1
|
Martins B, Sorrentino S, Chung WL, Tatli M, Medalia O, Eibauer M. Unveiling the polarity of actin filaments by cryo-electron tomography. Structure 2021; 29:488-498.e4. [PMID: 33476550 PMCID: PMC8111420 DOI: 10.1016/j.str.2020.12.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/04/2020] [Accepted: 12/23/2020] [Indexed: 01/01/2023]
Abstract
The actin cytoskeleton plays a fundamental role in numerous cellular processes, such as cell motility, cytokinesis, and adhesion to the extracellular matrix. Revealing the polarity of individual actin filaments in intact cells would foster an unprecedented understanding of cytoskeletal processes and their associated mechanical forces. Cryo-electron tomography provides the means for high-resolution structural imaging of cells. However, the low signal-to-noise ratio of cryo-tomograms obscures the high frequencies, and therefore the polarity of actin filaments cannot be directly measured. Here, we developed a method that enables us to determine the polarity of actin filaments in cellular cryo-tomograms. We applied it to reveal the actin polarity distribution in focal adhesions, and show a linear relation between actin polarity and distance from the apical boundary of the adhesion site. Determining the polarity of individual actin filaments inside cells Reconstruction of actin networks from cryo-tomograms The polarity of actin changes from mixed to uniform along focal adhesions
Collapse
Affiliation(s)
- Bruno Martins
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Simona Sorrentino
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Wen-Lu Chung
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Meltem Tatli
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Matthias Eibauer
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
2
|
Liu T, Li M, Tang J, Li J, Zhou Y, Liu Y, Yang F, Gu N. An acoustic strategy for gold nanoparticle loading in platelets as biomimetic multifunctional carriers. J Mater Chem B 2019; 7:2138-2144. [PMID: 32073572 DOI: 10.1039/c9tb00227h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years, a wide variety of bioinspired colloidal particles with novel cell mimetic functions have been the subject of extensive research in materials science, chemistry, biology, physics, and engineering. However, most of the approaches are derived from natural cell membrane coatings, which are still too primitive compared with living cells. In this study, we have chosen gold nanoparticles (GNPs) to explore the bioactivity response of living platelets and nanoparticle loading efficiency under different ultrasonic intensity and frequency treatment conditions. The results show that GNPs with no surface modification could be easily loaded into intra-platelets by both incubation (30 min) and ultrasonic exposure (1 min) methods. The amount of GNP loading was (4.4 ± 0.9) × 10-3 and (5.8 ± 2.4) × 10-3 pg per platelet upon incubation and acoustic triggering (1 MHz, 0.25 W cm-2), respectively. Although the other US treatment intensities (0.75, 1.50 and 2.25 W cm-2) also promoted higher amounts of GNPs in the platelets, the higher US intensity might bring about partial damage of the platelet membrane. Compared with 1 MHz ultrasonic exposure, the change of the GNP loading amount was not significantly higher upon ultrasonic frequency treatment of 45, 80 or 100 kHz. Therefore, it has been found that an US intensity of 0.25 W cm-2 could facilitate the intra-platelet delivery efficacy of the GNPs without damaging the biological activity. Furthermore, two possible pathways of GNPs entering into platelets upon US treatment are presented: one is the endocytosis/open canalicular system (OCS), and the other is cell membrane permeability enhancement, which is proved by the SEM and TEM results. Finally, the GNP-loaded platelets have been demonstrated as useful probes for photoacoustic imaging (PAI) and dark-field microscopy (DFM)-based imaging, which might allow a wide range of potential applications in diagnostics and therapy of platelet-related diseases.
Collapse
Affiliation(s)
- Taotao Liu
- State key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China.
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Zhang Y, Du W, Smuda K, Georgieva R, Bäumler H, Gao C. Inflammatory activation of human serum albumin- or ovalbumin-modified chitosan particles to macrophages and their immune response in human whole blood. J Mater Chem B 2018; 6:3096-3106. [DOI: 10.1039/c7tb03096g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chitosan particles modified with different albumins cause immune response in human whole blood via platelet activation and phagocytosis.
Collapse
Affiliation(s)
- Yixian Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering, Zhejiang University
- Hangzhou 310027
- China
| | - Wang Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering, Zhejiang University
- Hangzhou 310027
- China
| | - Kathrin Smuda
- Institute of Transfusion Medicine and Berlin-Brandenburg Center for Regenerative Therapies
- Charité-Universitätsmedizin Berlin
- 10117 Berlin
- Germany
| | - Radostina Georgieva
- Institute of Transfusion Medicine and Berlin-Brandenburg Center for Regenerative Therapies
- Charité-Universitätsmedizin Berlin
- 10117 Berlin
- Germany
| | - Hans Bäumler
- Institute of Transfusion Medicine and Berlin-Brandenburg Center for Regenerative Therapies
- Charité-Universitätsmedizin Berlin
- 10117 Berlin
- Germany
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering, Zhejiang University
- Hangzhou 310027
- China
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine
| |
Collapse
|
4
|
Devreotes PN, Bhattacharya S, Edwards M, Iglesias PA, Lampert T, Miao Y. Excitable Signal Transduction Networks in Directed Cell Migration. Annu Rev Cell Dev Biol 2017; 33:103-125. [PMID: 28793794 DOI: 10.1146/annurev-cellbio-100616-060739] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although directed migration of eukaryotic cells may have evolved to escape nutrient depletion, it has been adopted for an extensive range of physiological events during development and in the adult organism. The subversion of these movements results in disease, such as cancer. Mechanisms of propulsion and sensing are extremely diverse, but most eukaryotic cells move by extending actin-filled protrusions termed macropinosomes, pseudopodia, or lamellipodia or by extension of blebs. In addition to motility, directed migration involves polarity and directional sensing. The hundreds of gene products involved in these processes are organized into networks of parallel and interconnected pathways. Many of these components are activated or inhibited coordinately with stimulation and on each spontaneously extended protrusion. Moreover, these networks display hallmarks of excitability, including all-or-nothing responsiveness and wave propagation. Cellular protrusions result from signal transduction waves that propagate outwardly from an origin and drive cytoskeletal activity. The range of the propagating waves and hence the size of the protrusions can be altered by lowering or raising the threshold for network activation, with larger and wider protrusions favoring gliding or oscillatory behavior over amoeboid migration. Here, we evaluate the variety of models of excitable networks controlling directed migration and outline critical tests. We also discuss the utility of this emerging view in producing cell migration and in integrating the various extrinsic cues that direct migration.
Collapse
Affiliation(s)
- Peter N Devreotes
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205;
| | - Sayak Bhattacharya
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218
| | - Marc Edwards
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205;
| | - Pablo A Iglesias
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205; .,Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218
| | - Thomas Lampert
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205;
| | - Yuchuan Miao
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205;
| |
Collapse
|
5
|
Queiroga FR, Marques-Santos LF, Hégaret H, Sassi R, Farias ND, Santana LN, da Silva PM. Effects of cyanobacteria Synechocystis spp. in the host-parasite model Crassostrea gasar-Perkinsus marinus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 187:100-107. [PMID: 28407513 DOI: 10.1016/j.aquatox.2017.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/18/2017] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Abstract
Perkinsosis is a disease caused by protozoan parasites from the Perkinsus genus. In Brazil, two species, P. beihaiensis and P. marinus, are frequently found infecting native oysters (Crassostrea gasar and C. rhizophorae) from cultured and wild populations in several states of the Northeast region. The impacts of this disease in bivalves from Brazil, as well as the interactions with environmental factors, are poorly studied. In the present work, we evaluated the in vitro effects of the cyanobacteria Synechocystis spp. on trophozoites of P. marinus and haemocytes of C. gasar. Four cyanobacteria strains isolated from the Northeast Brazilian coast were used as whole cultures (WCs) and extracellular products (ECPs). Trophozoites of P. marinus were exposed for short (4h) and long (48h and 7days, the latter only for ECPs) periods, while haemocytes were exposed for a short period (4h). Cellular and immune parameters, i.e. cell viability, cell count, reactive oxygen species production (ROS) and phagocytosis of inert (latex beads) and biological particles (zymosan and trophozoites of P. marinus) were measured by flow cytometry. The viability of P. marinus trophozoites was improved in response to WCs of Synechocystis spp., which could be a beneficial effect of the cyanobacteria providing nutrients and reducing reactive oxygen species. Long-term exposure of trophozoites to ECPs of cyanobacteria did not modify in vitro cell proliferation nor viability. In contrast, C. gasar haemocytes showed a reduction in cell viability when exposed to WCs, but not to ECPs. However, ROS production was not altered. Haemocyte ability to engulf latex particles was reduced when exposed mainly to ECPs of cyanobacteria; while neither the WCs nor the ECPs modified phagocytosis of the biological particles, zymosan and P. marinus. Our results suggest a negative effect of cyanobacteria from the Synechocystis genus on host immune cells, in contrast to a more beneficial effect on the parasite cell, which could together disrupt the balance of the host-parasite interaction and make oysters more susceptible to P. marinus as well as opportunistic infections.
Collapse
Affiliation(s)
- Fernando Ramos Queiroga
- Laboratório de Imunologia e Patologia de Invertebrados (LABIPI), Departamento de Biologia Molecular, Universidade Federal da Paraíba, 58051-900, João Pessoa, Paraíba, Brazil
| | - Luis Fernando Marques-Santos
- Laboratório de Biologia Celular e do Desenvolvimento (LABID), Departamento de Biologia Molecular, Universidade Federal da Paraíba, 58051-900, João Pessoa, Paraíba, Brazil
| | - Hélène Hégaret
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER, Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, 29280, Plouzané, France
| | - Roberto Sassi
- Laboratório de Ambientes Recifais e Biotecnologia de Microalgas (LARBIM), Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, 58051-900, João Pessoa, Paraíba, Brazil
| | - Natanael Dantas Farias
- Laboratório de Imunologia e Patologia de Invertebrados (LABIPI), Departamento de Biologia Molecular, Universidade Federal da Paraíba, 58051-900, João Pessoa, Paraíba, Brazil
| | - Lucas Nunes Santana
- Laboratório de Imunologia e Patologia de Invertebrados (LABIPI), Departamento de Biologia Molecular, Universidade Federal da Paraíba, 58051-900, João Pessoa, Paraíba, Brazil
| | - Patricia Mirella da Silva
- Laboratório de Imunologia e Patologia de Invertebrados (LABIPI), Departamento de Biologia Molecular, Universidade Federal da Paraíba, 58051-900, João Pessoa, Paraíba, Brazil.
| |
Collapse
|
6
|
Yang Q, Cui J, Wang P, Du X, Wang W, Zhang T, Chen Y. Changes in interconnected pathways implicating microRNAs are associated with the activity of apocynin in attenuating myocardial fibrogenesis. Eur J Pharmacol 2016; 784:22-32. [PMID: 27174579 DOI: 10.1016/j.ejphar.2016.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/11/2022]
Abstract
Myocardial fibrosis is the endpoint pathology common to many cardiovascular disorders. We have previously shown that apocynin (APO), a naturally occurring NADPH oxidase inhibitor, significantly prevents the development of isoproterenol (ISO)-induced myocardial injury and fibrogenesis. The current study investigated the changes in microRNAs (miRNAs) and their potential implication in the cardioprotective effects of APO. Integrative analyses of whole-genome miRNA and gene expression profiles were first performed, revealing that altered expression of miRNAs likely contributed to dysregulated expression of genes associated with multiple interconnected fibrogenic signaling pathways. Importantly, APO treatment exhibited a broad impact on these signaling pathways, which could in part be mediated through miRNA-mediated gene expression regulation. The expression of differentially expressed miRNAs was further validated by real-time PCR analyses. Consistent with the data from miRNA array, compared to that from vehicle-treated normal controls, significantly decreased expression of miR-10b, miR-29c*, miR-30c-1*, miR-30e*, miR-148b, miR-181d, miR-218 and miR-3107* was observed in ISO-challenged vehicle-treated mouse hearts. In contrast, significantly increased expression of these miRNAs was observed in ISO-challenged APO-treated hearts compared to that from ISO-challenged vehicle-treated mice. Moreover, increased expression of miR-21 was observed as a result of ISO administration, which was significantly reduced by APO treatment. Altered protein levels of Col1, TIMP1, Rac2 and gp91(phox) were also validated. Lastly, APO treatment was shown to attenuate pre-established myocardial fibrosis induced by ISO. The results therefore demonstrated for the first time that complex changes in miRNA-mRNA interactome network are associated with the protective effects of APO against ISO-induced myocardial injury and fibrogenesis.
Collapse
Affiliation(s)
- Qinbo Yang
- Clinical Research Institute of Integrative Medicine and Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Jingang Cui
- Clinical Research Institute of Integrative Medicine and Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Peiwei Wang
- Clinical Research Institute of Integrative Medicine and Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xiaoye Du
- Clinical Research Institute of Integrative Medicine and Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Wenjian Wang
- Clinical Research Institute of Integrative Medicine and Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Teng Zhang
- Clinical Research Institute of Integrative Medicine and Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| | - Yu Chen
- Clinical Research Institute of Integrative Medicine and Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| |
Collapse
|