1
|
Razali K, Mohd Nasir MH, Othman N, Doolaanea AA, Kumar J, Nabeel Ibrahim W, Mohamed WMY. Characterization of neurobehavioral pattern in a zebrafish 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced model: A 96-hour behavioral study. PLoS One 2022; 17:e0274844. [PMID: 36190968 PMCID: PMC9529090 DOI: 10.1371/journal.pone.0274844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/02/2022] [Indexed: 11/06/2022] Open
Abstract
Parkinson’s disease (PD) is the most common brain motor disorder, characterized by a substantial loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Motor impairments, such as dyskinesia, bradykinesia, and resting tremors, are the hallmarks of PD. Despite ongoing research, the exact PD pathogenesis remains elusive due to the disease intricacy and difficulty in conducting human studies. Zebrafish (Danio rerio) has emerged as an ideal model for researching PD pathophysiology. Even though 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been used to induce PD in zebrafish, behavioural findings are frequently limited to a single time point (24 hours post-injection). In this sense, we aim to demonstrate the effects of MPTP on zebrafish swimming behaviour at multiple time points. We administered a single dosage of MPTP (200μg/g bw) via intraperitoneal injection (i/p) and assessed the locomotor activity and swimming pattern at 0h, 24h, and 96h post-injection through an open field test. Analysis of the behaviour revealed significant reductions in swimming velocity (cm/s) and distance travelled (cm), concurrent with an increase in freezing maintenance (duration and bouts) in zebrafish injected with MPTP. In addition, the MPTP-injected zebrafish exhibited complex swimming patterns, as measured by the turn angle, meander, and angular velocity, and showed abnormal swimming phenotypes, including freezing, looping, and erratic movement. To conclude, MPTP administration into adult zebrafish induced hypolocomotion and elicited motor incoordination. Plus, the effects of MPTP were observable 24 hours after the injection and still detectable 96 hours later. These findings contribute to the understanding of MPTP effects on adult zebrafish, particularly in terms of swimming behaviours, and may pave the way for a better understanding of the establishment of PD animal models in the future.
Collapse
Affiliation(s)
- Khairiah Razali
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Mohd Hamzah Mohd Nasir
- Department of Biotechnology, Kulliyyah of Sciences, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Noratikah Othman
- Department of Basic Medical Sciences, Kulliyyah of Nursing, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Kuala Lumpur, Malaysia
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Wael M. Y. Mohamed
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
- Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, Shebeen El-Kom, Menoufia, Egypt
- * E-mail:
| |
Collapse
|
2
|
Baxendale S, Whitfield TT. Methods to study the development, anatomy, and function of the zebrafish inner ear across the life course. Methods Cell Biol 2016; 134:165-209. [PMID: 27312494 DOI: 10.1016/bs.mcb.2016.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The inner ear is a remarkably intricate structure able to detect sound, motion, and gravity. During development of the zebrafish embryo, the ear undergoes dynamic morphogenesis from a simple epithelial vesicle into a complex labyrinth, consisting of three semicircular canals and three otolithic sensory organs, each with an array of differentiated cell types. This microcosm of biology has led to advances in understanding molecular and cellular changes in epithelial patterning and morphogenesis, through to mechanisms of mechanosensory transduction and the origins of reflexive behavior. In this chapter, we describe different methods to study the zebrafish ear, including high-speed imaging of otic cilia, confocal microscopy, and light-sheet fluorescent microscopy. Many dyes, antibodies, and transgenic lines for labeling the ear are available, and we provide a comprehensive review of these resources. The developing ear is amenable to genetic, chemical, and physical manipulations, including injection and transplantation. Chemical modulation of developmental signaling pathways has paved the way for zebrafish to be widely used in drug discovery. We describe two chemical screens with relevance to the ear: a fluorescent-based screen for compounds that protect against ototoxicity, and an in situ-based screen for modulators of a signaling pathway involved in semicircular canal development. We also describe methods for dissection and imaging of the adult otic epithelia. We review both manual and automated methods to test the function of the inner ear and lateral line, defects in which can lead to altered locomotor behavior. Finally, we review a collection of zebrafish models that are generating new insights into human deafness and vestibular disorders.
Collapse
Affiliation(s)
- S Baxendale
- University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
3
|
Kim MJ, Choi J, Kim N, Han GC. Behavioral changes of zebrafish according to cisplatin-induced toxicity of the balance system. Hum Exp Toxicol 2014; 33:1167-75. [DOI: 10.1177/0960327114521046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background and objectives: Zebrafish are commonly used as experimental animals in otolaryngology studies. However, the behavioral characteristics of these fish are not well known, especially those related to the vestibular system. The goal of this study was to evaluate behavioral changes in zebrafish due to toxicity in the balance system. Materials and methods: Zebrafish were exposed to 1000 μM cisplatin for 6 h. We, then, periodically monitored swimming depth, total swimming distance, peak swimming velocity, and mean swimming velocity of the fish for approximately 21 days. Results: Total swimming distance ( p < 0.0001), peak swimming velocity ( p = 0.0063), and mean swimming velocity ( p < 0.0001) in the cisplatin-administered group were significantly decreased when compared with control fish. Conclusion: Our findings demonstrate that cisplatin can alter the locomotion behavior of zebrafish.
Collapse
Affiliation(s)
- MJ Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - J Choi
- Department of Otolaryngology—Head and Neck Surgery, School of Medicine, Korea University, Ahn San, South Korea
| | - N Kim
- Neuroscience Research Institute, Graduate School of Medicine, Gachon University, Incheon, South Korea
| | - GC Han
- Department of Otolaryngology—Head and Neck Surgery, Graduate School of Medicine, Gachon University of Medicine and Science, Incheon, South Korea
| |
Collapse
|
4
|
Kalueff AV, Gebhardt M, Stewart AM, Cachat JM, Brimmer M, Chawla JS, Craddock C, Kyzar EJ, Roth A, Landsman S, Gaikwad S, Robinson K, Baatrup E, Tierney K, Shamchuk A, Norton W, Miller N, Nicolson T, Braubach O, Gilman CP, Pittman J, Rosemberg DB, Gerlai R, Echevarria D, Lamb E, Neuhauss SCF, Weng W, Bally-Cuif L, Schneider H. Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish 2013; 10:70-86. [PMID: 23590400 DOI: 10.1089/zeb.2012.0861] [Citation(s) in RCA: 716] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Zebrafish (Danio rerio) are rapidly gaining popularity in translational neuroscience and behavioral research. Physiological similarity to mammals, ease of genetic manipulations, sensitivity to pharmacological and genetic factors, robust behavior, low cost, and potential for high-throughput screening contribute to the growing utility of zebrafish models in this field. Understanding zebrafish behavioral phenotypes provides important insights into neural pathways, physiological biomarkers, and genetic underpinnings of normal and pathological brain function. Novel zebrafish paradigms continue to appear with an encouraging pace, thus necessitating a consistent terminology and improved understanding of the behavioral repertoire. What can zebrafish 'do', and how does their altered brain function translate into behavioral actions? To help address these questions, we have developed a detailed catalog of zebrafish behaviors (Zebrafish Behavior Catalog, ZBC) that covers both larval and adult models. Representing a beginning of creating a more comprehensive ethogram of zebrafish behavior, this effort will improve interpretation of published findings, foster cross-species behavioral modeling, and encourage new groups to apply zebrafish neurobehavioral paradigms in their research. In addition, this glossary creates a framework for developing a zebrafish neurobehavioral ontology, ultimately to become part of a unified animal neurobehavioral ontology, which collectively will contribute to better integration of biological data within and across species.
Collapse
Affiliation(s)
- Allan V Kalueff
- Department of Pharmacology and Neuroscience Program, Tulane University Medical School, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Nguyen M, Poudel MK, Stewart AM, Kalueff AV. Skin too thin? The developing utility of zebrafish skin (neuro)pharmacology for CNS drug discovery research. Brain Res Bull 2013; 98:145-54. [DOI: 10.1016/j.brainresbull.2013.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 08/25/2013] [Accepted: 08/26/2013] [Indexed: 01/04/2023]
|
6
|
Maurer CM, Huang YY, Neuhauss SCF. Application of zebrafish oculomotor behavior to model human disorders. Rev Neurosci 2011; 22:5-16. [PMID: 21615257 DOI: 10.1515/rns.2011.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To ensure high acuity vision, eye movements have to be controlled with astonishing precision by the oculomotor system. Many human diseases can lead to abnormal eye movements, typically of the involuntary oscillatory eye movements type called nystagmus. Such nystagmus can be congenital (infantile) or acquired later in life. Although the resulting eye movements are well characterized, there is only little information about the underlying etiology. This is in part owing to the lack of appropriate animal models. In this review article, we describe how the zebrafish with its quick maturing visual system can be used to model oculomotor pathologies. We compare the characteristics and assessment of human and zebrafish eye movements. We describe the oculomotor properties of the zebrafish mutant belladonna, which has non-crossing optical fibers, and is a particularly informative model for human oculomotor deficits. This mutant displays a reverse optokinetic response, spontaneous oscillations that closely mimic human congenital nystagmus and abnormal motor behavior linked to circular vection.
Collapse
Affiliation(s)
- Colette M Maurer
- University of Zurich, Institute of Molecular Life Sciences, Neuroscience Center Zurich and Center for Integrative Human Physiology, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | |
Collapse
|