate K, Mutalik S, Jacob A, Ghose A. Formin 2 regulates the stabilization of filopodial tip adhesions in growth cones and affects neuronal outgrowth and pathfinding in vivo. Development 2015; 143:449-60. [PMID: 26718007 DOI: 10.1242/dev.130104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/23/2015] [Indexed: 12/28/2022]
Abstract
Growth cone filopodia are actin-based mechanosensory structures that are essential for chemoreception and the generation of contractile forces necessary for directional motility. However, little is known about the influence of filopodial actin structures on substrate adhesion and filopodial contractility. Formin 2 (Fmn2) localizes along filopodial actin bundles and its depletion does not affect filopodia initiation or elongation. However, Fmn2 activity is required for filopodial tip adhesion maturation and the ability of filopodia to generate traction forces. Dysregulation of filopodia in Fmn2-depleted neurons leads to compromised growth cone motility. Additionally, in mouse fibroblasts, Fmn2 regulates ventral stress fiber assembly and affects the stability of focal adhesions. In the developing chick spinal cord, Fmn2 activity is required cell-autonomously for the outgrowth and pathfinding of spinal commissural neurons. Our results reveal an unanticipated function for Fmn2 in neural development. Fmn2 regulates structurally diverse bundled actin structures, parallel filopodial bundles in growth cones and anti-parallel stress fibers in fibroblasts, in turn modulating the stability of substrate adhesions. We propose Fmn2 as a mediator of actin bundle integrity, enabling efficient force transmission to the adhesion sites.
Collapse
Affiliation(s)
- Abhishek Sahasrabudhe
- Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhaba Road, Pune 411008, India
| | - Ketakee Ghate
- Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhaba Road, Pune 411008, India
| | - Sampada Mutalik
- Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhaba Road, Pune 411008, India
| | - Ajesh Jacob
- Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhaba Road, Pune 411008, India
| | - Aurnab Ghose
- Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhaba Road, Pune 411008, India
| |
Collapse
|
9
|
Shekhar S, Kerleau M, Kühn S, Pernier J, Romet-Lemonne G, Jégou A, Carlier MF. Formin and capping protein together embrace the actin filament in a ménage à trois. Nat Commun 2015; 6:8730. [PMID: 26564775 PMCID: PMC4660058 DOI: 10.1038/ncomms9730] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/24/2015] [Indexed: 11/09/2022] Open
Abstract
Proteins targeting actin filament barbed ends play a pivotal role in motile processes. While formins enhance filament assembly, capping protein (CP) blocks polymerization. On their own, they both bind barbed ends with high affinity and very slow dissociation. Their barbed-end binding is thought to be mutually exclusive. CP has recently been shown to be present in filopodia and controls their morphology and dynamics. Here we explore how CP and formins may functionally coregulate filament barbed-end assembly. We show, using kinetic analysis of individual filaments by microfluidics-assisted fluorescence microscopy, that CP and mDia1 formin are able to simultaneously bind barbed ends. This is further confirmed using single-molecule imaging. Their mutually weakened binding enables rapid displacement of one by the other. We show that formin FMNL2 behaves similarly, thus suggesting that this is a general property of formins. Implications in filopodia regulation and barbed-end structural regulation are discussed.
Collapse
Affiliation(s)
- Shashank Shekhar
- Cytoskeleton Dynamics and Cell Motility, Department of Biochemistry, Biophysics and Structural Biology, I2BC, CNRS, 91198 Gif-sur-Yvette, France
| | - Mikael Kerleau
- Cytoskeleton Dynamics and Cell Motility, Department of Biochemistry, Biophysics and Structural Biology, I2BC, CNRS, 91198 Gif-sur-Yvette, France
| | - Sonja Kühn
- Cytoskeleton Dynamics and Cell Motility, Department of Biochemistry, Biophysics and Structural Biology, I2BC, CNRS, 91198 Gif-sur-Yvette, France
| | - Julien Pernier
- Cytoskeleton Dynamics and Cell Motility, Department of Biochemistry, Biophysics and Structural Biology, I2BC, CNRS, 91198 Gif-sur-Yvette, France
| | - Guillaume Romet-Lemonne
- Cytoskeleton Dynamics and Cell Motility, Department of Biochemistry, Biophysics and Structural Biology, I2BC, CNRS, 91198 Gif-sur-Yvette, France
| | - Antoine Jégou
- Cytoskeleton Dynamics and Cell Motility, Department of Biochemistry, Biophysics and Structural Biology, I2BC, CNRS, 91198 Gif-sur-Yvette, France
| | - Marie-France Carlier
- Cytoskeleton Dynamics and Cell Motility, Department of Biochemistry, Biophysics and Structural Biology, I2BC, CNRS, 91198 Gif-sur-Yvette, France
| |
Collapse
|
10
|
Ramirez SA, Raghavachari S, Lew DJ. Dendritic spine geometry can localize GTPase signaling in neurons. Mol Biol Cell 2015; 26:4171-81. [PMID: 26337387 PMCID: PMC4710246 DOI: 10.1091/mbc.e15-06-0405] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/13/2015] [Accepted: 08/25/2015] [Indexed: 12/02/2022] Open
Abstract
Dendritic spines are the postsynaptic terminals of most excitatory synapses in the mammalian brain. Learning and memory are associated with long-lasting structural remodeling of dendritic spines through an actin-mediated process regulated by the Rho-family GTPases RhoA, Rac, and Cdc42. These GTPases undergo sustained activation after synaptic stimulation, but whereas Rho activity can spread from the stimulated spine, Cdc42 activity remains localized to the stimulated spine. Because Cdc42 itself diffuses rapidly in and out of the spine, the basis for the retention of Cdc42 activity in the stimulated spine long after synaptic stimulation has ceased is unclear. Here we model the spread of Cdc42 activation at dendritic spines by means of reaction-diffusion equations solved on spine-like geometries. Excitable behavior arising from positive feedback in Cdc42 activation leads to spreading waves of Cdc42 activity. However, because of the very narrow neck of the dendritic spine, wave propagation is halted through a phenomenon we term geometrical wave-pinning. We show that this can account for the localization of Cdc42 activity in the stimulated spine, and, of interest, retention is enhanced by high diffusivity of Cdc42. Our findings are broadly applicable to other instances of signaling in extreme geometries, including filopodia and primary cilia.
Collapse
Affiliation(s)
- Samuel A Ramirez
- Program in Computational Biology and Bioinformatics, Duke University Medical Center, Durham, NC 27710 Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | | | - Daniel J Lew
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
11
|
Weise-Cross L, Taylor JM, Mack CP. Inhibition of Diaphanous Formin Signaling In Vivo Impairs Cardiovascular Development and Alters Smooth Muscle Cell Phenotype. Arterioscler Thromb Vasc Biol 2015; 35:2374-83. [PMID: 26381868 DOI: 10.1161/atvbaha.115.305879] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 09/03/2015] [Indexed: 01/13/2023]
Abstract
OBJECTIVE We and others have previously shown that RhoA-dependent stimulation of myocardin-related transcription factor nuclear localization promotes smooth muscle cell (SMC) marker gene expression. The goal of this study was to provide direct in vivo evidence that actin polymerization by the diaphanous-related formins contributes to the regulation of SMC differentiation and phenotype. APPROACH AND RESULTS Conditional Cre-based genetic approaches were used to overexpress a well-characterized dominant-negative variant of mDia1 (DNmDia) in SMC. DNmDia expression in SM22-expressing cells resulted in embryonic and perinatal lethality in ≈20% of mice because of defects in myocardial development and SMC investment of peripheral vessels. Although most DNmDia(+)/SM22Cre(+) mice exhibited no overt phenotype, the re-expression of SMC differentiation marker gene expression that occurs after carotid artery ligation was delayed, and this effect was accompanied by a significant decrease in myocardin-related transcription factor-A nuclear localization. Interestingly, neointima growth was inhibited by expression of DNmDia in SMC and this was likely because of a defect in directional SMC migration and not to defects in SMC proliferation or survival. Finally, by using the tamoxifen-inducible SM MHC-CreER(T2) line, we showed that SMC-specific induction of DNmDia in adult mice decreased SMC marker gene expression. CONCLUSIONS Our demonstration that diaphanous-related formin signaling plays a role in heart and vascular development and the maintenance of SMC phenotype provides important new evidence that Rho/actin/myocardin-related transcription factor signaling plays a critical role in cardiovascular function.
Collapse
Affiliation(s)
- Laura Weise-Cross
- From the Department of Pathology, University of North Carolina, Chapel Hill
| | - Joan M Taylor
- From the Department of Pathology, University of North Carolina, Chapel Hill
| | - Christopher P Mack
- From the Department of Pathology, University of North Carolina, Chapel Hill.
| |
Collapse
|
12
|
Leondaritis G, Eickholt BJ. Short Lives with Long-Lasting Effects: Filopodia Protrusions in Neuronal Branching Morphogenesis. PLoS Biol 2015; 13:e1002241. [PMID: 26334727 PMCID: PMC4559444 DOI: 10.1371/journal.pbio.1002241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The branching behaviors of both dendrites and axons are part of a neuronal maturation process initiated by the generation of small and transient membrane protrusions. These are highly dynamic, actin-enriched structures, collectively called filopodia, which can mature in neurons to form stable branches. Consequently, the generation of filopodia protrusions is crucial during the formation of neuronal circuits and involves the precise control of an interplay between the plasma membrane and actin dynamics. In this issue of PLOS Biology, Hou and colleagues identify a Ca2+/CaM-dependent molecular machinery in dendrites that ensures proper targeting of branch formation by activation of the actin nucleator Cobl. A new study provides novel insight into how calcium signalling can control the branching of dendrites during nervous system development.
Collapse
Affiliation(s)
- George Leondaritis
- Department of Pharmacology, Medical School, University of Ioannina, Ioannina, Greece
| | - Britta Johanna Eickholt
- Institute of Biochemistry & Neuro Cure Cluster of Excellence, Charité – Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
13
|
Abstract
Rho GTPases are critical for platelet function. Although the roles of RhoA, Rac and Cdc42 are characterized, platelets express other Rho GTPases, whose activities are less well understood. This review summarizes our understanding of the roles of platelet Rho GTPases and focuses particularly on the functions of Rif and RhoG. In human platelets, Rif interacts with cytoskeleton regulators including formins mDia1 and mDia3, whereas RhoG binds SNARE-complex proteins and cytoskeletal regulators ELMO and DOCK1. Knockout mouse studies suggest that Rif plays no critical functions in platelets, likely due to functional overlap with other Rho GTPases. In contrast, RhoG is essential for normal granule secretion downstream of the collagen receptor GPVI. The central defect in RhoG-/- platelets is reduced dense granule secretion, which impedes integrin activation and aggregation and limits platelet recruitment to growing thrombi under shear, translating into reduced thrombus formation in vivo. Potential avenues for future work on Rho GTPases in platelets are also highlighted, including identification of the key regulator for platelet filopodia formation and investigation of the role of the many Rho GTPase regulators in platelet function in both health and disease.
Collapse
|
14
|
Fattouh R, Kwon H, Czuczman MA, Copeland JW, Pelletier L, Quinlan ME, Muise AM, Higgins DE, Brumell JH. The diaphanous-related formins promote protrusion formation and cell-to-cell spread of Listeria monocytogenes. J Infect Dis 2014; 211:1185-95. [PMID: 25281757 DOI: 10.1093/infdis/jiu546] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The Gram-positive bacterium Listeria monocytogenes is a facultative intracellular pathogen whose virulence depends on its ability to spread from cell to cell within an infected host. Although the actin-related protein 2/3 (Arp2/3) complex is necessary and sufficient for Listeria actin tail assembly, previous studies suggest that other actin polymerization factors, such as formins, may participate in protrusion formation. Here, we show that Arp2/3 localized to only a minor portion of the protrusion. Moreover, treatment of L. monocytogenes-infected HeLa cells with a formin FH2-domain inhibitor significantly reduced protrusion length. In addition, the Diaphanous-related formins 1-3 (mDia1-3) localized to protrusions, and knockdown of mDia1, mDia2, and mDia3 substantially decreased cell-to-cell spread of L. monocytogenes. Rho GTPases are known to be involved in formin activation. Our studies also show that knockdown of several Rho family members significantly influenced bacterial cell-to-cell spread. Collectively, these findings identify a Rho GTPase-formin network that is critically involved in the cell-to-cell spread of L. monocytogenes.
Collapse
Affiliation(s)
| | | | | | - John W Copeland
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Laurence Pelletier
- Department of Molecular Genetics Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto
| | - Margot E Quinlan
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California-Los Angeles
| | - Aleixo M Muise
- Cell Biology Program Division of Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics SickKids IBD Centre, Hospital for Sick Children Institute of Medical Science, University of Toronto
| | - Darren E Higgins
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts
| | - John H Brumell
- Cell Biology Program SickKids IBD Centre, Hospital for Sick Children Department of Molecular Genetics Institute of Medical Science, University of Toronto
| |
Collapse
|
15
|
Königs V, Jennings R, Vogl T, Horsthemke M, Bachg AC, Xu Y, Grobe K, Brakebusch C, Schwab A, Bähler M, Knaus UG, Hanley PJ. Mouse macrophages completely lacking Rho subfamily GTPases (RhoA, RhoB, and RhoC) have severe lamellipodial retraction defects, but robust chemotactic navigation and altered motility. J Biol Chem 2014; 289:30772-30784. [PMID: 25213860 DOI: 10.1074/jbc.m114.563270] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
RhoA is thought to be essential for coordination of the membrane protrusions and retractions required for immune cell motility and directed migration. Whether the subfamily of Rho (Ras homolog) GTPases (RhoA, RhoB, and RhoC) is actually required for the directed migration of primary cells is difficult to predict. Macrophages isolated from myeloid-restricted RhoA/RhoB (conditional) double knock-out (dKO) mice did not express RhoC and were essentially "pan-Rho"-deficient. Using real-time chemotaxis assays, we found that retraction of the trailing edge was dissociated from the advance of the cell body in dKO cells, which developed extremely elongated tails. Surprisingly, velocity (of the cell body) was increased, whereas chemotactic efficiency was preserved, when compared with WT macrophages. Randomly migrating RhoA/RhoB dKO macrophages exhibited multiple small protrusions and developed large "branches" due to impaired lamellipodial retraction. A mouse model of peritonitis indicated that monocyte/macrophage recruitment was, surprisingly, more rapid in RhoA/RhoB dKO mice than in WT mice. In comparison with dKO cells, the phenotypes of single RhoA- or RhoB-deficient macrophages were mild due to mutual compensation. Furthermore, genetic deletion of RhoB partially reversed the motility defect of macrophages lacking the RhoGAP (Rho GTPase-activating protein) myosin IXb (Myo9b). In conclusion, the Rho subfamily is not required for "front end" functions (motility and chemotaxis), although both RhoA and RhoB are involved in pulling up the "back end" and resorbing lamellipodial membrane protrusions. Macrophages lacking Rho proteins migrate faster in vitro, which, in the case of the peritoneum, translates to more rapid in vivo monocyte/macrophage recruitment.
Collapse
Affiliation(s)
- Volker Königs
- Institut für Molekulare Zellbiologie, Wilhelms-Universität Münster, 48149 Münster, Germany
| | | | - Thomas Vogl
- Institut für Immunologie, Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Markus Horsthemke
- Institut für Molekulare Zellbiologie, Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Anne C Bachg
- Institut für Molekulare Zellbiologie, Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Yan Xu
- Institut für Molekulare Zellbiologie, Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Kay Grobe
- Institut für Physiologische Chemie und Pathobiochemie, and Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Cord Brakebusch
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Albrecht Schwab
- Institut für Physiologie II, Wilhelms-Universität Münster, 48149 Münster, Germany, and
| | - Martin Bähler
- Institut für Molekulare Zellbiologie, Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Ulla G Knaus
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Peter J Hanley
- Institut für Molekulare Zellbiologie, Wilhelms-Universität Münster, 48149 Münster, Germany,.
| |
Collapse
|
16
|
Nowotarski SH, McKeon N, Moser RJ, Peifer M. The actin regulators Enabled and Diaphanous direct distinct protrusive behaviors in different tissues during Drosophila development. Mol Biol Cell 2014; 25:3147-65. [PMID: 25143400 PMCID: PMC4196866 DOI: 10.1091/mbc.e14-05-0951] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Actin-based protrusions are important for signaling and migration during development and homeostasis. Gain- and loss-of-function and quantitative approaches are used to define differential roles for the actin elongation factors Diaphanous and Enabled in regulating distinct protrusive behaviors in different tissues during Drosophila morphogenesis. Actin-based protrusions are important for signaling and migration during development and homeostasis. Defining how different tissues in vivo craft diverse protrusive behaviors using the same genomic toolkit of actin regulators is a current challenge. The actin elongation factors Diaphanous and Enabled both promote barbed-end actin polymerization and can stimulate filopodia in cultured cells. However, redundancy in mammals and Diaphanous’ role in cytokinesis limited analysis of whether and how they regulate protrusions during development. We used two tissues driving Drosophila dorsal closure—migratory leading-edge (LE) and nonmigratory amnioserosal (AS) cells—as models to define how cells shape distinct protrusions during morphogenesis. We found that nonmigratory AS cells produce filopodia that are morphologically and dynamically distinct from those of LE cells. We hypothesized that differing Enabled and/or Diaphanous activity drives these differences. Combining gain- and loss-of-function with quantitative approaches revealed that Diaphanous and Enabled each regulate filopodial behavior in vivo and defined a quantitative “fingerprint”—the protrusive profile—which our data suggest is characteristic of each actin regulator. Our data suggest that LE protrusiveness is primarily Enabled driven, whereas Diaphanous plays the primary role in the AS, and reveal each has roles in dorsal closure, but its robustness ensures timely completion in their absence.
Collapse
Affiliation(s)
- Stephanie H Nowotarski
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Natalie McKeon
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Rachel J Moser
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
17
|
Bogdan S, Schultz J, Grosshans J. Formin' cellular structures: Physiological roles of Diaphanous (Dia) in actin dynamics. Commun Integr Biol 2014; 6:e27634. [PMID: 24719676 PMCID: PMC3977921 DOI: 10.4161/cib.27634] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/21/2013] [Accepted: 12/23/2013] [Indexed: 01/06/2023] Open
Abstract
Members of the Diaphanous (Dia) protein family are key regulators of fundamental actin driven cellular processes, which are conserved from yeast to humans. Researchers have uncovered diverse physiological roles in cell morphology, cell motility, cell polarity, and cell division, which are involved in shaping cells into tissues and organs. The identification of numerous binding partners led to substantial progress in our understanding of the differential functions of Dia proteins. Genetic approaches and new microscopy techniques allow important new insights into their localization, activity, and molecular principles of regulation.
Collapse
Affiliation(s)
- Sven Bogdan
- Institut für Neurobiologie; Universität Münster; Münster, Germany
| | - Jörg Schultz
- Bioinformatik, Biozentrum; Universität Würzburg; Würzburg, Germany
| | - Jörg Grosshans
- Institut für Biochemie; Universitätsmedizin; Universität Göttingen; Göttingen, Germany
| |
Collapse
|
18
|
The formins FMNL1 and mDia1 regulate coiling phagocytosis of Borrelia burgdorferi by primary human macrophages. Infect Immun 2013; 81:1683-95. [PMID: 23460512 DOI: 10.1128/iai.01411-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Spirochetes of the Borrelia burgdorferi sensu lato complex are the causative agent of Lyme borreliosis, a tick-borne infectious disease primarily affecting the skin, nervous system, and joints. During infection, macrophages and dendritic cells are the first immune cells to encounter invading borreliae. Phagocytosis and intracellular processing of Borrelia by these cells is thus decisive for the eventual outcome of infection. Phagocytic uptake of Borrelia by macrophages proceeds preferentially through coiling phagocytosis, which is characterized by actin-rich unilateral pseudopods that capture and enwrap spirochetes. Actin-dependent growth of these pseudopods necessitates de novo nucleation of actin filaments, which is regulated by actin-nucleating factors such as Arp2/3 complex. Here, we demonstrate that, in addition, also actin-regulatory proteins of the formin family are important for uptake of borreliae by primary human macrophages. Using immunofluorescence, live-cell imaging, and ratiometric analysis, we find specific enrichment of the formins FMNL1 and mDia1 at macrophage pseudopods that are in contact with borreliae. Consistently, small interfering RNA (siRNA)-mediated knockdown of FMNL1 or mDia1 leads to decreased formation of Borrelia-induced pseudopods and to decreased internalization of borreliae by macrophages. Our results suggest that macrophage coiling phagocytosis is a complex process involving several actin nucleation/regulatory factors. They also point specifically to the formins mDia1 and FMNL1 as novel regulators of spirochete uptake by human immune cells.
Collapse
|