1
|
Chen C, Hui Y, Chen Y, Qian C, Sun M. Loss of c-Cbl expression correlates with de-differentiation status and lymphatic metastasis in gastric cancer. INDIAN J PATHOL MICR 2019; 62:549-555. [PMID: 31611438 DOI: 10.4103/ijpm.ijpm_824_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Context C-Cbl is an important negative regulator of the cell signaling that acts as an adaptor protein and E3 ubiquitin ligase. The role of c-Cbl in development and regulation of human cancer has aroused intensive attention. Aims In this study, we aimed to assess the correlation between the expression of c-Cbl and clinicopathological parameters and explored the role of c-Cbl in the development and progression of GC. Settings and Design This is a Pilot study. Methods and Materials In total, 84 tissue samples including 44 gastric cancers (GC) and 40 matched adjacent normal tissues were collected after surgery. Then tissue microarray (TMA) and immunohistochemistry (IHC) technology were combined to detect the protein expression of c-Cbl. Statistical Analysis Used Statistical analysis was performed using SPSS 22.0 (IBM Corporation, Armonk, NY, USA). Results We have studied the correlation between c-Cbl expression and clinicopathological parameters. Our study showed that c-Cbl has a low expression in 61.4% (27/44) of GC tissues, and the incidence of cases was significantly higher than that in adjacent normal tissues (P < 0.0001). In addition, the correlation between c-Cbl expression and gastric carcinoma subtype (P = 0.027), histological type (P = 0.033), Borrmann classification (P = 0.009), histological differentiation (P = 0.0005), lymph node metastasis (P = 0.007), and intravascular tumor thrombus (P = 0.036) has also been revealed. Conclusions Our results show that c-Cbl is down-regulated in GC tissues compared with normal gastric tissue, which may play an important role in the development and progression of GC.
Collapse
Affiliation(s)
- Chuchu Chen
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui; Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yi Hui
- Department of Pathology, The People's Hospital of Suzhou National Hi-Tech District, Suzhou, China
| | - Yunzhao Chen
- Department of Pathology, The People's Hospital of Suzhou National Hi-Tech District, Suzhou, China
| | - Chengjia Qian
- Department of General Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Minxuan Sun
- Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| |
Collapse
|
2
|
Casitas B-cell lymphoma (Cbl) proteins protect mammary epithelial cells from proteotoxicity of active c-Src accumulation. Proc Natl Acad Sci U S A 2016; 113:E8228-E8237. [PMID: 27930322 DOI: 10.1073/pnas.1615677113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Casitas B-cell lymphoma (Cbl) family ubiquitin ligases negatively regulate tyrosine kinase-dependent signal transduction by promoting degradation of active kinases. We and others previously reported that loss of Cbl functions caused hyperproliferation in lymphoid and hematopoietic systems. Unexpectedly, Cbl deletion in Cbl-b-null, Cbl-c-null primary mouse mammary epithelial cells (MECs) (Cbl triple-deficiency) induced rapid cell death despite enhanced MAP kinase and AKT activation. Acute Cbl triple-deficiency elicited distinct transcriptional and biochemical responses with partial overlap with previously described cellular reactions to unfolded proteins and oxidative stress. Although the levels of reactive oxygen species were comparable, detergent-insoluble protein aggregates containing phosphorylated c-Src accumulated in Cbl triple-deficient MECs. Treatment with a broad-spectrum kinase inhibitor dasatinib blocked protein aggregate accumulation and restored in vitro organoid formation. This effect is most likely mediated through c-Src because Cbl triple-deficient MECs were able to form organoids upon shRNA-mediated c-Src knockdown. Taking these data together, the present study demonstrates that Cbl family proteins are required to protect MECs from proteotoxic stress-induced cell death by promoting turnover of active c-Src.
Collapse
|
3
|
Morotti A, Rocca S, Carrà G, Saglio G, Brancaccio M. Modeling myeloproliferative neoplasms: From mutations to mouse models and back again. Blood Rev 2016; 31:139-150. [PMID: 27899218 DOI: 10.1016/j.blre.2016.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/28/2016] [Accepted: 11/22/2016] [Indexed: 02/07/2023]
Abstract
Myeloproliferative neoplasms (MPNs) are defined according to the 2008 World Health Organization (WHO) classification and the recent 2016 revision. Over the years, several genetic lesions have been associated with the development of MPNs, with important consequences for identifying unique biomarkers associated with specific neoplasms and for developing targeted therapies. Defining the genotype-phenotype relationship in MPNs is essential to identify driver somatic mutations that promote MPN development and maintenance in order to develop curative targeted therapies. While studies with human samples can identify putative driver mutations, murine models are mandatory to demonstrate the causative role of mutations and for pre-clinical testing of specific therapeutic interventions. This review focuses on MPN mouse models specifically developed to assess the pathogenetic roles of gene mutations found in human patients, as well as murine MPN-like phenotypes identified in genetically modified mice.
Collapse
Affiliation(s)
- Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole, 10, 10043 Orbassano, Italy.
| | - Stefania Rocca
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza, 52, 10126 Torino, Italy.
| | - Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole, 10, 10043 Orbassano, Italy.
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole, 10, 10043 Orbassano, Italy.
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza, 52, 10126 Torino, Italy.
| |
Collapse
|
4
|
An W, Nadeau SA, Mohapatra BC, Feng D, Zutshi N, Storck MD, Arya P, Talmadge JE, Meza JL, Band V, Band H. Loss of Cbl and Cbl-b ubiquitin ligases abrogates hematopoietic stem cell quiescence and sensitizes leukemic disease to chemotherapy. Oncotarget 2016; 6:10498-509. [PMID: 25871390 PMCID: PMC4496370 DOI: 10.18632/oncotarget.3403] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 02/16/2015] [Indexed: 01/15/2023] Open
Abstract
Cbl and Cbl-b are tyrosine kinase-directed RING finger type ubiquitin ligases (E3s) that negatively regulate cellular activation pathways. E3 activity-disrupting human Cbl mutations are associated with myeloproliferative disorders (MPD) that are reproduced in mice with Cbl RING finger mutant knock-in or hematopoietic Cbl and Cbl-b double knockout. However, the role of Cbl proteins in hematopoietic stem cell (HSC) homeostasis, especially in the context of MPD is unclear. Here we demonstrate that HSC expansion and MPD development upon combined Cbl and Cbl-b deletion are dependent on HSCs. Cell cycle analysis demonstrated that DKO HSCs exhibit reduced quiescence associated with compromised reconstitution ability and propensity to undergo exhaustion. We show that sustained c-Kit and FLT3 signaling in DKO HSCs promotes loss of colony-forming potential, and c-Kit or FLT3 inhibition in vitro protects HSCs from exhaustion. In vivo, treatment with 5-fluorouracil hastens DKO HSC exhaustion and protects mice from death due to MPD. Our data reveal a novel and leukemia therapy-relevant role of Cbl and Cbl-b in the maintenance of HSC quiescence and protection against exhaustion, through negative regulation of tyrosine kinase-coupled receptor signaling.
Collapse
Affiliation(s)
- Wei An
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Scott A Nadeau
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bhopal C Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Dan Feng
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Neha Zutshi
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Pathology & Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Matthew D Storck
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Priyanka Arya
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - James E Talmadge
- Departments of Pathology & Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jane L Meza
- College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vimla Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Pathology & Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
5
|
Qu D, Xu XM, Zhang M, Jiang TS, Zhang Y, Li SQ. Cbl participates in shikonin-induced apoptosis by negatively regulating phosphoinositide 3-kinase/protein kinase B signaling. Mol Med Rep 2015; 12:1305-13. [PMID: 25815461 DOI: 10.3892/mmr.2015.3510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 02/11/2015] [Indexed: 11/06/2022] Open
Abstract
Shikonin, a naturally occurring naphthoquinone, exhibits anti-tumorigenic activity. However, its precise mechanisms of action have remained elusive. In the present study, the involvement in the action of shikonin of the ubiquitin ligases Cbl-b and c-Cbl, which are negative regulators of phosphoinositide 3-kinase (PI3K) activation, was investigated. Shikonin was observed to reduce cell viability and induce apoptosis and G2/M phase arrest in lung cancer cells. In addition, shikonin increased the protein levels of B-cell lymphoma 2 (Bcl-2)-associated X and p53 and reduced those of Bcl-2. Additionally, shikonin inhibited PI3k/Akt activity and upregulated Cbl protein expression. In addition, a specific inhibitor of PI3K, LY294002, was observed to have a synergistic effect on the proliferation inhibition and apoptotic induction of A549 cells with shikonin. In conclusion, the results of the present study suggested that Cbl proteins promote shikonin-induced apoptosis by negatively regulating PI3K/Akt signaling in lung cancer cells.
Collapse
Affiliation(s)
- Dan Qu
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xiao-Man Xu
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Meng Zhang
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ting-Shu Jiang
- Department of Respiratory Medicine, Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Yi Zhang
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Sheng-Qi Li
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
6
|
Qu D, Chen YU, Xu XM, Zhang M, Zhang YI, Li SQ. Cbl-b-regulated extracellular signal-regulated kinase signaling is involved in the shikonin-induced apoptosis of lung cancer cells in vitro. Exp Ther Med 2015; 9:1265-1270. [PMID: 25780420 PMCID: PMC4353798 DOI: 10.3892/etm.2015.2283] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 01/08/2015] [Indexed: 12/02/2022] Open
Abstract
Shikonin (SK), a naturally occurring naphthoquinone, exhibits antitumor activity. However, its precise mechanisms of action are unknown. In the present study, the effects of SK on NCI-H460 human lung cancer cells were investigated. It was found that SK reduced cell viability and induced apoptosis in the NCI-H460 cells. Additionally, SK inhibited extracellular signal-regulated kinase (ERK) activity, which indicates that inhibition of the ERK pathway is probably one of the mechanisms by which SK induced NCI-H460 cell apoptosis. The expression of Cbl-b was significantly increased by treatment with SK for 4 h, and gradually increased to a maximal level at 24 h; the time taken for the upregulation of Cbl-b protein was in accordance to that required for the downregulation of phospho (p)-ERK protein. The Cbl inhibitor Ps341 reversed the SK-induced downregulation of p-ERK and apoptosis of NCI-H460 cells. These results indicate that Cbl-b potentiates the apoptotic action of SK by inhibiting the ERK pathway in lung cancer cells.
Collapse
Affiliation(s)
- Dan Qu
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Y U Chen
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xiao-Man Xu
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Meng Zhang
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Y I Zhang
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Sheng-Qi Li
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
7
|
Nadeau S, An W, Palermo N, Feng D, Ahmad G, Dong L, Borgstahl GEO, Natarajan A, Naramura M, Band V, Band H. Oncogenic Signaling by Leukemia-Associated Mutant Cbl Proteins. ACTA ACUST UNITED AC 2013; Suppl 6. [PMID: 23997989 DOI: 10.4172/2161-1009.s6-001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Members of the Cbl protein family (Cbl, Cbl-b, and Cbl-c) are E3 ubiquitin ligases that have emerged as critical negative regulators of protein tyrosine kinase (PTK) signaling. This function reflects their ability to directly interact with activated PTKs and to target them as well as their associated signaling components for ubiquitination. Given the critical roles of PTK signaling in driving oncogenesis, recent studies in animal models and genetic analyses in human cancer have firmly established that Cbl proteins function as tumor suppressors. Missense mutations or small in-frame deletions within the regions of Cbl protein that are essential for its E3 activity have been identified in nearly 5% of leukemia patients with myelodysplastic/myeloproliferative disorders. Based on evidence from cell culture studies, in vivo models and clinical data, we discuss the potential signaling mechanisms of mutant Cbl-driven oncogenesis. Mechanistic insights into oncogenic Cbl mutants and associated animal models are likely to enhance our understanding of normal hematopoietic stem cell homeostasis and provide avenues for targeted therapy of mutant Cbl-driven cancers.
Collapse
Affiliation(s)
- Scott Nadeau
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center Omaha, NE 68198-5950, USA ; Departments of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, 985950 Nebraska Medical Center Omaha, NE 68198-5950, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zapf CW, Gerstenberger BS, Xing L, Limburg DC, Anderson DR, Caspers N, Han S, Aulabaugh A, Kurumbail R, Shakya S, Li X, Spaulding V, Czerwinski RM, Seth N, Medley QG. Covalent Inhibitors of Interleukin-2 Inducible T Cell Kinase (Itk) with Nanomolar Potency in a Whole-Blood Assay. J Med Chem 2012; 55:10047-63. [DOI: 10.1021/jm301190s] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Christoph W. Zapf
- BioTherapeutics Chemistry, Pfizer Worldwide Medicinal Chemistry, 200 Cambridgepark Drive, Cambridge, Massachusetts
02140, United States
| | - Brian S. Gerstenberger
- BioTherapeutics
Chemistry, Pfizer Worldwide Medicinal Chemistry, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Li Xing
- BioTherapeutics Chemistry, Pfizer Worldwide Medicinal Chemistry, 200 Cambridgepark Drive, Cambridge, Massachusetts
02140, United States
| | - David C. Limburg
- BioTherapeutics
Chemistry, Pfizer Worldwide Medicinal Chemistry, Eastern Point Road, Groton, Connecticut 06340, United States
| | - David R. Anderson
- BioTherapeutics
Chemistry, Pfizer Worldwide Medicinal Chemistry, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Nicole Caspers
- Structure Biology and Biophysics, Pfizer Worldwide Medicinal Chemistry, Eastern Point
Road, Groton, Connecticut 06340, United States
| | - Seungil Han
- Structure Biology and Biophysics, Pfizer Worldwide Medicinal Chemistry, Eastern Point
Road, Groton, Connecticut 06340, United States
| | - Ann Aulabaugh
- Structure Biology and Biophysics, Pfizer Worldwide Medicinal Chemistry, Eastern Point
Road, Groton, Connecticut 06340, United States
| | - Ravi Kurumbail
- Structure Biology and Biophysics, Pfizer Worldwide Medicinal Chemistry, Eastern Point
Road, Groton, Connecticut 06340, United States
| | - Subarna Shakya
- Inflammation and Autoimmunity, Pfizer Research, 200 Cambridgepark Drive, Cambridge,
Massachusetts 02140, United States
| | - Xin Li
- Inflammation and Autoimmunity, Pfizer Research, 200 Cambridgepark Drive, Cambridge,
Massachusetts 02140, United States
| | - Vikki Spaulding
- Inflammation and Autoimmunity, Pfizer Research, 200 Cambridgepark Drive, Cambridge,
Massachusetts 02140, United States
| | - Robert M. Czerwinski
- Inflammation and Autoimmunity, Pfizer Research, 200 Cambridgepark Drive, Cambridge,
Massachusetts 02140, United States
| | - Nilufer Seth
- Inflammation and Autoimmunity, Pfizer Research, 200 Cambridgepark Drive, Cambridge,
Massachusetts 02140, United States
| | - Quintus G. Medley
- Inflammation and Autoimmunity, Pfizer Research, 200 Cambridgepark Drive, Cambridge,
Massachusetts 02140, United States
| |
Collapse
|
9
|
Mohapatra B, Ahmad G, Nadeau S, Zutshi N, An W, Scheffe S, Dong L, Feng D, Goetz B, Arya P, Bailey TA, Palermo N, Borgstahl GEO, Natarajan A, Raja SM, Naramura M, Band V, Band H. Protein tyrosine kinase regulation by ubiquitination: critical roles of Cbl-family ubiquitin ligases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:122-39. [PMID: 23085373 DOI: 10.1016/j.bbamcr.2012.10.010] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/05/2012] [Accepted: 10/08/2012] [Indexed: 12/20/2022]
Abstract
Protein tyrosine kinases (PTKs) coordinate a broad spectrum of cellular responses to extracellular stimuli and cell-cell interactions during development, tissue homeostasis, and responses to environmental challenges. Thus, an understanding of the regulatory mechanisms that ensure physiological PTK function and potential aberrations of these regulatory processes during diseases such as cancer are of broad interest in biology and medicine. Aside from the expected role of phospho-tyrosine phosphatases, recent studies have revealed a critical role of covalent modification of activated PTKs with ubiquitin as a critical mechanism of their negative regulation. Members of the Cbl protein family (Cbl, Cbl-b and Cbl-c in mammals) have emerged as dominant "activated PTK-selective" ubiquitin ligases. Structural, biochemical and cell biological studies have established that Cbl protein-dependent ubiquitination targets activated PTKs for degradation either by facilitating their endocytic sorting into lysosomes or by promoting their proteasomal degradation. This mechanism also targets PTK signaling intermediates that become associated with Cbl proteins in a PTK activation-dependent manner. Cellular and animal studies have established that the relatively broadly expressed mammalian Cbl family members Cbl and Cbl-b play key physiological roles, including their critical functions to prevent the transition of normal immune responses into autoimmune disease and as tumor suppressors; the latter function has received validation from human studies linking mutations in Cbl to human leukemia. These newer insights together with embryonic lethality seen in mice with a combined deletion of Cbl and Cbl-b genes suggest an unappreciated role of the Cbl family proteins, and by implication the ubiquitin-dependent control of activated PTKs, in stem/progenitor cell maintenance. Future studies of existing and emerging animal models and their various cell lineages should help test the broader implications of the evolutionarily-conserved Cbl family protein-mediated, ubiquitin-dependent, negative regulation of activated PTKs in physiology and disease.
Collapse
Affiliation(s)
- Bhopal Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Mohapatra B, Ahmad G, Nadeau S, Zutshi N, An W, Scheffe S, Dong L, Feng D, Goetz B, Arya P, Bailey TA, Palermo N, Borgstahl GEO, Natarajan A, Raja SM, Naramura M, Band V, Band H. Protein tyrosine kinase regulation by ubiquitination: critical roles of Cbl-family ubiquitin ligases. BIOCHIMICA ET BIOPHYSICA ACTA 2012. [PMID: 23085373 DOI: 10.1016/j.bbamcr] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Protein tyrosine kinases (PTKs) coordinate a broad spectrum of cellular responses to extracellular stimuli and cell-cell interactions during development, tissue homeostasis, and responses to environmental challenges. Thus, an understanding of the regulatory mechanisms that ensure physiological PTK function and potential aberrations of these regulatory processes during diseases such as cancer are of broad interest in biology and medicine. Aside from the expected role of phospho-tyrosine phosphatases, recent studies have revealed a critical role of covalent modification of activated PTKs with ubiquitin as a critical mechanism of their negative regulation. Members of the Cbl protein family (Cbl, Cbl-b and Cbl-c in mammals) have emerged as dominant "activated PTK-selective" ubiquitin ligases. Structural, biochemical and cell biological studies have established that Cbl protein-dependent ubiquitination targets activated PTKs for degradation either by facilitating their endocytic sorting into lysosomes or by promoting their proteasomal degradation. This mechanism also targets PTK signaling intermediates that become associated with Cbl proteins in a PTK activation-dependent manner. Cellular and animal studies have established that the relatively broadly expressed mammalian Cbl family members Cbl and Cbl-b play key physiological roles, including their critical functions to prevent the transition of normal immune responses into autoimmune disease and as tumor suppressors; the latter function has received validation from human studies linking mutations in Cbl to human leukemia. These newer insights together with embryonic lethality seen in mice with a combined deletion of Cbl and Cbl-b genes suggest an unappreciated role of the Cbl family proteins, and by implication the ubiquitin-dependent control of activated PTKs, in stem/progenitor cell maintenance. Future studies of existing and emerging animal models and their various cell lineages should help test the broader implications of the evolutionarily-conserved Cbl family protein-mediated, ubiquitin-dependent, negative regulation of activated PTKs in physiology and disease.
Collapse
Affiliation(s)
- Bhopal Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kumar EA, Yuan Z, Palermo NY, Dong L, Ahmad G, Lokesh GL, Kolar C, Kizhake S, Borgstahl GEO, Band H, Natarajan A. Peptide truncation leads to a twist and an unusual increase in affinity for casitas B-lineage lymphoma tyrosine kinase binding domain. J Med Chem 2012; 55:3583-7. [PMID: 22394513 DOI: 10.1021/jm300078z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We describe truncation and SAR studies to identify a pentapeptide that binds Cbl tyrosine kinase binding domain with a higher affinity than the parental peptide. The pentapeptide has an alternative binding mode that allows occupancy of a previously uncharacterized groove. A peptide library was used to map the binding site and define the interface landscape. Our results suggest that the pentapeptide is an ideal starting point for the development of inhibitors against Cbl driven diseases.
Collapse
Affiliation(s)
- Eric A Kumar
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68022, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|