1
|
Dahl TM, Baehr W. Review: Cytoplasmic dynein motors in photoreceptors. Mol Vis 2021; 27:506-517. [PMID: 34526758 PMCID: PMC8410232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/30/2021] [Indexed: 12/04/2022] Open
Abstract
Cytoplasmic dyneins (dynein-1 and dynein-2) transport cargo toward the minus end of microtubules and thus, are termed the "retrograde" cellular motor. Dynein-1 cargo may include nuclei, mitochondria, membrane vesicles, lysosomes, phagosomes, and other organelles. For example, dynein-1 works in the cell body of eukaryotes to move cargo toward the microtubule minus end and positions the Golgi complex. Dynein-1 also participates in the movement of chromosomes and the positioning of mitotic spindles during cell division. In contrast, dynein-2 is present almost exclusively within cilia where it participates in retrograde intraflagellar transport (IFT) along the axoneme to return kinesin-2 subunits, BBSome, and IFT particles to the cell body. Cytoplasmic dyneins are hefty 1.5 MDa complexes comprised of dimers of heavy, intermediate, light intermediate, and light chains. Missense mutations of human DYNC1H1 are associated with malformations of cortical development (MCD) or spinal muscular atrophy with lower extremity predominance (SMA-LED). Missense mutations in DYNC2H1 are causative of short-rib polydactyly syndrome type III and nonsyndromic retinitis pigmentosa. We review mutations of the two dynein heavy chains and their effect on postnatal retina development and discuss consequences of deletion of DYNC1H1 in the mouse retina.
Collapse
Affiliation(s)
- Tiffanie M. Dahl
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, UT
| | - Wolfgang Baehr
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, UT,Department of Neurobiology & Anatomy, University of Utah, Salt Lake City, UT,Department of Biology, University of Utah, Salt Lake City, UT
| |
Collapse
|
2
|
Silva-Del Toro SL, Allen LAH. Microtubules and Dynein Regulate Human Neutrophil Nuclear Volume and Hypersegmentation During H. pylori Infection. Front Immunol 2021; 12:653100. [PMID: 33828562 PMCID: PMC8019731 DOI: 10.3389/fimmu.2021.653100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/24/2021] [Indexed: 11/13/2022] Open
Abstract
Neutrophils (also called polymorphonuclear leukocytes, PMNs) are heterogeneous and can exhibit considerable phenotypic and functional plasticity. In keeping with this, we discovered previously that Helicobacter pylori infection induces N1-like subtype differentiation of human PMNs that is notable for profound nuclear hypersegmentation. Herein, we utilized biochemical approaches and confocal and super-resolution microscopy to gain insight into the underlying molecular mechanisms. Sensitivity to inhibition by nocodazole and taxol indicated that microtubule dynamics were required to induce and sustain hypersegmentation, and super-resolution Stimulated Emission Depletion (STED) imaging demonstrated that microtubules were significantly more abundant and longer in hypersegmented cells. Dynein activity was also required, and enrichment of this motor protein at the nuclear periphery was enhanced following H. pylori infection. In contrast, centrosome splitting did not occur, and lamin B receptor abundance and ER morphology were unchanged. Finally, analysis of STED image stacks using Imaris software revealed that nuclear volume increased markedly prior to the onset of hypersegmentation and that nuclear size was differentially modulated by nocodazole and taxol in the presence and absence of infection. Taken together, our data define a new mechanism of hypersegmentation that is mediated by microtubules and dynein and as such advance understanding of processes that regulate nuclear morphology.
Collapse
Affiliation(s)
- Stephanie L Silva-Del Toro
- Inflammation Program of the University of Iowa, Iowa City, IA, United States.,Immunology Graduate Program of the University of Iowa, Iowa City, IA, United States
| | - Lee-Ann H Allen
- Inflammation Program of the University of Iowa, Iowa City, IA, United States.,Immunology Graduate Program of the University of Iowa, Iowa City, IA, United States.,Department of Internal Medicine, University of Iowa, Iowa City, IA, United States.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States.,Iowa City VA Healthcare System, Iowa City, IA, United States
| |
Collapse
|
3
|
Abstract
To evaluate the intracellular force transmission between the nucleus and cytoskeleton, we optimized a single cell-based assay that involves the manipulation of living, adherent cells with a fine glass microneedle and a microscope-mounted micromanipulator. The user inserts the microneedle into the cytoplasm and then, using a custom-programmable computer script, pulls the needle laterally toward the cell periphery. Normalized cross-correlation is applied to recorded time-lapse image sequences to determine average displacements within predefined regions of the nucleus and the cytoskeleton. These regional displacements, together with calculations of nuclear elongation, nuclear centroid translocation, and nuclear shape changes, enable quantitative assessments of nucleo-cytoskeletal coupling in both normal and disease conditions and provide an improved understanding of the role of specific nuclear envelope proteins in intracellular force propagation.
Collapse
Affiliation(s)
- Gregory Fedorchak
- School of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, 235 Weill Hall, Ithaca, NY, 14853-7202, USA
| | - Jan Lammerding
- School of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, 235 Weill Hall, Ithaca, NY, 14853-7202, USA.
| |
Collapse
|
4
|
Thom CS, Traxler EA, Khandros E, Nickas JM, Zhou OY, Lazarus JE, Silva APG, Prabhu D, Yao Y, Aribeana C, Fuchs SY, Mackay JP, Holzbaur ELF, Weiss MJ. Trim58 degrades Dynein and regulates terminal erythropoiesis. Dev Cell 2014; 30:688-700. [PMID: 25241935 DOI: 10.1016/j.devcel.2014.07.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 04/24/2014] [Accepted: 07/28/2014] [Indexed: 01/23/2023]
Abstract
TRIM58 is an E3 ubiquitin ligase superfamily member implicated by genome-wide association studies to regulate human erythrocyte traits. Here, we show that Trim58 expression is induced during late erythropoiesis and that its depletion by small hairpin RNAs (shRNAs) inhibits the maturation of late-stage nucleated erythroblasts to anucleate reticulocytes. Imaging flow cytometry studies demonstrate that Trim58 regulates polarization and/or extrusion of erythroblast nuclei. In vitro, Trim58 directly binds and ubiquitinates the intermediate chain of the microtubule motor dynein. In cells, Trim58 stimulates proteasome-dependent degradation of the dynein holoprotein complex. During erythropoiesis, Trim58 expression, dynein loss, and enucleation occur concomitantly, and all are inhibited by Trim58 shRNAs. Dynein regulates nuclear positioning and microtubule organization, both of which undergo dramatic changes during erythroblast enucleation. Thus, we propose that Trim58 promotes this process by eliminating dynein. Our findings identify an erythroid-specific regulator of enucleation and elucidate a previously unrecognized mechanism for controlling dynein activity.
Collapse
Affiliation(s)
- Christopher S Thom
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth A Traxler
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eugene Khandros
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jenna M Nickas
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Olivia Y Zhou
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jacob E Lazarus
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ana P G Silva
- School of Molecular Bioscience, The University of Sydney, Sydney NSW 2006, Australia
| | - Dolly Prabhu
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yu Yao
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Chiaka Aribeana
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Serge Y Fuchs
- Department of Animal Biology and Mari Lowe Comparative Oncology Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joel P Mackay
- School of Molecular Bioscience, The University of Sydney, Sydney NSW 2006, Australia
| | - Erika L F Holzbaur
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mitchell J Weiss
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Hayakawa A, Babour A, Sengmanivong L, Dargemont C. Ubiquitylation of the nuclear pore complex controls nuclear migration during mitosis in S. cerevisiae. ACTA ACUST UNITED AC 2012; 196:19-27. [PMID: 22213798 PMCID: PMC3255970 DOI: 10.1083/jcb.201108124] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A systematic analysis revealed that the nuclear pore complex is extensively modified by ubiquitin and that ubiquitylation of the NPC component Nup159 is required for dynein light chain targeting to the NPC and proper nuclear segregation during mitosis. Nuclear pore complexes (NPCs) correspond to large protein transport complexes responsible for selective nucleocytoplasmic exchange. Although research has revealed much about the molecular architecture and roles of the NPC subcomplexes, little is known about the regulation of NPC functions by posttranslational modifications. We used a systematic approach to show that more than half of NPC proteins were conjugated to ubiquitin. In particular, Nup159, a nucleoporin exclusively located on the cytoplasmic side of the NPC, was monoubiquitylated by the Cdc34/SCF (Skp1–Cdc53–F-box E3 ligase) enzymes. Preventing this modification had no consequences on nuclear transport or NPC organization but strongly affected the ability of Nup159 to target the dynein light chain to the NPC. This led to defects in nuclear segregation at the onset of mitosis. Thus, defining ubiquitylation of the yeast NPC highlights yet-unexplored functions of this essential organelle in cell division.
Collapse
Affiliation(s)
- Akira Hayakawa
- Institut Jacques Monod, University Paris Diderot, Sorbonne Paris Cité, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Cedex 13, 75205 Paris, France
| | | | | | | |
Collapse
|