1
|
Nauth T, Bazgir F, Voß H, Brandenstein LI, Mosaddeghzadeh N, Rickassel V, Deden S, Gorzelanny C, Schlüter H, Ahmadian MR, Rosenberger G. Cutaneous manifestations in Costello syndrome: HRAS p.Gly12Ser affects RIN1-mediated integrin trafficking in immortalized epidermal keratinocytes. Hum Mol Genet 2023; 32:304-318. [PMID: 35981076 DOI: 10.1093/hmg/ddac188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/15/2022] [Accepted: 08/07/2022] [Indexed: 01/18/2023] Open
Abstract
Heterozygous germline missense variants in the HRAS gene underlie Costello syndrome (CS). The molecular basis for cutaneous manifestations in CS is largely unknown. We used an immortalized human cell line, HaCaT keratinocytes, stably expressing wild-type or CS-associated (p.Gly12Ser) HRAS and defined RIN1 as quantitatively most prominent, high-affinity effector of active HRAS in these cells. As an exchange factor for RAB5 GTPases, RIN1 is involved in endosomal sorting of cell-adhesion integrins. RIN1-dependent RAB5A activation was strongly increased by HRASGly12Ser, and HRAS-RIN1-ABL1/2 signaling was induced in HRASWT- and HRASGly12Ser-expressing cells. Along with that, HRASGly12Ser expression decreased total integrin levels and enriched β1 integrin in RAB5- and EEA1-positive early endosomes. The intracellular level of active β1 integrin was increased in HRASGly12Ser HaCaT keratinocytes due to impaired recycling, whereas RIN1 disruption raised β1 integrin cell surface distribution. HRASGly12Ser induced co-localization of β1 integrin with SNX17 and RAB7 in early/sorting and late endosomes, respectively. Thus, by retaining β1 integrin in intracellular endosomal compartments, HRAS-RIN1 signaling affects the subcellular availability of β1 integrin. This may interfere with integrin-dependent processes as we detected for HRASGly12Ser cells spreading on fibronectin. We conclude that dysregulation of receptor trafficking and integrin-dependent processes such as cell adhesion are relevant in the pathobiology of CS.
Collapse
Affiliation(s)
- Theresa Nauth
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Farhad Bazgir
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Hannah Voß
- Institute of Clinical Chemistry and Laboratory Medicine, Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Laura I Brandenstein
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Niloufar Mosaddeghzadeh
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Verena Rickassel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sophia Deden
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christian Gorzelanny
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Georg Rosenberger
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
2
|
Silva P, Mendoza P, Rivas S, Díaz J, Moraga C, Quest AFG, Torres VA. Hypoxia promotes Rab5 activation, leading to tumor cell migration, invasion and metastasis. Oncotarget 2018; 7:29548-62. [PMID: 27121131 PMCID: PMC5045416 DOI: 10.18632/oncotarget.8794] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/28/2016] [Indexed: 01/08/2023] Open
Abstract
Hypoxia, a common condition of the tumor microenvironment, is associated with poor patient prognosis, tumor cell migration, invasion and metastasis. Recent evidence suggests that hypoxia alters endosome dynamics in tumor cells, leading to augmented cell proliferation and migration and this is particularly relevant, because endosomal components have been shown to be deregulated in cancer. The early endosome protein Rab5 is a small GTPase that promotes integrin trafficking, focal adhesion turnover, Rac1 activation, tumor cell migration and invasion. However, the role of Rab5 and downstream events in hypoxia remain unknown. Here, we identify Rab5 as a critical player in hypoxia-driven tumor cell migration, invasion and metastasis. Exposure of A549 human lung carcinoma, ZR-75, MDA-MB-231 and MCF-7 human breast cancer and B16-F10 mouse melanoma cells to hypoxia increased Rab5 activation, followed by its re-localization to the leading edge and association with focal adhesions. Importantly, Rab5 was required for hypoxia-driven cell migration, FAK phosphorylation and Rac1 activation, as shown by shRNA-targeting and transfection assays with Rab5 mutants. Intriguingly, the effect of hypoxia on both Rab5 activity and migration was substantially higher in metastatic B16-F10 cells than in poorly invasive B16-F0 cells. Furthermore, exogenous expression of Rab5 in B16-F0 cells predisposed to hypoxia-induced migration, whereas expression of the inactive mutant Rab5/S34N prevented the migration of B16-F10 cells induced by hypoxia. Finally, using an in vivo syngenic C57BL/6 mouse model, Rab5 expression was shown to be required for hypoxia-induced metastasis. In summary, these findings identify Rab5 as a key mediator of hypoxia-induced tumor cell migration, invasion and metastasis.
Collapse
Affiliation(s)
- Patricio Silva
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Pablo Mendoza
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Solange Rivas
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Jorge Díaz
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Carolina Moraga
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Center for Molecular Studies of the Cell (CEMC) and Program of Cell and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Vicente A Torres
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
3
|
Moore R, Pujol MG, Zhu Z, Smythe E. Interplay of Endocytosis and Growth Factor Receptor Signalling. ENDOCYTOSIS AND SIGNALING 2018; 57:181-202. [DOI: 10.1007/978-3-319-96704-2_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Szíber Z, Liliom H, Morales COO, Ignácz A, Rátkai AE, Ellwanger K, Link G, Szűcs A, Hausser A, Schlett K. Ras and Rab interactor 1 controls neuronal plasticity by coordinating dendritic filopodial motility and AMPA receptor turnover. Mol Biol Cell 2017; 28:285-295. [PMID: 27852895 PMCID: PMC5231897 DOI: 10.1091/mbc.e16-07-0526] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/28/2016] [Accepted: 11/10/2016] [Indexed: 01/13/2023] Open
Abstract
Ras and Rab interactor 1 (RIN1) is predominantly expressed in the nervous system. RIN1-knockout animals have deficits in latent inhibition and fear extinction in the amygdala, suggesting a critical role for RIN1 in preventing the persistence of unpleasant memories. At the molecular level, RIN1 signals through Rab5 GTPases that control endocytosis of cell-surface receptors and Abl nonreceptor tyrosine kinases that participate in actin cytoskeleton remodeling. Here we report that RIN1 controls the plasticity of cultured mouse hippocampal neurons. Our results show that RIN1 affects the morphology of dendritic protrusions and accelerates dendritic filopodial motility through an Abl kinase-dependent pathway. Lack of RIN1 results in enhanced mEPSC amplitudes, indicating an increase in surface AMPA receptor levels compared with wild-type neurons. We further provide evidence that the Rab5 GEF activity of RIN1 regulates surface GluA1 subunit endocytosis. Consequently loss of RIN1 blocks surface AMPA receptor down-regulation evoked by chemically induced long-term depression. Our findings indicate that RIN1 destabilizes synaptic connections and is a key player in postsynaptic AMPA receptor endocytosis, providing multiple ways of negatively regulating memory stabilization during neuronal plasticity.
Collapse
Affiliation(s)
- Zsófia Szíber
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Hanna Liliom
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | | | - Attila Ignácz
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Anikó Erika Rátkai
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Kornelia Ellwanger
- Institute of Cell Biology and Immunology, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Gisela Link
- Institute of Cell Biology and Immunology, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Attila Szűcs
- MTA-ELTE-NAP B Neuronal Cell Biology Research Group, H-1117 Budapest, Hungary
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, D-70569 Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Katalin Schlett
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
- MTA-ELTE-NAP B Neuronal Cell Biology Research Group, H-1117 Budapest, Hungary
| |
Collapse
|
5
|
Kurakin A, Bredesen DE. Dynamic self-guiding analysis of Alzheimer's disease. Oncotarget 2016; 6:14092-122. [PMID: 26041885 PMCID: PMC4546454 DOI: 10.18632/oncotarget.4221] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 04/08/2015] [Indexed: 01/25/2023] Open
Abstract
We applied a self-guiding evolutionary algorithm to initiate the synthesis of the Alzheimer's disease-related data and literature. A protein interaction network associated with amyloid-beta precursor protein (APP) and a seed model that treats Alzheimer's disease as progressive dysregulation of APP-associated signaling were used as dynamic “guides” and structural “filters” in the recursive search, analysis, and assimilation of data to drive the evolution of the seed model in size, detail, and complexity. Analysis of data and literature across sub-disciplines and system-scale discovery platforms suggests a key role of dynamic cytoskeletal connectivity in the stability, plasticity, and performance of multicellular networks and architectures. Chronic impairment and/or dysregulation of cell adhesions/synapses, cytoskeletal networks, and/or reversible epithelial-to-mesenchymal-like transitions, which enable and mediate the stable and coherent yet dynamic and reconfigurable multicellular architectures, may lead to the emergence and persistence of the disordered, wound-like pockets/microenvironments of chronically disconnected cells. Such wound-like microenvironments support and are supported by pro-inflammatory, pro-secretion, de-differentiated cellular phenotypes with altered metabolism and signaling. The co-evolution of wound-like microenvironments and their inhabitants may lead to the selection and stabilization of degenerated cellular phenotypes, via acquisition of epigenetic modifications and mutations, which eventually result in degenerative disorders such as cancer and Alzheimer's disease.
Collapse
Affiliation(s)
- Alexei Kurakin
- Mary S. Easton Center for Alzheimer's Disease Research, Department of Neurology, University of California, Los Angeles, CA, USA
| | - Dale E Bredesen
- Mary S. Easton Center for Alzheimer's Disease Research, Department of Neurology, University of California, Los Angeles, CA, USA.,Buck Institute for Research on Aging, Novato, CA, USA
| |
Collapse
|
6
|
Mustafi S, Barbieri MA. Rin1 restores host phagocytic activity during invasion by Pseudomonas aeruginosa. J Med Microbiol 2016; 65:351-361. [PMID: 26902911 DOI: 10.1099/jmm.0.000235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa uses a type III secretion system to deliver toxic effector proteins directly into host cells and alter host protein functions. Exoenzyme S (ExoS), a type III effector protein, ADP-ribosylates Rab5 GTPase and impairs early phagocytic events in macrophage cells. In this study, we tested the hypothesis that Rin1, a Ras effector protein and Rab5 guanine nucleotide exchange factor, generates an intrinsic Rab5 activity cycle during phagocytosis of live P. aeruginosa; thus, allowing proper phagocytic killing. We found that Rab5 activity was attenuated at a very early time point (2.5 min) of the phagocytic process of live but not of heat-inactivated P. aeruginosa. However, upon overexpressing Rin1 in macrophages, the Rab5 activity sustained for a prolonged time (∼20 min) counteracting the negative effects during phagocytosis of live P. aeruginosa. Ras, also a substrate of the ADP-ribosyltransferase activity of ExoS, remained active during the early events of phagocytosis of live as well as heat-inactivated P. aeruginosa. Further examinations revealed that the Rin1 : Vps9 domain (the Rab5 nucleotide catalytic domain) and the Rin1 : RA domain (the Ras association domain of Rin1) are both required for optimal Rin1 function. Finally, the time-based analysis of the ADP-ribosylation status of Rab5 and Ras obtained from this study was consistent in the context of the regulation of (i) Rab5 activity by Rin1 : Vps9 domain and (ii) Ras interaction with Rin1 via the Rin1 : RA domain. These observations highlight a novel crosstalk between Rin1-Rab5 and Rin1-Ras complexes that offsets the anti-phagocytic effects of ExoS in macrophages.
Collapse
Affiliation(s)
- S Mustafi
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - M A Barbieri
- Fairchild Tropical Botanic Garden, 10901 Old Cutler Road, Coral Gables, FL 33156, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA.,Department of Biological Sciences, Florida International University, Miami, FL 33199, USA.,International Center of Tropical Botany, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
7
|
Ting PY, Johnson CW, Fang C, Cao X, Graeber TG, Mattos C, Colicelli J. Tyrosine phosphorylation of RAS by ABL allosterically enhances effector binding. FASEB J 2015; 29:3750-61. [PMID: 25999467 PMCID: PMC4550377 DOI: 10.1096/fj.15-271510] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/11/2015] [Indexed: 01/07/2023]
Abstract
RAS proteins are signal transduction gatekeepers that mediate cell growth, survival, and differentiation through interactions with multiple effector proteins. The RAS effector RAS- and RAB-interacting protein 1 (RIN1) activates its own downstream effectors, the small GTPase RAB5 and the tyrosine kinase Abelson tyrosine-protein kinase (ABL), to modulate endocytosis and cytoskeleton remodeling. To identify ABL substrates downstream of RAS-to-RIN1 signaling, we examined human HEK293T cells overexpressing components of this pathway. Proteomic analysis revealed several novel phosphotyrosine peptides, including Harvey rat sarcoma oncogene (HRAS)-pTyr(137). Here we report that ABL phosphorylates tyrosine 137 of H-, K-, and NRAS. Increased RIN1 levels enhanced HRAS-Tyr(137) phosphorylation by nearly 5-fold, suggesting that RAS-stimulated RIN1 can drive ABL-mediated RAS modification in a feedback circuit. Tyr(137) is well conserved among RAS orthologs and is part of a transprotein H-bond network. Crystal structures of HRAS(Y137F) and HRAS(Y137E) revealed conformation changes radiating from the mutated residue. Although consistent with Tyr(137) participation in allosteric control of HRAS function, the mutations did not alter intrinsic GTP hydrolysis rates in vitro. HRAS-Tyr(137) phosphorylation enhanced HRAS signaling capacity in cells, however, as reflected by a 4-fold increase in the association of phosphorylated HRAS(G12V) with its effector protein RAF proto-oncogene serine/threonine protein kinase 1 (RAF1). These data suggest that RAS phosphorylation at Tyr(137) allosterically alters protein conformation and effector binding, providing a mechanism for effector-initiated modulation of RAS signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | - John Colicelli
- Correspondence: University of California, Los Angeles, Box 951737, 350C BSRB, Los Angeles, CA 90095-1737, USA. E-mail:
| |
Collapse
|
8
|
Porther N, Barbieri MA. The role of endocytic Rab GTPases in regulation of growth factor signaling and the migration and invasion of tumor cells. Small GTPases 2015; 6:135-44. [PMID: 26317377 PMCID: PMC4601184 DOI: 10.1080/21541248.2015.1050152] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 05/04/2015] [Accepted: 05/07/2015] [Indexed: 01/05/2023] Open
Abstract
Metastasis is characterized pathologically by uncontrolled cell invasion, proliferation, migration and angiogenesis. It is a multistep process that encompasses the modulation of membrane permeability and invasion, cell spreading, cell migration and proliferation of the extracellular matrix, increase in cell adhesion molecules and interaction, decrease in cell attachment and induced survival signals and propagation of nutrient supplies (blood vessels). In cancer, a solid tumor cannot expand and spread without a series of synchronized events. Changes in cell adhesion receptor molecules (e.g., integrins, cadherin-catenins) and protease expressions have been linked to tumor invasion and metastasis. It has also been determined that ligand-growth factor receptor interactions have been associated with cancer development and metastasis via the endocytic pathway. Specifically, growth factors, which include IGF-1 and IGF-2 therapy, have been associated with most if not all of the features of metastasis. In this review, we will revisit some of the key findings on perhaps one of the most important hallmarks of cancer metastasis: cell migration and cell invasion and the role of the endocytic pathway in mediating this phenomenon.
Collapse
Affiliation(s)
- N Porther
- Department of Biological Sciences; Florida International University; Miami, FL USA
| | - MA Barbieri
- Department of Biological Sciences; Florida International University; Miami, FL USA
- Biomolecular Sciences Institute; Florida International University; Miami, FL USA
- Fairchild Tropical Botanic Garden; Coral Gables, FL USA
- International Center of Tropical Botany; Florida International University; Miami, FL USA
| |
Collapse
|
9
|
Perspectives on Epidermal Growth Factor Receptor Regulation in Triple-Negative Breast Cancer: Ligand-Mediated Mechanisms of Receptor Regulation and Potential for Clinical Targeting. Adv Cancer Res 2015; 127:253-81. [PMID: 26093903 DOI: 10.1016/bs.acr.2015.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Currently, there are no effective targeted therapies for triple-negative breast cancer (TNBC) indicating a critical unmet need for breast cancer patients. Tumors that fall into the triple-negative category of breast cancers do not respond to the targeted therapies currently approved for breast cancer treatment, such as endocrine therapy (tamoxifen, aromatase inhibitors) or human epidermal growth factor receptor-2 (HER2) inhibitors (trastuzumab, lapatinib), because these tumors lack the most common breast cancer markers: estrogen receptor, progesterone receptor, and HER2. While many patients with TNBC respond to chemotherapy, subsets of patients fare poorly and relapse very quickly. Studies indicate that epidermal growth factor receptor (EGFR) is frequently overrepresented in TNBC (>50%), suggesting EGFR could be used as a biomarker and target in breast cancer. While it is clear that this growth factor receptor plays an integral role in TNBC, little is known about the mechanisms of sustained EGFR activation and how to target this protein despite availability of EGFR-targeted inhibitors, suggesting that our understanding of EGFR deregulation in TNBC is incomplete.
Collapse
|
10
|
Balaji K, French CT, Miller JF, Colicelli J. The RAB5-GEF function of RIN1 regulates multiple steps during Listeria monocytogenes infection. Traffic 2014; 15:1206-18. [PMID: 25082076 DOI: 10.1111/tra.12204] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 07/29/2014] [Accepted: 07/29/2014] [Indexed: 12/15/2022]
Abstract
Listeria monocytogenes is a food-borne pathogenic bacterium that invades intestinal epithelial cells through a phagocytic pathway that relies on the activation of host cell RAB5 GTPases. Listeria monocytogenes must subsequently inhibit RAB5, however, in order to escape lysosome-mediated destruction. Relatively little is known about upstream RAB5 regulators during L. monocytogenes entry and phagosome escape processes in epithelial cells. Here we identify RIN1, a RAS effector and RAB5-directed guanine nucleotide exchange factor (GEF), as a host cell factor in L. monocytogenes infection. RIN1 is rapidly engaged following L. monocytogenes infection and is required for efficient invasion of intestinal epithelial cells. RIN1-mediated RAB5 activation later facilitates the fusion of phagosomes with lysosomes, promoting clearance of bacteria from the host cell. These results suggest that RIN1 is a host cell regulator that performs counterbalancing functions during early and late stages of L. monocytogenes infection, ultimately favoring pathogen clearance.
Collapse
Affiliation(s)
- Kavitha Balaji
- Department of Biological Chemistry, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | | | | | | |
Collapse
|