1
|
Majeed Y, Madani AY, Altamimi AI, Courjaret R, Vakayil M, Fountain SJ, Machaca K, Mazloum NA. STAT1- and NFAT-independent amplification of purinoceptor function integrates cellular senescence with interleukin-6 production in preadipocytes. Br J Pharmacol 2023; 180:609-627. [PMID: 36321760 DOI: 10.1111/bph.15978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/03/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND AND PURPOSE Senescent preadipocytes promote adipose tissue dysfunction by secreting pro-inflammatory factors, although little is known about the mechanisms regulating their production. We investigated if up-regulated purinoceptor function sensitizes senescent preadipocytes to cognate agonists and how such sensitization regulates inflammation. EXPERIMENTAL APPROACH Etoposide was used to trigger senescence in 3T3-L1 preadipocytes. CRISPR/Cas9 technology or pharmacology allowed studies of transcription factor function. Fura-2 imaging was used for calcium measurements. Interleukin-6 levels were quantified using quantitative PCR and ELISA. Specific agonists and antagonists supported studies of purinoceptor coupling to interleukin-6 production. Experiments in MS1 VEGF angiosarcoma cells and adipose tissue samples from obese mice complemented preadipocyte experiments. KEY RESULTS DNA damage-induced senescence up-regulated purinoceptor expression levels in preadipocytes and MS1 VEGF angiosarcoma cells. ATP-evoked Ca2+ release was potentiated in senescent preadipocytes. ATP enhanced interleukin-6 production, an effect mimicked by ADP but not UTP, in a calcium-independent manner. Senescence-associated up-regulation and activation of the adenosine A3 receptor also enhanced interleukin-6 production. However, nucleotide hydrolysis was not essential because exposure to ATPγS also enhanced interleukin-6 secretion. Pharmacological experiments suggested coupling of P2X ion channels and P2Y12 -P2Y13 receptors to downstream interleukin-6 production. Interleukin-6 signalling exacerbated inflammation during senescence and compromised adipogenesis. CONCLUSIONS AND IMPLICATIONS We report a previously uncharacterized link between cellular senescence and purinergic signalling in preadipocytes and endothelial cancer cells, raising the possibility that up-regulated purinoceptors play key modulatory roles in senescence-associated conditions like obesity and cancer. There is potential for exploitation of specific purinoceptor antagonists as therapeutics in inflammatory disorders.
Collapse
Affiliation(s)
- Yasser Majeed
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Aisha Y Madani
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Ahmed I Altamimi
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Raphael Courjaret
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Muneera Vakayil
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Samuel J Fountain
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Nayef A Mazloum
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| |
Collapse
|
2
|
Zelentsova AS, Deykin AV, Soldatov VO, Ulezko AA, Borisova AY, Belyaeva VS, Skorkina MY, Angelova PR. P2X7 Receptor and Purinergic Signaling: Orchestrating Mitochondrial Dysfunction in Neurodegenerative Diseases. eNeuro 2022; 9:ENEURO.0092-22.2022. [PMID: 36376084 PMCID: PMC9665882 DOI: 10.1523/eneuro.0092-22.2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/14/2022] [Accepted: 08/09/2022] [Indexed: 11/15/2022] Open
Abstract
Mitochondrial dysfunction is one of the basic hallmarks of cellular pathology in neurodegenerative diseases. Since the metabolic activity of neurons is highly dependent on energy supply, nerve cells are especially vulnerable to impaired mitochondrial function. Besides providing oxidative phosphorylation, mitochondria are also involved in controlling levels of second messengers such as Ca2+ ions and reactive oxygen species (ROS). Interestingly, the critical role of mitochondria as producers of ROS is closely related to P2XR purinergic receptors, the activity of which is modulated by free radicals. Here, we review the relationships between the purinergic signaling system and affected mitochondrial function. Purinergic signaling regulates numerous vital biological processes in the CNS. The two main purines, ATP and adenosine, act as excitatory and inhibitory neurotransmitters, respectively. Current evidence suggests that purinergic signaling best explains how neuronal activity is related to neuronal electrical activity and energy homeostasis, especially in the development of Alzheimer's and Parkinson's diseases. In this review, we focus on the mechanisms underlying the involvement of the P2RX7 purinoreceptor in triggering mitochondrial dysfunction during the development of neurodegenerative disorders. We also summarize various avenues by which the purine signaling pathway may trigger metabolic dysfunction contributing to neuronal death and the inflammatory activation of glial cells. Finally, we discuss the potential role of the purinergic system in the search for new therapeutic approaches to treat neurodegenerative diseases.
Collapse
|
3
|
Han H, Desert R, Das S, Song Z, Athavale D, Ge X, Nieto N. Danger signals in liver injury and restoration of homeostasis. J Hepatol 2020; 73:933-951. [PMID: 32371195 PMCID: PMC7502511 DOI: 10.1016/j.jhep.2020.04.033] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/08/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
Damage-associated molecular patterns are signalling molecules involved in inflammatory responses and restoration of homeostasis. Chronic release of these molecules can also promote inflammation in the context of liver disease. Herein, we provide a comprehensive summary of the role of damage-associated molecular patterns as danger signals in liver injury. We consider the role of reactive oxygen species and reactive nitrogen species as inducers of damage-associated molecular patterns, as well as how specific damage-associated molecular patterns participate in the pathogenesis of chronic liver diseases such as alcohol-related liver disease, non-alcoholic steatohepatitis, liver fibrosis and liver cancer. In addition, we discuss the role of damage-associated molecular patterns in ischaemia reperfusion injury and liver transplantation and highlight current studies in which blockade of specific damage-associated molecular patterns has proven beneficial in humans and mice.
Collapse
Affiliation(s)
- Hui Han
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Romain Desert
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Sukanta Das
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Zhuolun Song
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Dipti Athavale
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Xiaodong Ge
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA; Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, 840 S. Wood St., Suite 1020N, MC 787, Chicago, IL 60612, USA.
| |
Collapse
|
4
|
Teixeira JM, Parada CA, Tambeli CH. A cyclic pathway of P2 × 7, bradykinin, and dopamine receptor activation induces a sustained articular hyperalgesia in the knee joint of rats. Inflamm Res 2017; 67:301-314. [PMID: 29260240 DOI: 10.1007/s00011-017-1122-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE We investigated whether: (1) P2 × 7 receptor activation by its agonist (BzATP) induces articular hyperalgesia in the rat's knee joint via inflammatory mechanisms and (2) activation of P2 × 7 receptors by endogenous ATP contributes to the articular hyperalgesia induced by bradykinin, TNF-α, IL-1β, CINC-1, PGE2, and dopamine. METHODS The articular hyperalgesia was quantified using the rat knee joint incapacitation test. The knee joint inflammation, characterized by the concentration of pro-inflammatory cytokines and by neutrophil migration, was quantified in the synovial lavage fluid by ELISA and myeloperoxidase enzyme activity assay, respectively. RESULTS BzATP induced a dose-dependent articular hyperalgesia in the rat's knee joint that was significantly reduced by the selective antagonists for P2 × 7, bradykinin B1 or B2 receptors, β1 or β2 adrenoceptors, and by pre-treatment with Indomethacin. BzATP induced a local increase of TNF-α, IL-1β, IL-6, and CINC-1 concentration and neutrophil migration into the knee joint. The co-administration of the selective P2 × 7 receptor antagonist A-740003 significantly reduced the articular hyperalgesia induced by bradykinin and dopamine, but not by TNF-α, IL-1β, CINC-1, and PGE2. CONCLUSIONS P2 × 7 receptor activation induces articular hyperalgesia mediated by the previous inflammatory mediator release. P2 × 7 receptor-induced articular hyperalgesia is sustained by the involvement of this purinergic receptor in bradykinin and dopamine-induced hyperalgesia in the knee joint.
Collapse
Affiliation(s)
- Juliana Maia Teixeira
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, UNICAMP, Rua Monteiro Lobato, 255, Campinas, SP, CEP 13083-862, Brazil
| | - Carlos Amílcar Parada
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, UNICAMP, Rua Monteiro Lobato, 255, Campinas, SP, CEP 13083-862, Brazil
| | - Cláudia Herrera Tambeli
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, UNICAMP, Rua Monteiro Lobato, 255, Campinas, SP, CEP 13083-862, Brazil.
| |
Collapse
|
5
|
Layhadi JA, Fountain SJ. P2X4 Receptor-Dependent Ca 2+ Influx in Model Human Monocytes and Macrophages. Int J Mol Sci 2017; 18:ijms18112261. [PMID: 29077063 PMCID: PMC5713231 DOI: 10.3390/ijms18112261] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 01/01/2023] Open
Abstract
Monocytes and macrophages express a repertoire of cell surface P2 receptors for adenosine 5′-triphosphate (ATP) a damage-associated molecular pattern molecule (DAMP), which are capable of raising cytoplasmic calcium when activated. This is achieved either through direct permeation (ionotropic P2X receptors) or by mobilizing intracellular calcium stores (metabotropic P2Y receptors). Here, a side-by-side comparison to investigate the contribution of P2X4 receptor activation in ATP-evoked calcium responses in model human monocytes and macrophages was performed. The expression of P2X1, P2X4, P2X5 and P2X7 was confirmed by qRT-PCR and immunocytochemistry in both model monocyte and macrophage. ATP evoked a concentration-dependent increase in intracellular calcium in both THP-1 monocyte and macrophages. The sarco/endoplasmic reticulum Ca2+-ATPase inhibitor thasigargin (Tg) responses to the maximal ATP concentration (100 μM) in THP-1 monocytes, and responses in macrophage were significantly attenuated. Tg-resistant ATP-evoked calcium responses in the model macrophage were dependent on extracellular calcium, suggesting a requirement for calcium influx. Ivermectin (IVM) potentiated the magnitude of Tg-resistant component and slowed the decay of response in the model macrophage. The Tg-resistant component was attenuated by P2X4 antagonists 5-BDBD and PSB-12062 but not by the P2X1 antagonist Ro0437626 or the P2X7 antagonist A438079. shRNA-mediated P2X4 knockdown resulted in a significant reduction in Tg-resistant ATP-evoked calcium response as well as reduced sensitivities towards P2X4-specific pharmacological tools, IVM and PSB-12062. Inhibition of endocytosis with dynasore significantly reduced the magnitude of Tg-resistant component but substantially slowed decay response. Inhibition of calcium-dependent exocytosis with vacuolin-1 had no effect on the Tg-resistant component. These pharmacological data suggest that P2X4 receptor activation contributed significantly towards the ionotropic calcium response evoked by ATP of the model human macrophage.
Collapse
Affiliation(s)
- Janice A Layhadi
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Samuel J Fountain
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| |
Collapse
|
6
|
P2X3 and P2X2/3 Receptors Play a Crucial Role in Articular Hyperalgesia Development Through Inflammatory Mechanisms in the Knee Joint Experimental Synovitis. Mol Neurobiol 2016; 54:6174-6186. [PMID: 27709491 DOI: 10.1007/s12035-016-0146-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/19/2016] [Indexed: 01/25/2023]
Abstract
Osteoarthritis (OA) is a degenerative and progressive disease characterized by cartilage breakdown and by synovial membrane inflammation, which results in disability, joint swelling, and pain. The purinergic P2X3 and P2X2/3 receptors contribute to development of inflammatory hyperalgesia, participate in arthritis processes in the knee joint, and are expressed in chondrocytes and nociceptive afferent fibers innervating the knee joint. In this study, we hypothesized that P2X3 and P2X2/3 receptors activation by endogenous ATP (adenosine 5'-triphosphate) induces articular hyperalgesia in the knee joint of male and female rats through an indirect sensitization of primary afferent nociceptors dependent on the previous release of pro-inflammatory cytokines and/or on neutrophil migration. We found that the blockade of articular P2X3 and P2X2/3 receptors significantly attenuated carrageenan-induced hyperalgesia in the knee joint of male and estrus female rats in a similar manner. The carrageenan-induced knee joint inflammation increased the expression of P2X3 receptors in chondrocytes of articular cartilage. Further, the blockade of articular P2X3 and P2X2/3 receptors significantly reduced the increased concentration of TNF-α, IL-6, and CINC-1 and the neutrophil migration induced by carrageenan. These findings indicate that P2X3 and P2X2/3 receptors activation by endogenous ATP is essential to hyperalgesia development in the knee joint through an indirect sensitization of primary afferent nociceptors dependent on the previous release of pro-inflammatory cytokines and/or on neutrophil migration.
Collapse
|
7
|
Evidence for Extracellular ATP as a Stress Signal in a Single-Celled Organism. EUKARYOTIC CELL 2015; 14:775-82. [PMID: 26048010 DOI: 10.1128/ec.00066-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/28/2015] [Indexed: 01/18/2023]
Abstract
ATP is omnipresent in biology and acts as an extracellular signaling molecule in mammals. Information regarding the signaling function of extracellular ATP in single-celled eukaryotes is lacking. Here, we explore the role of extracellular ATP in cell volume recovery during osmotic swelling in the amoeba Dictyostelium. Release of micromolar ATP could be detected during cell swelling and regulatory cell volume decrease (RVD) phases during hypotonic challenge. Scavenging ATP with apyrase caused profound cell swelling and loss of RVD. Apyrase-induced swelling could be rescued by 100 μM βγ-imidoATP. N-Ethylmalemide (NEM), an inhibitor of vesicular exocytosis, caused heightened cell swelling, loss of RVD, and inhibition of ATP release. Amoebas with impaired contractile vacuole (CV) fusion (drainin knockout [KO] cells) displayed increased swelling but intact ATP release. One hundred micromolar Gd(3+) caused cell swelling while blocking any recovery by βγ-imidoATP. ATP release was 4-fold higher in the presence of Gd(3+). Cell swelling was associated with an increase in intracellular nitric oxide (NO), with NO-scavenging agents causing cell swelling. Swelling-induced NO production was inhibited by both apyrase and Gd(3+), while NO donors rescued apyrase- and Gd(3+)-induced swelling. These data suggest extracellular ATP released during cell swelling is an important signal that elicits RVD. Though the cell surface receptor for ATP in Dictyostelium remains elusive, we suggest ATP operates through a Gd(3+)-sensitive receptor that is coupled with intracellular NO production.
Collapse
|
8
|
Loukovaara S, Sahanne S, Jalkanen S, Yegutkin GG. Increased intravitreal adenosine 5'-triphosphate, adenosine 5'-diphosphate and adenosine 5'-monophosphate levels in patients with proliferative diabetic retinopathy. Acta Ophthalmol 2015; 93:67-73. [PMID: 25079888 DOI: 10.1111/aos.12507] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/04/2014] [Indexed: 12/28/2022]
Abstract
PURPOSE Extracellular purines play important role in ocular physiology, diabetes, vascular remodelling and adaptation to inflammation. This study was aimed to evaluate intravitreal purine levels in patients with diabetic retinopathy (DR) and other non-vascular vitreoretinal eye diseases. METHODS Vitreous samples were collected at the start of the three-port pars plana vitrectomy. Study group comprised 55 eyes operated due to sight-threatening forms of DR, including eyes of 24 patients with proliferative DR. Of the 143 non-diabetic controls, 112 had rhegmatogenous retinal detachment and 31 macular hole or pucker. Intravitreal purine concentrations were determined using a combination of bioluminescent [adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP)] and fluorometric [adenosine 5'-monophosphate (AMP), adenosine, inosine] enzyme-coupled sensing assays. RESULTS Compared with non-diabetic controls, DR eyes contained significantly higher (p < 0.01) concentrations of ATP (4.2 ± 0.6 versus 34.5 ± 13.7 nm; mean ± SEM), ADP (19.5 ± 2.7 versus 43.7 ± 14.5 nm) and AMP (1290 ± 115 versus 1876 ± 190 nm). Intravitreal adenosine and inosine levels varied within submicromolar to low micromolar range, and their concentrations did not differ between the groups studied. CONCLUSIONS High concentrations of intravitreal nucleotides ATP, ADP and AMP may be related to the pathogenesis of sight-threatening forms of DR.
Collapse
Affiliation(s)
- Sirpa Loukovaara
- Unit of Vitreoretinal Surgery; Department of Ophthalmology; Helsinki University Central Hospital; Helsinki Finland
| | - Sari Sahanne
- Unit of Anesthesiology and Intensive Care Medicine; Eye-ENT Hospital; Helsinki University Central Hospital; Helsinki Finland
| | - Sirpa Jalkanen
- MediCity Research Laboratory; University of Turku and Turku University Hospital; Turku Finland
- National Institute for Health and Welfare; Turku Finland
| | - Gennady G. Yegutkin
- MediCity Research Laboratory; University of Turku and Turku University Hospital; Turku Finland
- National Institute for Health and Welfare; Turku Finland
| |
Collapse
|
9
|
He S, Mao X, Sun H, Shirakawa T, Zhang H, Wang X. Potential therapeutic targets in the process of nucleic acid recognition: opportunities and challenges. Trends Pharmacol Sci 2015; 36:51-64. [DOI: 10.1016/j.tips.2014.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 10/18/2014] [Accepted: 10/28/2014] [Indexed: 02/07/2023]
|
10
|
Campwala H, Sexton DW, Crossman DC, Fountain SJ. P2Y₆ receptor inhibition perturbs CCL2-evoked signalling in human monocytic and peripheral blood mononuclear cells. J Cell Sci 2014; 127:4964-73. [PMID: 25271060 PMCID: PMC4231309 DOI: 10.1242/jcs.159012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The chemokine CCL2 serves to target circulating monocytes and other leukocytes to tissue during innate immune responses, and modulates the progression of chronic inflammatory disease through activation of the receptor CCR2. Here, we show that co-activation of the P2Y₆ purinergic receptor (encoded by P2RY₆) occurs when THP-1 cells and human peripheral blood mononuclear cells sense CCL2 through CCR2. Furthermore, P2Y₆ receptor activation accounts for ∼80% of the intracellular Ca²⁺ signal evoked by CCL2. Scavenging extracellular nucleotides with apyrase caused a fourfold reduction in THP-1 sensitivity to CCL2, whereas inhibition of CD39-like ectonucleotidases potentiated CCL2-evoked Ca²⁺ responses. Pharmacological inhibition of P2Y₆ impaired CCL2-evoked Ca²⁺ signalling and chemotaxis in peripheral blood mononuclear cells and THP-1 cells. Furthermore, stable P2Y₆ receptor knockdown (of twofold) in THP-1 cells impaired CCL2-evoked Ca²⁺ signalling, chemotaxis and adhesion to TNFα-treated HUVECs. We demonstrate that THP-1 cells rapidly secrete ATP during signalling downstream of the CCL2-CCR2 axis and suggest this might act as a mechanism for P2Y₆ receptor co-activation following CCL2 activation of the CCR2 receptor. The discovery that P2Y₆ receptor mediates leukocyte responsiveness to CCL2 represents a new mechanism by which to modulate CCL2 signals.
Collapse
Affiliation(s)
- Hinnah Campwala
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Darren W Sexton
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - David C Crossman
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Samuel J Fountain
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
11
|
Teixeira JM, de Oliveira-Fusaro MCG, Parada CA, Tambeli CH. Peripheral P2X7 receptor-induced mechanical hyperalgesia is mediated by bradykinin. Neuroscience 2014; 277:163-73. [PMID: 24997266 DOI: 10.1016/j.neuroscience.2014.06.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/23/2014] [Accepted: 06/26/2014] [Indexed: 12/12/2022]
Abstract
P2X7 receptors play an important role in inflammatory hyperalgesia, but the mechanisms involved in their hyperalgesic role are not completely understood. In this study, we hypothesized that P2X7 receptor activation induces mechanical hyperalgesia via the inflammatory mediators bradykinin, sympathomimetic amines, prostaglandin E2 (PGE2), and pro-inflammatory cytokines and via neutrophil migration in rats. We found that 2'(3')-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate triethylammonium salt (BzATP), the most potent P2X7 receptor agonist available, induced a dose-dependent mechanical hyperalgesia that was blocked by the P2X7 receptor-selective antagonist A-438079 but unaffected by the P2X1,3,2/3 receptor antagonist TNP-ATP. These findings confirm that, although BzATP also acts at both P2X1 and P2X3 receptors, BzATP-induced hyperalgesia was mediated only by P2X7 receptor activation. Co-administration of selective antagonists of bradykinin B1 (Des-Arg(8)-Leu(9)-BK (DALBK)) or B2 receptors (bradyzide), β1 (atenolol) or β2 adrenoceptors (ICI 118,551), or local pre-treatment with the cyclooxygenase inhibitor indomethacin or the nonspecific selectin inhibitor fucoidan each significantly reduced BzATP-induced mechanical hyperalgesia in the rat hind paw. BzATP also induced the release of the pro-inflammatory cytokines tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6 and cytokine-induced neutrophil chemoattractant-1 (CINC-1), an effect that was significantly reduced by A-438079. Co-administration of DALBK or bradyzide with BzATP significantly reduced BzATP-induced IL-1β and CINC-1 release. These results indicate that peripheral P2X7 receptor activation induces mechanical hyperalgesia via inflammatory mediators, especially bradykinin, which may contribute to pro-inflammatory cytokine release. These pro-inflammatory cytokines in turn may mediate the contributions of PGE2, sympathomimetic amines and neutrophil migration to the mechanical hyperalgesia induced by local P2X7 receptor activation.
Collapse
Affiliation(s)
- J M Teixeira
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas - UNICAMP, Rua Monteiro Lobato, 255, Campinas, SP CEP 13083-862, Brazil
| | - M C G de Oliveira-Fusaro
- Faculty of Applied Sciences, State University of Campinas - UNICAMP, Rua Pedro Zaccaria, 1300, Limeira, SP CEP 13484-350, Brazil
| | - C A Parada
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas - UNICAMP, Rua Monteiro Lobato, 255, Campinas, SP CEP 13083-862, Brazil
| | - C H Tambeli
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas - UNICAMP, Rua Monteiro Lobato, 255, Campinas, SP CEP 13083-862, Brazil.
| |
Collapse
|
12
|
ATP release through lysosomal exocytosis from peripheral nerves: the effect of lysosomal exocytosis on peripheral nerve degeneration and regeneration after nerve injury. BIOMED RESEARCH INTERNATIONAL 2014; 2014:936891. [PMID: 25101301 PMCID: PMC4101216 DOI: 10.1155/2014/936891] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 05/29/2014] [Accepted: 06/16/2014] [Indexed: 01/18/2023]
Abstract
Studies have shown that lysosomal activation increases in Schwann cells after nerve injury. Lysosomal activation is thought to promote the engulfment of myelin debris or fragments of injured axons in Schwann cells during Wallerian degeneration. However, a recent interpretation of lysosomal activation proposes a different view of the phenomenon. During Wallerian degeneration, lysosomes become secretory vesicles and are activated for lysosomal exocytosis. The lysosomal exocytosis triggers adenosine 5′-triphosphate (ATP) release from peripheral neurons and Schwann cells during Wallerian degeneration. Exocytosis is involved in demyelination and axonal degradation, which facilitate nerve regeneration following nerve degeneration. At this time, released ATP may affect the communication between cells in peripheral nerves. In this review, our description of the relationship between lysosomal exocytosis and Wallerian degeneration has implications for the understanding of peripheral nerve degenerative diseases and peripheral neuropathies, such as Charcot-Marie-Tooth disease or Guillain-Barré syndrome.
Collapse
|