1
|
Hudgins AD, Zhou S, Arey RN, Rosenfeld MG, Murphy CT, Suh Y. A systems biology-based identification and in vivo functional screening of Alzheimer's disease risk genes reveal modulators of memory function. Neuron 2024; 112:2112-2129.e4. [PMID: 38692279 PMCID: PMC11223975 DOI: 10.1016/j.neuron.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/18/2023] [Accepted: 04/08/2024] [Indexed: 05/03/2024]
Abstract
Genome-wide association studies (GWASs) have uncovered over 75 genomic loci associated with risk for late-onset Alzheimer's disease (LOAD), but identification of the underlying causal genes remains challenging. Studies of induced pluripotent stem cell (iPSC)-derived neurons from LOAD patients have demonstrated the existence of neuronal cell-intrinsic functional defects. Here, we searched for genetic contributions to neuronal dysfunction in LOAD using an integrative systems approach that incorporated multi-evidence-based gene mapping and network-analysis-based prioritization. A systematic perturbation screening of candidate risk genes in Caenorhabditis elegans (C. elegans) revealed that neuronal knockdown of the LOAD risk gene orthologs vha-10 (ATP6V1G2), cmd-1 (CALM3), amph-1 (BIN1), ephx-1 (NGEF), and pho-5 (ACP2) alters short-/intermediate-term memory function, the cognitive domain affected earliest during LOAD progression. These results highlight the impact of LOAD risk genes on evolutionarily conserved memory function, as mediated through neuronal endosomal dysfunction, and identify new targets for further mechanistic interrogation.
Collapse
Affiliation(s)
- Adam D Hudgins
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Shiyi Zhou
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Rachel N Arey
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Michael G Rosenfeld
- Department of Medicine, School of Medicine, University of California, La Jolla, CA, USA; Howard Hughes Medical Institute, University of California, La Jolla, CA, USA
| | - Coleen T Murphy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA; LSI Genomics, Princeton University, Princeton, NJ, USA.
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
2
|
Medina‐Moreno A, Henríquez JP. Maturation of a postsynaptic domain: Role of small Rho GTPases in organising nicotinic acetylcholine receptor aggregates at the vertebrate neuromuscular junction. J Anat 2022; 241:1148-1156. [PMID: 34342888 PMCID: PMC9558164 DOI: 10.1111/joa.13526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
The neuromuscular junction (NMJ) is the peripheral synapse formed between a motor axon and a skeletal muscle fibre that allows muscle contraction and the coordinated movement in many species. A main hallmark of the mature NMJ is the assembly of nicotinic acetylcholine receptor (nAChR) aggregates in the muscle postsynaptic domain, that distributes in perfect apposition to presynaptic motor terminals. To assemble its unique functional architecture, initial embryonic NMJs undergo an early postnatal maturation process characterised by the transformation of homogenous nAChR-containing plaques to elaborate and branched pretzel-like structures. In spite of a detailed morphological characterisation, the molecular mechanisms controlling the intracellular scaffolding that organises a postsynaptic domain at the mature NMJ have not been fully elucidated. In this review, we integrate evidence of key processes and molecules that have shed light on our current understanding of the NMJ maturation process. On the one hand, we consider in vitro studies revealing the potential role of podosome-like structures to define discrete low nAChR-containing regions to consolidate a plaque-to-pretzel transition at the NMJ. On the other hand, we focus on in vitro and in vivo evidence demonstrating that members of the Ras homologous (Rho) protein family of small GTPases (small Rho GTPases) play indispensable roles on NMJ maturation by regulating the stability of nAChR aggregates. We combine this evidence to propose that small Rho GTPases are key players in the assembly of podosome-like structures that drive the postsynaptic maturation of vertebrate NMJs.
Collapse
Affiliation(s)
- Angelymar Medina‐Moreno
- Laboratory of Neuromuscular Studies (NeSt Lab)Department of Cell BiologyFaculty of Biological SciencesCenter for Advanced Microscopy (CMA BioBio)Universidad de ConcepciónConcepciónChile
| | - Juan Pablo Henríquez
- Laboratory of Neuromuscular Studies (NeSt Lab)Department of Cell BiologyFaculty of Biological SciencesCenter for Advanced Microscopy (CMA BioBio)Universidad de ConcepciónConcepciónChile
| |
Collapse
|
3
|
Liu C, Han S, Zheng J, Wang H, Li S, Li J. EphA4 regulates white matter remyelination after ischemic stroke through Ephexin-1/RhoA/ROCK signaling pathway. Glia 2022; 70:1971-1991. [PMID: 35762396 DOI: 10.1002/glia.24232] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/06/2022] [Accepted: 06/16/2022] [Indexed: 11/07/2022]
Abstract
Ischemic stroke, which accounts for nearly 80% of all strokes, leads to white matter injury and neurobehavioral dysfunction, but relevant therapies to inhibit demyelination or promote remyelination after white matter injury are still unavailable. In this study, the middle cerebral artery occlusion/reperfusion (MCAO/R) in vivo and oxygen-glucose deprivation/reoxygenation (OGD/R) in vitro were used to establish the ischemic models. We found that Eph receptor A4 (EphA4) had no effect on the apoptosis of oligodendrocytes using TUNEL staining. In contrast, EphA4 promoted proliferation of oligodendrocyte precursor cells (OPCs), but reduced the numbers of mature oligodendrocytes and the levels of myelin-associated proteins (MAG, MOG, and MBP) in the process of remyelination in ischemic models in vivo and in vitro as determined using PDGFRα-EphA4-shRNA and LV-EphA4 treatments. Notably, conditional knockout of EphA4 in OPCs (EphA4fl/fl + AAV-PDGFRα-Cre) improved the levels of myelin-associated proteins and functional recovery following ischemic stroke. In addition, regulation of remyelination by EphA4 was mediated by the Ephexin-1/RhoA/ROCK signaling pathway. Therefore, EphA4 did not affect oligodendrocyte (OL) apoptosis but regulated white matter remyelination after ischemic stroke through the Ephexin-1/RhoA/ROCK signaling pathway. EphA4 may provide a novel and effective therapeutic target in clinical practice of ischemic stroke.
Collapse
Affiliation(s)
- Cui Liu
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Song Han
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Jiayin Zheng
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Hongyu Wang
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Shujuan Li
- The Neurological Department, Fu Wai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Junfa Li
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, School of Basic Medical Science, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Angiotensin II and the Cardiac Parasympathetic Nervous System in Hypertension. Int J Mol Sci 2021; 22:ijms222212305. [PMID: 34830184 PMCID: PMC8624735 DOI: 10.3390/ijms222212305] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/08/2023] Open
Abstract
The renin-angiotensin-aldosterone system (RAAS) impacts cardiovascular homeostasis via direct actions on peripheral blood vessels and via modulation of the autonomic nervous system. To date, research has primarily focused on the actions of the RAAS on the sympathetic nervous system. Here, we review the critical role of the RAAS on parasympathetic nerve function during normal physiology and its role in cardiovascular disease, focusing on hypertension. Angiotensin (Ang) II receptors are present throughout the parasympathetic nerves and can modulate vagal activity via actions at the level of the nerve endings as well as via the circumventricular organs and as a neuromodulator acting within brain regions. There is tonic inhibition of cardiac vagal tone by endogenous Ang II. We review the actions of Ang II via peripheral nerve endings as well as via central actions on brain regions. We review the evidence that Ang II modulates arterial baroreflex function and examine the pathways via which Ang II can modulate baroreflex control of cardiac vagal drive. Although there is evidence that Ang II can modulate parasympathetic activity and has the potential to contribute to impaired baseline levels and impaired baroreflex control during hypertension, the exact central regions where Ang II acts need further investigation. The beneficial actions of angiotensin receptor blockers in hypertension may be mediated in part via actions on the parasympathetic nervous system. We highlight important unknown questions about the interaction between the RAAS and the parasympathetic nervous system and conclude that this remains an important area where future research is needed.
Collapse
|
5
|
FYN is required for ARHGEF16 to promote proliferation and migration in colon cancer cells. Cell Death Dis 2020; 11:652. [PMID: 32811808 PMCID: PMC7435200 DOI: 10.1038/s41419-020-02830-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/30/2022]
Abstract
ARHGEF16 is a recently identified Rho-family guanine nucleotide exchange factor (GEF) that has been implicated in the activation of Rho-family GTPases such as Rho G, Rac, and Cdc42. However, its functions in colon cancer cell proliferation and migration are not well understood. In this study, we showed that ARHGEF16 was highly expressed in clinical specimens of colon cancer. In colon cancer cells, ARHGEF16-stimulated proliferation and migration in vitro and in vivo. Furthermore, we identified a nonreceptor tyrosine kinase, FYN, as a novel partner of ARHGEF16. Knocking down FYN expression decreased ARHGEF16 protein level in colon cancer cells. We further demonstrated that ARHGEF16-induced colon cancer cell proliferation and migration were dependent on FYN since knockdown FYN abolished the ARHGEF16-induced proliferation and migration of colon cancer cells. The FYN-ARHGEF16 axis mediates colon cancer progression and is a potential therapeutic target for colon cancer treatment.
Collapse
|
6
|
Emerging Roles of Ephexins in Physiology and Disease. Cells 2019; 8:cells8020087. [PMID: 30682817 PMCID: PMC6406967 DOI: 10.3390/cells8020087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 12/25/2022] Open
Abstract
Dbl (B-cell lymphoma)-related guanine nucleotide exchange factors (GEFs), the largest family of GEFs, are directly responsible for the activation of Rho family GTPases and essential for a number of cellular events such as proliferation, differentiation and movement. The members of the Ephexin (Eph-interacting exchange protein) family, a subgroup of Dbl GEFs, initially were named for their interaction with Eph receptors and sequence homology with Ephexin1. Although the first Ephexin was identified about two decades ago, their functions in physiological and pathological contexts and regulatory mechanisms remained elusive until recently. Ephexins are now considered as GEFs that can activate Rho GTPases such as RhoA, Rac, Cdc42, and RhoG. Moreover, Ephexins have been shown to have pivotal roles in neural development, tumorigenesis, and efferocytosis. In this review, we discuss the known and proposed functions of Ephexins in physiological and pathological contexts, as well as their regulatory mechanisms.
Collapse
|
7
|
Bai Y, Guo D, Sun X, Tang G, Liao T, Peng Y, Xu J, Shi L. Balanced Rac1 activity controls formation and maintenance of neuromuscular acetylcholine receptor clusters. J Cell Sci 2018; 131:jcs.215251. [PMID: 30012833 DOI: 10.1242/jcs.215251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/02/2018] [Indexed: 11/20/2022] Open
Abstract
Rac1, an important Rho GTPase that regulates the actin cytoskeleton, has long been suggested to participate in acetylcholine receptor (AChR) clustering at the postsynaptic neuromuscular junction. However, how Rac1 is regulated and how it influences AChR clusters have remained unexplored. This study shows that breaking the balance of Rac1 regulation, by either increasing or decreasing its activity, led to impaired formation and maintenance of AChR clusters. By manipulating Rac1 activity at different stages of AChR clustering in cultured myotubes, we show that Rac1 activation was required for the initial formation of AChR clusters, but its persistent activation led to AChR destabilization, and uncontrolled hyperactivation of Rac1 even caused excessive myotube fusion. Both AChR dispersal and myotube fusion induced by Rac1 were dependent on its downstream effector Pak1. Two Rac1 GAPs and six Rac1 GEFs were screened and found to be important for normal AChR clustering. This study reveals that, although general Rac1 activity remains at low levels during terminal differentiation of myotubes and AChR cluster maintenance, tightly regulated Rac1 activity controls normal AChR clustering.
Collapse
Affiliation(s)
- Yanyang Bai
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Daji Guo
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xiaoyu Sun
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Genyun Tang
- Department of Medical Genetics, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua 418000, Hunan, China
| | - Tailin Liao
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Yinghui Peng
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Junyu Xu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Lei Shi
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| |
Collapse
|
8
|
Increased EphA4-ephexin1 signaling in the medial prefrontal cortex plays a role in depression-like phenotype. Sci Rep 2017; 7:7133. [PMID: 28769056 PMCID: PMC5541046 DOI: 10.1038/s41598-017-07325-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/23/2017] [Indexed: 02/02/2023] Open
Abstract
Accumulating evidence suggests a role of the ephrin receptor EphA4 and the downstream protein ephexin1 in synaptic plasticity, which is implicated in depression. We examined whether EphA4–ephexin1 signaling plays a role in the pathophysiology of depression, and the antidepressant-like effect of EphA4 inhibitor rhynchophylline. We found increased ratios of p-EphA4/EphA4 and p-ephexin1/ephexin1 in the prefrontal cortex (PFC) and hippocampus but not in the nucleus accumbens (NAc), of susceptible mice after social defeat stress. Furthermore, the p-EphA4/EphA4 ratio was higher in the parietal cortex of depressed patients compared with controls. Systemic administration of rhynchophylline, produced a rapid antidepressant-like effect in a social defeat stress model by inhibiting EphA4–ephexin1 signaling and activating brain-derived neurotrophic factor-TrkB signaling in the PFC and hippocampus. Pretreatment with rhynchophylline before each social defeat stress could prevent the onset of the depression-like phenotype after repeated social defeat stress. Overexpression of EphA4 in the medial PFC owing to infection with an EphA4 adeno-associated virus caused the depression-like phenotype 3 weeks later and rhynchophylline had a rapid antidepressant-like effect in these mice. These findings suggest that increased EphA4–ephexin1 signaling in the PFC plays a role in the pathophysiology of depression.
Collapse
|
9
|
Nakamura Y, Morrow DH, Modgil A, Huyghe D, Deeb TZ, Lumb MJ, Davies PA, Moss SJ. Proteomic Characterization of Inhibitory Synapses Using a Novel pHluorin-tagged γ-Aminobutyric Acid Receptor, Type A (GABAA), α2 Subunit Knock-in Mouse. J Biol Chem 2016; 291:12394-407. [PMID: 27044742 DOI: 10.1074/jbc.m116.724443] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Indexed: 11/06/2022] Open
Abstract
The accumulation of γ-aminobutyric acid receptors (GABAARs) at the appropriate postsynaptic sites is critical for determining the efficacy of fast inhibitory neurotransmission. Although we know that the majority of synaptic GABAAR subtypes are assembled from α1-3, β, and γ2 subunits, our understanding of how neurons facilitate their targeting to and stabilization at inhibitory synapses is rudimentary. To address these issues, we have created knock-in mice in which the pH-sensitive green fluorescent protein (GFP) and the Myc epitope were introduced to the extracellular domain of the mature receptor α2 subunit (pHα2). Using immunoaffinity purification and mass spectroscopy, we identified a stable complex of 174 proteins that were associated with pHα2, including other GABAAR subunits, and previously identified receptor-associated proteins such as gephyrin and collybistin. 149 of these proteins were novel GABAAR binding partners and included G-protein-coupled receptors and ion channel subunits, proteins that regulate trafficking and degradation, regulators of protein phosphorylation, GTPases, and a number of proteins that regulate their activity. Notably, members of the postsynaptic density family of proteins that are critical components of excitatory synapses were not associated with GABAARs. Crucially, we demonstrated for a subset of these novel proteins (including cullin1, ephexin, potassium channel tetramerization domain containing protein 12, mitofusin2, metabotropic glutamate receptor 5, p21-activated kinase 7, and Ras-related protein 5A) bind directly to the intracellular domains of GABAARs, validating our proteomic analysis. Thus, our experiments illustrate the complexity of the GABAAR proteome and enhance our understanding of the mechanisms neurons use to construct inhibitory synapses.
Collapse
Affiliation(s)
- Yasuko Nakamura
- From the Department of Neuroscience, Tufts University School of Medicine, Boston Massachusetts 02111 and
| | - Danielle H Morrow
- From the Department of Neuroscience, Tufts University School of Medicine, Boston Massachusetts 02111 and
| | - Amit Modgil
- From the Department of Neuroscience, Tufts University School of Medicine, Boston Massachusetts 02111 and
| | - Deborah Huyghe
- From the Department of Neuroscience, Tufts University School of Medicine, Boston Massachusetts 02111 and
| | - Tarek Z Deeb
- From the Department of Neuroscience, Tufts University School of Medicine, Boston Massachusetts 02111 and
| | - Michael J Lumb
- the Department of Neuroscience, Physiology and Pharmacology, University College, London WC1E 6BT, United Kingdom
| | - Paul A Davies
- From the Department of Neuroscience, Tufts University School of Medicine, Boston Massachusetts 02111 and
| | - Stephen J Moss
- From the Department of Neuroscience, Tufts University School of Medicine, Boston Massachusetts 02111 and the Department of Neuroscience, Physiology and Pharmacology, University College, London WC1E 6BT, United Kingdom
| |
Collapse
|
10
|
Dystrophin induced cognitive impairment: mechanisms, models and therapeutic strategies. Ann Neurosci 2015; 22:108-18. [PMID: 26130916 PMCID: PMC4480258 DOI: 10.5214/ans.0972.7531.221210] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 01/19/2015] [Accepted: 03/05/2015] [Indexed: 12/13/2022] Open
Abstract
Existence of conserved domains in dystrophin and its associated complexes provide an opportunity to understand the role of dystrophin associated signalling and its association with neuronal metabolism in a variety of model organisms. We critically reviewed the studies till 2013 through established search engines and databases. Thus, we review the role of dystrophin and its isoforms in different animal models at developmental stages in the neuronal metabolism to enhance the therapeutic strategies. Dystrophin interacts with other proteins in such a way that, when affected, it results in co-morbidities including autism and other neuropsychiatric disorders. It is speculated that various signalling molecules may converge to disrupt neuronal metabolism not adequately studied. TGF-β, RhoGAP and CAM mediated signalling molecules are the chief cause of mortalities due to respiratory and cardiac involvement but remain underevaluated targets for cognitive impairment in DMD/BMD. Manipulation of these signalling pathways could be potent intervention in dystrophin induced cognitive impairment while complementary therapeutic approaches may also be helpful in the treatment of cognitive impairment associated with DMD/BMD.
Collapse
|
11
|
López AJ, Wood MA. Role of nucleosome remodeling in neurodevelopmental and intellectual disability disorders. Front Behav Neurosci 2015; 9:100. [PMID: 25954173 PMCID: PMC4407585 DOI: 10.3389/fnbeh.2015.00100] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/06/2015] [Indexed: 12/20/2022] Open
Abstract
It is becoming increasingly important to understand how epigenetic mechanisms control gene expression during neurodevelopment. Two epigenetic mechanisms that have received considerable attention are DNA methylation and histone acetylation. Human exome sequencing and genome-wide association studies have linked several neurobiological disorders to genes whose products actively regulate DNA methylation and histone acetylation. More recently, a third major epigenetic mechanism, nucleosome remodeling, has been implicated in human developmental and intellectual disability (ID) disorders. Nucleosome remodeling is driven primarily through nucleosome remodeling complexes with specialized ATP-dependent enzymes. These enzymes directly interact with DNA or chromatin structure, as well as histone subunits, to restructure the shape and organization of nucleosome positioning to ultimately regulate gene expression. Of particular interest is the neuron-specific Brg1/hBrm Associated Factor (nBAF) complex. Mutations in nBAF subunit genes have so far been linked to Coffin-Siris syndrome (CSS), Nicolaides-Baraitser syndrome (NBS), schizophrenia, and Autism Spectrum Disorder (ASD). Together, these human developmental and ID disorders are powerful examples of the impact of epigenetic modulation on gene expression. This review focuses on the new and emerging role of nucleosome remodeling in neurodevelopmental and ID disorders and whether nucleosome remodeling affects gene expression required for cognition independently of its role in regulating gene expression required for development.
Collapse
Affiliation(s)
- Alberto J López
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California Irvine Irvine, CA, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California Irvine Irvine, CA, USA
| |
Collapse
|
12
|
Rosas OR, Torrado AI, Santiago JM, Rodriguez AE, Salgado IK, Miranda JD. Long-term treatment with PP2 after spinal cord injury resulted in functional locomotor recovery and increased spared tissue. Neural Regen Res 2015; 9:2164-73. [PMID: 25657738 PMCID: PMC4316450 DOI: 10.4103/1673-5374.147949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2014] [Indexed: 02/06/2023] Open
Abstract
The spinal cord has the ability to regenerate but the microenvironment generated after trauma reduces that capacity. An increase in Src family kinase (SFK) activity has been implicated in neuropathological conditions associated with central nervous system trauma. Therefore, we hypothesized that a decrease in SFK activation by a long-term treatment with 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyramidine (PP2), a selective SFK inhibitor, after spinal cord contusion with the New York University (NYU) impactor device would generate a permissive environment that improves axonal sprouting and/or behavioral activity. Results demonstrated that long-term blockade of SFK activation with PP2 increases locomotor activity at 7, 14, 21 and 28 days post-injury in the Basso, Beattie, and Bresnahan open field test, round and square beam crossing tests. In addition, an increase in white matter spared tissue and serotonin fiber density was observed in animals treated with PP2. However, blockade of SFK activity did not change the astrocytic response or infiltration of cells from the immune system at 28 days post-injury. Moreover, a reduced SFK activity with PP2 diminished Ephexin (a guanine nucleotide exchange factor) phosphorylation in the acute phase (4 days post-injury) after trauma. Together, these findings suggest a potential role of SFK in the regulation of spared tissue and/or axonal outgrowth that may result in functional locomotor recovery during the pathophysiology generated after spinal cord injury. Our study also points out that ephexin1 phosphorylation (activation) by SFK action may be involved in the repulsive microenvironment generated after spinal cord injury.
Collapse
Affiliation(s)
- Odrick R Rosas
- Department of Physiology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
| | - Aranza I Torrado
- Department of Physiology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
| | - Jose M Santiago
- Department of Natural Sciences, University of Puerto Rico Carolina Campus, Carolina, PR, USA
| | - Ana E Rodriguez
- Department of Physiology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
| | - Iris K Salgado
- Department of Physiology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
| | - Jorge D Miranda
- Department of Physiology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
| |
Collapse
|
13
|
Frank CA. Homeostatic plasticity at the Drosophila neuromuscular junction. Neuropharmacology 2013; 78:63-74. [PMID: 23806804 DOI: 10.1016/j.neuropharm.2013.06.015] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/31/2013] [Accepted: 06/11/2013] [Indexed: 02/07/2023]
Abstract
In biology, homeostasis refers to how cells maintain appropriate levels of activity. This concept underlies a balancing act in the nervous system. Synapses require flexibility (i.e. plasticity) to adjust to environmental challenges. Yet there must also exist regulatory mechanisms that constrain activity within appropriate physiological ranges. An abundance of evidence suggests that homeostatic regulation is critical in this regard. In recent years, important progress has been made toward identifying molecules and signaling processes required for homeostatic forms of neuroplasticity. The Drosophila melanogaster third instar larval neuromuscular junction (NMJ) has been an important experimental system in this effort. Drosophila neuroscientists combine genetics, pharmacology, electrophysiology, imaging, and a variety of molecular techniques to understand how homeostatic signaling mechanisms take shape at the synapse. At the NMJ, homeostatic signaling mechanisms couple retrograde (muscle-to-nerve) signaling with changes in presynaptic calcium influx, changes in the dynamics of the readily releasable vesicle pool, and ultimately, changes in presynaptic neurotransmitter release. Roles in these processes have been demonstrated for several molecules and signaling systems discussed here. This review focuses primarily on electrophysiological studies or data. In particular, attention is devoted to understanding what happens when NMJ function is challenged (usually through glutamate receptor inhibition) and the resulting homeostatic responses. A significant area of study not covered in this review, for the sake of simplicity, is the homeostatic control of synapse growth, which naturally, could also impinge upon synapse function in myriad ways. This article is part of the Special Issue entitled 'Homeostatic Synaptic Plasticity'.
Collapse
Affiliation(s)
- C Andrew Frank
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
14
|
Proszynski TJ, Sanes JR. Amotl2 interacts with LL5β, localizes to podosomes and regulates postsynaptic differentiation in muscle. J Cell Sci 2013; 126:2225-35. [PMID: 23525008 DOI: 10.1242/jcs.121327] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Neuromuscular junctions (NMJs) in mammalian skeletal muscle undergo a postnatal topological transformation from a simple oval plaque to a complex branched structure. We previously showed that podosomes, actin-rich adhesive organelles, promote the remodeling process, and demonstrated a key role for one podosome component, LL5β. To further investigate molecular mechanisms of postsynaptic maturation, we purified LL5β-associated proteins from myotubes and showed that three regulators of the actin cytoskeleton--Amotl2, Asef2 and Flii--interact with LL5β. These and other LL5β-interacting proteins are associated with conventional podosomes in macrophages and podosome-like invadopodia in fibroblasts, strengthening the close relationship between synaptic and non-synaptic podosomes. We then focused on Amotl2, showing that it is associated with synaptic podosomes in cultured myotubes and with NMJs in vivo. Depletion of Amotl2 in myotubes leads to increased size of synaptic podosomes and corresponding alterations in postsynaptic topology. Depletion of Amotl2 from fibroblasts disrupts invadopodia in these cells. These results demonstrate a role for Amotl2 in synaptic maturation and support the involvement of podosomes in this process.
Collapse
Affiliation(s)
- Tomasz J Proszynski
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
15
|
Molecular mechanisms underlying maturation and maintenance of the vertebrate neuromuscular junction. Trends Neurosci 2012; 35:441-53. [PMID: 22633140 DOI: 10.1016/j.tins.2012.04.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/09/2012] [Accepted: 04/15/2012] [Indexed: 01/22/2023]
Abstract
The vertebrate neuromuscular junction (NMJ), a peripheral synapse formed between motoneuron and skeletal muscle, is characterized by a protracted postnatal period of maturation and life-long maintenance. In neuromuscular disorders such as congenital myasthenic syndromes (CMSs), disruptions of NMJ maturation and/or maintenance are frequently observed. In particular, defective neuromuscular transmission associated with structural and molecular abnormalities at the pre- and postsynaptic membranes, as well as at the synaptic cleft, has been reported in these patients. Here, we review recent advances in the understanding of molecular and cellular events that mediate NMJ maturation and maintenance. The underlying regulatory mechanisms, including key molecular regulators at the presynaptic nerve terminal, synaptic cleft, and postsynaptic muscle membrane, are discussed.
Collapse
|