1
|
Nöthling J, Womersley JS, Mhlongo S, Lombard C, Abrahams N, Seedat S, Hemmings SMJ. The relationship between childhood trauma, rs1360780 genotypes, FKBP5 intron 7 methylation and posttraumatic stress disorder in women who have experienced rape. Eur J Psychotraumatol 2025; 16:2485707. [PMID: 40242984 PMCID: PMC12006943 DOI: 10.1080/20008066.2025.2485707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 04/18/2025] Open
Abstract
Background: Posttraumatic stress disorder (PTSD) is a common sequela of rape. Dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis, a core regulator of the stress response, has been implicated in the aetiology and chronicity of PTSD. FK506 binding protein (FKBP5) is a co-chaperone and functional regulator of the glucocorticoid receptor and the HPA-axis.Objective: This study investigated main and interaction effects of childhood trauma and the FKBP5 rs1360780 genotype on longitudinal FKBP5 intron 7 methylation, and whether change in FKBP5 methylation over time was associated with PTSD symptom severity over time.Method: Women who experienced rape (n = 96) were recruited from post-rape care services in KwaZulu Natal, South Africa. Total PTSD symptom scores, derived from the Davidson Trauma Scale, were assessed at baseline, 3-months and 6-months post-rape. Methylation levels at five FKBP5 intron 7 CpG sites were determined using EpiTYPER Sequenom MassArray technology. Genotyping of rs1360980 was completed using the Agena MassArray genotyping system. Mixed linear regression models were used to analyse the data.Results: The interaction between rs1360780 genotype and childhood trauma was a significant predictor of FKBP5 methylation over time. There was a significant positive correlation between childhood trauma and methylation levels in participants with the CT and TT genotypes, while there was a significant negative correlation between childhood trauma and methylation in CC genotype carriers. FKBP5 methylation was not a predictor of PTSD scores over time.Conclusion: This is the first study to investigate longitudinal change in FKBP5 methylation in a demographically homogenous same-trauma sample. The findings implicate childhood trauma and FKBP5 rs1360980 genotype in the trajectory of FKBP5 methylation levels in the aftermath of rape. Further research is needed to investigate the longitudinal role of FKBP5 intron 7 methylation in relation to PTSD symptom trajectories post-rape.
Collapse
Affiliation(s)
- Jani Nöthling
- South African Medical Research Council, Gender and Health Research Unit,Cape Town, South Africa
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, South African Medical Research Council, Stellenbosch University, Cape Town, South Africa
| | - Jacqueline Samantha Womersley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, South African Medical Research Council, Stellenbosch University, Cape Town, South Africa
| | - Shibe Mhlongo
- South African Medical Research Council, Gender and Health Research Unit,Cape Town, South Africa
| | - Carl Lombard
- Biostatistics Unit, South African Medical Research Council, Cape Town, South Africa
- Division of Epidemiology and Biostatistics, Department of Global Health, Stellenbosch University, Cape Town, South Africa
| | - Naeemah Abrahams
- South African Medical Research Council, Gender and Health Research Unit,Cape Town, South Africa
- School of Public Health and Family Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, South African Medical Research Council, Stellenbosch University, Cape Town, South Africa
| | - Sian Megan Joanne Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, South African Medical Research Council, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
2
|
Koning SM, Kessler CL, Canli T, Duman EA, Adam EK, Zinbarg R, Craske MG, Stephens JE, Vrshek-Schallhorn S. Early-life adversity severity, timing, and context type are associated with SLC6A4 methylation in emerging adults: Results from a prospective cohort study. Psychoneuroendocrinology 2024; 170:107181. [PMID: 39298801 DOI: 10.1016/j.psyneuen.2024.107181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Epigenetic modifications, including DNA methylation (DNAm), can play a role in the biological embedding of early-life adversity (ELA) through serotonergic mechanisms. The current study examines methylation of the CpG island in the promoter region of the stress-responsive serotonin transporter gene (SLC6A4) and is the first to jointly assess how it is influenced by ELA severity, timing, and type-specifically, deprivation and threat. METHODS We use data from 627 Youth Emotion Project study participants, recruited from two US high schools. Using adjusted linear regressions, we analyze DNA collected in early adulthood from 410 participants and ELA based on interviewer-rated responses from concurrent Childhood Trauma Interviews, adjusting for survey-measured covariates. RESULTS ELA robustly predicted mean CpG island SLC6A4 DNAm percent across 71 CpG sites. Each additional major-severity ELA event was associated with a 0.121-percentage-point increase (p<0.001), equating to a 0.177 standard deviation (sd) higher DNAm level (95 % CI: 0.080, 0.274) with each 1-sd higher adversity score. When modeled separately, both childhood and adolescent ELA predicted SLC6A4 DNAm. When modeled jointly, adolescent ELA was most strongly predictive, and child adversity remained significantly associated with DNAm through indirect associations via adolescent adversity. Additionally, the ELA-SLC6A4 DNAm association may vary by adversity type. Across separate models for childhood and adolescent exposures, deprivation coefficients are positive and statistically significant. Meanwhile, threat coefficients are positive and not significantly significant but do not statistically differ from deprivation coefficients. In models including all ELA dimensions, one major adolescent deprivation event is associated with a 0.222-percentage-point increased SLC6A4 DNAm (p<0.05), or a 1-sd higher deprivation score with a 0.157-sd increased DNAm. CONCLUSION Results further implicate epigenetic modification on serotonergic neurotransmission via DNAm in the downstream sequelae of ELA-particularly adolescent deprivation-and support preventive interventions in adolescence to mitigate biological embedding.
Collapse
Affiliation(s)
- Stephanie M Koning
- University of Nevada, Reno, School of Public Health, 1664 N. Virginia Street, Reno, NV 89557, USA.
| | | | | | - Elif A Duman
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem University, Istanbul, Turkey; Institute of Natural and Applied Sciences, Acibadem University, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
3
|
Rapado-González Ó, Salta S, López-López R, Henrique R, Suárez-Cunqueiro MM, Jerónimo C. DNA methylation markers for oral cancer detection in non- and minimally invasive samples: a systematic review. Clin Epigenetics 2024; 16:105. [PMID: 39138540 PMCID: PMC11323632 DOI: 10.1186/s13148-024-01716-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
More than 50% of oral cancer (OC) patients are diagnosed with advanced-stage disease associated with poor prognosis and quality of life, supporting an urgent need to improve early OC detection. The identification of effective molecular markers by minimally invasive approaches has emerged as a promising strategy for OC screening. This systematic review summarizes and evaluates the performance of the DNA methylation markers identified in non- or minimally invasive samples for OC detection. PubMed's MEDLINE, Scopus, Embase, and Cochrane Library databases were systematically searched for studies that evaluated DNA methylation markers in non-invasive and/or minimally invasive samples (oral rinse/saliva, oral brush, and blood) from OC patients. Two investigators independently extracted data on study population characteristics, candidate methylation markers, testing samples, DNA methylation assay, and performance diagnostic outcomes. Methodological study quality was assessed with the Quality Assessment for Studies of Diagnostic Accuracy-2 tool. Thirty-one studies met the inclusion criteria for this systematic review. DNA methylation markers were evaluated in oral rinse/saliva (n = 17), oral brush (n = 9), and blood (n = 7) samples. Methylation-specific PCR (MSP) and quantitative-MSP were the most common DNA methylation assays. Regarding diagnostic performance values for salivary, oral brush, and blood DNA methylation markers, sensitivity and specificity ranged between 3.4-100% and 21-100%, 9-100% and 26.8-100%, 22-70% and 45.45-100%, respectively. Different gene methylation panels showed good diagnostic performance for OC detection. This systematic review discloses the promising value of testing DNA methylation markers in non-invasive (saliva or oral rinse) or minimally invasive (oral brush or blood) samples as a novel strategy for OC detection. However, further validation in large, multicenter, and prospective study cohorts must be carried out to confirm the clinical value of specific DNA methylation markers in this setting.
Collapse
Affiliation(s)
- Óscar Rapado-González
- Department of Surgery and Medical-Surgical Specialties, Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
- Liquid Biopsy Analysis Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), 15706, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center - Raquel Seruca (Porto.CCC) & CI-IPOP@RISE (Health Research Network), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Sofia Salta
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center - Raquel Seruca (Porto.CCC) & CI-IPOP@RISE (Health Research Network), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Rafael López-López
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS, SERGAS), 15706, Santiago de Compostela, Spain
| | - Rui Henrique
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center - Raquel Seruca (Porto.CCC) & CI-IPOP@RISE (Health Research Network), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center - Raquel Seruca (Porto.CCC) & CI-IPOP@RISE (Health Research Network), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - María Mercedes Suárez-Cunqueiro
- Department of Surgery and Medical-Surgical Specialties, Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS, SERGAS), 15706, Santiago de Compostela, Spain
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center - Raquel Seruca (Porto.CCC) & CI-IPOP@RISE (Health Research Network), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center - Raquel Seruca (Porto.CCC) & CI-IPOP@RISE (Health Research Network), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
4
|
Manzoor HB, Asare-Werehene M, Pereira SD, Satyamoorthy K, Tsang BK. The regulation of plasma gelsolin by DNA methylation in ovarian cancer chemo-resistance. J Ovarian Res 2024; 17:15. [PMID: 38216951 PMCID: PMC10785480 DOI: 10.1186/s13048-023-01332-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/22/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Ovarian cancer (OVCA) is the most lethal gynecologic cancer and chemoresistance remains a major hurdle to successful therapy and survival of OVCA patients. Plasma gelsolin (pGSN) is highly expressed in chemoresistant OVCA compared with their chemosensitive counterparts, although the mechanism underlying the differential expression is not known. Also, its overexpression significantly correlates with shortened survival of OVCA patients. In this study, we investigated the methylation role of Ten eleven translocation isoform-1 (TET1) in the regulation of differential pGSN expression and chemosensitivity in OVCA cells. METHODS Chemosensitive and resistant OVCA cell lines of different histological subtypes were used in this study to measure pGSN and TET1 mRNA abundance (qPCR) as well as protein contents (Western blotting). To investigate the role of DNA methylation specifically in pGSN regulation and pGSN-induced chemoresistance, DNMTs and TETs were pharmacologically inhibited in sensitive and resistant OVCA cells using specific inhibitors. DNA methylation was quantified using EpiTYPER MassARRAY system. Gain-and-loss-of-function assays were used to investigate the relationship between TET1 and pGSN in OVCA chemoresponsiveness. RESULTS We observed differential protein and mRNA expressions of pGSN and TET1 between sensitive and resistant OVCA cells and cisplatin reduced their expression in sensitive but not in resistant cells. We observed hypomethylation at pGSN promoter upstream region in resistant cells compared to sensitive cells. Pharmacological inhibition of DNMTs increased pGSN protein levels in sensitive OVCA cells and decreased their responsiveness to cisplatin, however we did not observe any difference in methylation level at pGSN promoter region. TETs inhibition resulted in hypermethylation at multiple CpG sites and decreased pGSN protein level in resistant OVCA cells which was also associated with enhanced response to cisplatin, findings that suggested the methylation role of TETs in the regulation of pGSN expression in OVCA cells. Further, we found that TET1 is inversely related to pGSN but positively related to chemoresponsiveness of OVCA cells. CONCLUSION Our findings broaden our knowledge about the epigenetic regulation of pGSN in OVCA chemoresistance and reveal a novel potential target to re-sensitize resistant OVCA cells. This may provide a future therapeutic strategy to improve the overall OVCA patient survival.
Collapse
Affiliation(s)
- Hafiza Bushra Manzoor
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Meshach Asare-Werehene
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Department of Obstetrics & Gynecology, & The Centre for Infection, Immunity and Inflammation (CI3), Faculty of Medicine & Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8L1, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Satyajit Dey Pereira
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kapaettu Satyamoorthy
- Shri Dharmasthala Manjunatheshwara University, Manjushree Block, Manjushree Nagar Sattur, Dharwad, Karnataka, 580 009, India
| | - Benjamin K Tsang
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- Department of Obstetrics & Gynecology, & The Centre for Infection, Immunity and Inflammation (CI3), Faculty of Medicine & Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8L1, Canada.
| |
Collapse
|
5
|
Uhlen M, Quake SR. Sequential sequencing by synthesis and the next-generation sequencing revolution. Trends Biotechnol 2023; 41:1565-1572. [PMID: 37482467 DOI: 10.1016/j.tibtech.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023]
Abstract
The impact of next-generation sequencing (NGS) cannot be overestimated. The technology has transformed the field of life science, contributing to a dramatic expansion in our understanding of human health and disease and our understanding of biology and ecology. The vast majority of the major NGS systems today are based on the concept of 'sequencing by synthesis' (SBS) with sequential detection of nucleotide incorporation using an engineered DNA polymerase. Based on this strategy, various alternative platforms have been developed, including the use of either native nucleotides or reversible terminators and different strategies for the attachment of DNA to a solid support. In this review, some of the key concepts leading to this remarkable development are discussed.
Collapse
Affiliation(s)
- Mathias Uhlen
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Stephen R Quake
- Departments of Bioengineering and Applied Physics, Stanford University, Stanford, CA, USA; Chan Zuckerberg Initiative, Redwood City, California, USA, Stanford, CA, USA
| |
Collapse
|
6
|
Zhang L, Zou W, Hu Y, Wu H, Gao Y, Zhang J, Zheng J. Maternal high-calorie diet feeding programs hepatic cholesterol metabolism and Abca1 promoter methylation in the early life of offspring. J Nutr Biochem 2023; 122:109449. [PMID: 37748622 DOI: 10.1016/j.jnutbio.2023.109449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/19/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
Maternal high-calorie diet feeding can dramatically increase the susceptibility of metabolic diseases in offspring. However, whether maternal high-calorie diet feeding can program hepatic cholesterol metabolism in the early life of offspring is less understood, and the epigenetic mechanisms underlying this intergenerational effect, especially during the early life of offspring, are unknown. Female C57BL/6J mice were randomly assigned to a high-calorie diet or control diet before and during gestation, and lactation. Lipid metabolism was evaluated in male offspring at weaning. Gene expressions and quantitative methylation levels of key genes associated with hepatic cholesterol metabolism were further evaluated in offspring at weaning age. We found that maternal high-calorie diet feeding resulted in higher body weight, hypercholesterolemia, elevated total cholesterol in liver homogenates, and fat deposits in the liver in offspring at weaning. For key genes that regulate cholesterol metabolism in liver, we showed lower Hmgcr and Ldlr, and higher Abca1 mRNA and protein expressions in offspring from dams fed with high-calorie diet at weaning age. We further found that maternal high-calorie diet feeding significantly decreased Abca1 methylation level in offspring, with lower methylation levels of both CpG 11 and CpG 22 sites. Interestingly, we found that Abca1 methylation level was negatively associated with hepatic Abca1 mRNA expression in offspring from dams fed with high-calorie diet and controls. However, the expressions of key genes associated with hepatic cholesterol metabolism were not significant between fetuses of dams fed with high-calorie diet and control diet. In conclusion, our results indicate that maternal high-calorie diet feeding results in aberrant lipid metabolism, including hypercholesterolemia and fat deposits in the liver of offspring as early as weaning age. Furthermore, maternal high-calorie feeding can program hepatic cholesterol metabolism and Abca1 methylation in the early life of offspring.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Wenyu Zou
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Yongyan Hu
- Laboratory Animal Facility, Peking University First Hospital, Beijing, China
| | - Honghua Wu
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Ying Gao
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China.
| | - Jia Zheng
- Department of Endocrinology, Peking University First Hospital, Beijing, China.
| |
Collapse
|
7
|
Liu J, Huang D, Cai Y, Cao Z, Liu Z, Zhang S, Zhao L, Wang X, Wang Y, Huang F, Wu Z. Saliva diagnostics: emerging techniques and biomarkers for salivaomics in cancer detection. Expert Rev Mol Diagn 2022; 22:1077-1097. [PMID: 36631426 DOI: 10.1080/14737159.2022.2167556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
INTRODUCTION The pursuit of easy-to-use, non-invasive and inexpensive diagnostics is an urgent task for clinicians and scientists. Saliva is an important component of body fluid with regular changes of contents under various pathophysiological conditions, and the biomarkers identified from saliva shows high application potentials and values in disease diagnostics. This review introduces the latest developments in saliva research, with an emphasis on the detection and application of salivary biomarkers in cancer detection. AREAS COVERED Detection of disease-specific biomarkers in saliva samples by existing salivaomic methods can be used to diagnose various human pathological conditions and was introduced in details. This review also covers the saliva collection methods, the analytical techniques as well as the corresponding commercial products, with an aim to describe an holistic process for saliva-based diagnostics. EXPERT OPINION Saliva, as a non-invasive and collectable body fluid, can reflect the pathophysiological changes of the human body to a certain extent. Identification of reliable saliva biomarkers can provide a convenient way for cancer detection in clinical applications.
Collapse
Affiliation(s)
- Jieren Liu
- Graduate School of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Futian District, Shenzhen, Guangdong, China
| | - Dongna Huang
- School of Big Data and Internet, Shenzhen Technology University, Pingshan District, Shenzhen, Guangdong, China
| | - Yuanzhe Cai
- School of Big Data and Internet, Shenzhen Technology University, Pingshan District, Shenzhen, Guangdong, China
| | - Zhihua Cao
- School of Big Data and Internet, Shenzhen Technology University, Pingshan District, Shenzhen, Guangdong, China
| | - Zhiyu Liu
- School of Big Data and Internet, Shenzhen Technology University, Pingshan District, Shenzhen, Guangdong, China
| | - Shuo Zhang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Lin Zhao
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xin Wang
- School of Big Data and Internet, Shenzhen Technology University, Pingshan District, Shenzhen, Guangdong, China
| | - Yuchuan Wang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Feijuan Huang
- Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Futian District, Shenzhen, Guangdong, China
| | - Zhengzhi Wu
- Graduate School of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Futian District, Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Li W, Wang W, Lai W, Li X, Zhu L, Shi J, Teopiz KM, McIntyre RS, Guo L, Lu C. The association of FKBP5 gene methylation, adolescents' sex, and depressive symptoms among Chinese adolescents: a nested case-control study. BMC Psychiatry 2022; 22:749. [PMID: 36451133 PMCID: PMC9710023 DOI: 10.1186/s12888-022-04392-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Depressive symptoms among adolescents are a serious health concern around the world. Altered DNA methylation in the FK506 binding protein 5 (FKBP5) gene has been reported to regulate stress response, which has been reported to be closely associated with depressive symptoms. However, most of the contributing studies have been conducted among adults and relatively few studies have considered the effect of disparate social influences and sex differences on the DNA methylation of FKBP5 in persons with depressive symptoms. The present study aimed to test the associations of FKBP5 DNA methylation and depressive symptoms among adolescents and explore possible sex differences in the foregoing associations. METHODS This study was conducted using a nested case-control design within a longitudinal cohort study from January 2019 to December 2019. Adolescents aged 12 to 17 years from 69 classes in 10 public high schools located in Guangdong province of China participated in this research. Students with persistent depressive symptoms that reported having depressive symptoms at both baseline and follow-up were treated as the case group, and those without depressive symptoms were randomly selected as the control group. Our study finally included 87 cases and 151 controls. Quantitative methylation analyses of the selected gene were carried out by MassARRAY platform System. RESULTS The overall DNA methylation trend of FKBP5 CpG sites in the case group was lower in comparison to the control group. Compared to healthy controls, lower methylation percentage of FKBP5-12 CpG 1 was observed in adolescents with persistent depressive symptoms after adjusting for covariates (case: 0.94 ± 2.00, control: 0.47 ± 0.92; F = 5.41, P = 0.021), although the statistical significance of the difference was lost after false discovery rate correction (q > 0.05). In addition, the hypomethylation of FKBP5-12 CpG 1 was approaching significance after adjustment for social-environmental factors (aOR = 0.77; P = 0.055), which indicated that no independent association was detected between hypomethylation of FKBP5 CpG sites and persistent depressive symptoms. Furthermore, in the present study, we were unable to identify sex differences in the association of FKBP5 gene methylation with depressive symptoms. CONCLUSION The decreased methylation level of FKBP5 was observed in adolescents with persistent depressive symptoms, albeit non-significant after correction for multiple testing. Our results presented here are preliminary and underscore the complex gene-environment interactions relevant to the risk for depressive symptoms.
Collapse
Affiliation(s)
- Wenyan Li
- grid.12981.330000 0001 2360 039XDepartment of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd 2, 510080 Guangzhou, China
| | - Wanxin Wang
- grid.12981.330000 0001 2360 039XDepartment of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd 2, 510080 Guangzhou, China
| | - Wenjian Lai
- grid.12981.330000 0001 2360 039XDepartment of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd 2, 510080 Guangzhou, China
| | - Xiuwen Li
- grid.12981.330000 0001 2360 039XDepartment of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd 2, 510080 Guangzhou, China
| | - Liwan Zhu
- grid.12981.330000 0001 2360 039XDepartment of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd 2, 510080 Guangzhou, China
| | - Jingman Shi
- grid.12981.330000 0001 2360 039XDepartment of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd 2, 510080 Guangzhou, China
| | - Kayla M. Teopiz
- grid.231844.80000 0004 0474 0428Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON Canada
| | - Roger S. McIntyre
- grid.231844.80000 0004 0474 0428Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Pharmacology, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Institute of Medical Science, University of Toronto, Toronto, ON Canada
| | - Lan Guo
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd 2, 510080, Guangzhou, China.
| | - Ciyong Lu
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Rd 2, 510080, Guangzhou, China.
| |
Collapse
|
9
|
Feng Z, Oberije CJG, van de Wetering AJP, Koch A, Wouters KAD, Vaes N, Masclee AAM, Carvalho B, Meijer GA, Zeegers MP, Herman JG, Melotte V, van Engeland M, Smits KM. Lessons From a Systematic Literature Search on Diagnostic DNA Methylation Biomarkers for Colorectal Cancer: How to Increase Research Value and Decrease Research Waste? Clin Transl Gastroenterol 2022; 13:e00499. [PMID: 35584320 PMCID: PMC9236597 DOI: 10.14309/ctg.0000000000000499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/22/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES To improve colorectal cancer (CRC) survival and lower incidence rates, colonoscopy and/or fecal immunochemical test screening are widely implemented. Although candidate DNA methylation biomarkers have been published to improve or complement the fecal immunochemical test, clinical translation is limited. We describe technical and methodological problems encountered after a systematic literature search and provide recommendations to increase (clinical) value and decrease research waste in biomarker research. In addition, we present current evidence for diagnostic CRC DNA methylation biomarkers. METHODS A systematic literature search identified 331 diagnostic DNA methylation marker studies published before November 2020 in PubMed, EMBASE, Cochrane Library, and Google Scholar. For 136 bodily fluid studies, extended data extraction was performed. STARD criteria and level of evidence were registered to assess reporting quality and strength for clinical translation. RESULTS Our systematic literature search revealed multiple issues that hamper the development of DNA methylation biomarkers for CRC diagnosis, including methodological and technical heterogeneity and lack of validation or clinical translation. For example, clinical translation and independent validation were limited, with 100 of 434 markers (23%) studied in bodily fluids, 3 of 434 markers (0.7%) translated into clinical tests, and independent validation for 92 of 411 tissue markers (22%) and 59 of 100 bodily fluids markers (59%). DISCUSSION This systematic literature search revealed that major requirements to develop clinically relevant diagnostic CRC DNA methylation markers are often lacking. To avoid the resulting research waste, clinical needs, intended biomarker use, and independent validation should be better considered before study design. In addition, improved reporting quality would facilitate meta-analysis, thereby increasing the level of evidence and enabling clinical translation.
Collapse
Affiliation(s)
- Zheng Feng
- Department of Pathology, GROW – School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands;
| | - Cary J. G. Oberije
- Department of Pathology, GROW – School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands;
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, the Netherlands;
| | - Alouisa J. P. van de Wetering
- Department of Pathology, GROW – School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands;
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands;
| | - Alexander Koch
- Department of Pathology, GROW – School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands;
| | - Kim. A. D. Wouters
- Department of Pathology, GROW – School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands;
| | - Nathalie Vaes
- Department of Pathology, GROW – School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands;
| | - Ad A. M. Masclee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands;
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands;
| | - Beatriz Carvalho
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands;
| | - Gerrit A. Meijer
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands;
| | - Maurice P. Zeegers
- Department of Complex Genetics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands;
- Department of Complex Genetics, CAPHRI – Care and Public Health Research Institute, Maastricht University Medical Center, Maastricht, the Netherlands;
| | - James G. Herman
- Division of Hematology/Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - Veerle Melotte
- Department of Pathology, GROW – School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands;
- Department of Clinical Genetics, Erasmus University Medical Center, University of Rotterdam, Rotterdam, the Netherlands;
| | - Manon van Engeland
- Department of Pathology, GROW – School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands;
| | - Kim M. Smits
- Department of Pathology, GROW – School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands;
- Division of Medical Oncology, Department of Internal Medicine, GROW – School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands.
| |
Collapse
|
10
|
Han G, Lin Q, Yi J, Lyu Q, Ma Q, Qiao L. Isothermal gene amplification coupled MALDI-TOF MS for SARS-CoV-2 detection. Talanta 2022; 242:123297. [PMID: 35151081 PMCID: PMC8821030 DOI: 10.1016/j.talanta.2022.123297] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 12/16/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been spreading worldwide for more than a year and has undergone several mutations and evolutions. Due to the lack of effective therapeutics and long-active vaccines, accurate and large-scale screening and early diagnosis of infected individuals are crucial to control the pandemic. Nevertheless, the current widely used RT-qPCR-based methods suffer from complicated temperature control, long processing time and the risk of false-negative results. Herein, we present a three-way junction induced exponential rolling circle amplification (3WJ-eRCA) combined MALDI-TOF MS assay for SARS-CoV-2 detection. The assay can detect simultaneously the target nucleocapsid (N) and open reading frame 1 ab (orf1ab) genes of SARS-CoV-2 in a single test within 30 min, with an isothermal process (55 °C). High specificity to discriminate SARS-CoV-2 from other coronaviruses, like SARS-CoV, MERS-CoV and bat SARS-like coronavirus (bat-SL-CoVZC45), was observed. We have further used the method to detect pseudovirus of SARS-CoV-2 in various matrices, e.g. water, saliva and urine. The results demonstrated a great potential of the method for large scale screening of COVID-19, which is an important part of the pandemic control.
Collapse
|
11
|
Exponential isothermal amplification coupled MALDI-TOF MS for microRNAs detection. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Tierling S, Jürgens-Wemheuer WM, Leismann A, Becker-Kettern J, Scherer M, Wrede A, Breuskin D, Urbschat S, Sippl C, Oertel J, Schulz-Schaeffer WJ, Walter J. Bisulfite profiling of the MGMT promoter and comparison with routine testing in glioblastoma diagnostics. Clin Epigenetics 2022; 14:26. [PMID: 35180887 PMCID: PMC8857788 DOI: 10.1186/s13148-022-01244-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/07/2022] [Indexed: 11/26/2022] Open
Abstract
Background Promoter methylation of the DNA repair gene O6-methylguanine-DNA methyltransferase (MGMT) is an acknowledged predictive epigenetic marker in glioblastoma multiforme and anaplastic astrocytoma. Patients with methylated CpGs in the MGMT promoter benefit from treatment with alkylating agents, such as temozolomide, and show an improved overall survival and progression-free interval. A precise determination of MGMT promoter methylation is of importance for diagnostic decisions. We experienced that different methods show partially divergent results in a daily routine. For an integrated neuropathological diagnosis of malignant gliomas, we therefore currently apply a combination of methylation-specific PCR assays and pyrosequencing. Results To better rationalize the variation across assays, we compared these standard techniques and assays to deep bisulfite sequencing results in a cohort of 80 malignant astrocytomas. Our deep analysis covers 49 CpG sites of the expanded MGMT promoter, including exon 1, parts of intron 1 and a region upstream of the transcription start site (TSS). We observed that deep sequencing data are in general in agreement with CpG-specific pyrosequencing, while the most widely used MSP assays published by Esteller et al. (N Engl J Med 343(19):1350–1354, 2000. 10.1056/NEJM200011093431901) and Felsberg et al. (Clin Cancer Res 15(21):6683–6693, 2009. 10.1158/1078-0432.CCR-08-2801) resulted in partially discordant results in 22 tumors (27.5%). Local deep bisulfite sequencing (LDBS) revealed that CpGs located in exon 1 are suited best to discriminate methylated from unmethylated samples. Based on LDBS data, we propose an optimized MSP primer pair with 83% and 85% concordance to pyrosequencing and LDBS data. A hitherto neglected region upstream of the TSS, with an overall higher methylation compared to exon 1 and intron 1 of MGMT, is also able to discriminate the methylation status. Conclusion Our integrated analysis allows to evaluate and redefine co-methylation domains within the MGMT promoter and to rationalize the practical impact on assays used in daily routine diagnostics. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01244-4.
Collapse
Affiliation(s)
- Sascha Tierling
- Fak.NT Life Sciences, Department of Genetics/Epigenetics, Saarland University, Campus, Building A2 4, 66041, Saarbrücken, Germany.
| | | | - Alea Leismann
- Fak.NT Life Sciences, Department of Genetics/Epigenetics, Saarland University, Campus, Building A2 4, 66041, Saarbrücken, Germany
| | - Julia Becker-Kettern
- Institute of Neuropathology, Medical Faculty of the Saarland University, Homburg, Germany
| | - Michael Scherer
- Fak.NT Life Sciences, Department of Genetics/Epigenetics, Saarland University, Campus, Building A2 4, 66041, Saarbrücken, Germany.,Department of Bioinformatics and Genomics, Centre for Genomic Regulation, Barcelona, Spain
| | - Arne Wrede
- Institute of Neuropathology, Medical Faculty of the Saarland University, Homburg, Germany
| | - David Breuskin
- Institute for Neurosurgery, Medical Faculty of the Saarland University, Homburg, Germany
| | - Steffi Urbschat
- Institute for Neurosurgery, Medical Faculty of the Saarland University, Homburg, Germany
| | - Christoph Sippl
- Institute for Neurosurgery, Medical Faculty of the Saarland University, Homburg, Germany
| | - Joachim Oertel
- Institute for Neurosurgery, Medical Faculty of the Saarland University, Homburg, Germany
| | | | - Jörn Walter
- Fak.NT Life Sciences, Department of Genetics/Epigenetics, Saarland University, Campus, Building A2 4, 66041, Saarbrücken, Germany
| |
Collapse
|
13
|
Gil J, Marques-Pamies M, Valassi E, García-Martínez A, Serra G, Hostalot C, Fajardo-Montañana C, Carrato C, Bernabeu I, Marazuela M, Rodríguez-Lloveras H, Cámara R, Salinas I, Lamas C, Biagetti B, Simó-Servat A, Webb SM, Picó A, Jordà M, Puig-Domingo M. Implications of Heterogeneity of Epithelial-Mesenchymal States in Acromegaly Therapeutic Pharmacologic Response. Biomedicines 2022; 10:biomedicines10020460. [PMID: 35203668 PMCID: PMC8962441 DOI: 10.3390/biomedicines10020460] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/04/2022] Open
Abstract
Acromegaly is caused by excess growth hormone (GH) produced by a pituitary tumor. First-generation somatostatin receptor ligands (SRLs) are the first-line treatment. Several studies have linked E-cadherin loss and epithelial-mesenchymal transition (EMT) with resistance to SRLs. Our aim was to study EMT and its relationship with SRLs resistance in GH-producing tumors. We analyzed the expression of EMT-related genes by RT-qPCR in 57 tumors. The postsurgical response to SRLs was categorized as complete response, partial response, or nonresponse if IGF-1 was normal, had decreased more than 30% without normalization, or neither of those, respectively. Most tumors showed a hybrid and variable EMT expression profile not specifically associated with SRL response instead of a defined epithelial or mesenchymal phenotype. However, high SNAI1 expression was related to invasive and SRL-nonresponsive tumors. RORC was overexpressed in tumors treated with SRLs before surgery, and this increased expression was more prominent in those cases that normalized postsurgical IGF-1 levels under SRL treatment. In conclusion, GH-producing tumors showed a heterogeneous expression pattern of EMT-related genes that would partly explain the heterogeneous response to SRLs. SNAI1 and RORC may be useful to predict response to SRLs and help medical treatment decision making.
Collapse
Affiliation(s)
- Joan Gil
- Endocrine Research Unit, Germans Trias i Pujol Research Institute (IGTP), 08916 Barcelona, Spain; (J.G.); (H.R.-L.)
- Research Center for Pituitary Diseases, Department of Endocrinology/Medicine, Hospital Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain; (E.V.); (S.M.W.)
| | - Montserrat Marques-Pamies
- Department of Endocrinology and Nutrition, Germans Trias i Pujol University Hospital, 08916 Barcelona, Spain; (M.M.-P.); (I.S.)
| | - Elena Valassi
- Research Center for Pituitary Diseases, Department of Endocrinology/Medicine, Hospital Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain; (E.V.); (S.M.W.)
- Department of Endocrinology and Nutrition, Germans Trias i Pujol University Hospital, 08916 Barcelona, Spain; (M.M.-P.); (I.S.)
| | - Araceli García-Martínez
- Department of Endocrinology & Nutrition, Institute for Health and Biomedical Research (ISABIAL), Hospital General Universitario de Alicante, 03010 Alicante, Spain; (A.G.-M.); (A.P.)
- Biomedical Research Networking Center in Rare Diseases (CIBERER), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Guillermo Serra
- Department of Endocrinology, Son Espases University Hospital, 07120 Palma de Mallorca, Spain;
| | - Cristina Hostalot
- Department of Neurosurgery, Germans Trias i Pujol University Hospital, 08916 Barcelona, Spain;
| | | | - Cristina Carrato
- Department of Pathology, Germans Trias i Pujol University Hospital, 08916 Barcelona, Spain;
| | - Ignacio Bernabeu
- Endocrinology Division, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS)-SERGAS, 15706 Santiago de Compostela, Spain;
| | - Mónica Marazuela
- Department of Endocrinology, Hospital de la Princesa, Instituto Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain;
| | - Helena Rodríguez-Lloveras
- Endocrine Research Unit, Germans Trias i Pujol Research Institute (IGTP), 08916 Barcelona, Spain; (J.G.); (H.R.-L.)
| | - Rosa Cámara
- Endocrinology Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain;
| | - Isabel Salinas
- Department of Endocrinology and Nutrition, Germans Trias i Pujol University Hospital, 08916 Barcelona, Spain; (M.M.-P.); (I.S.)
| | - Cristina Lamas
- Department of Endocrinology and Nutrition, Hospital General Universitario de Albacete, 02006 Albacete, Spain;
| | - Betina Biagetti
- Department of Endocrinology, University Hospital Vall d’Hebron, 08035 Barcelona, Spain;
| | - Andreu Simó-Servat
- Department of Endocrinology, Hospital Universitari Mutua Terrassa, 08221 Terrassa, Spain;
| | - Susan M. Webb
- Research Center for Pituitary Diseases, Department of Endocrinology/Medicine, Hospital Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain; (E.V.); (S.M.W.)
| | - Antonio Picó
- Department of Endocrinology & Nutrition, Institute for Health and Biomedical Research (ISABIAL), Hospital General Universitario de Alicante, 03010 Alicante, Spain; (A.G.-M.); (A.P.)
- Biomedical Research Networking Center in Rare Diseases (CIBERER), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Clinical Medicine, Miguel Hernandez University, 03202 Elche, Spain
| | - Mireia Jordà
- Endocrine Research Unit, Germans Trias i Pujol Research Institute (IGTP), 08916 Barcelona, Spain; (J.G.); (H.R.-L.)
- Correspondence: (M.J.); (M.P.-D.); Tel.: +34-93-033-05-19 (ext. 6260) (M.J.); +34-934-978-655 (M.P.-D.)
| | - Manel Puig-Domingo
- Endocrine Research Unit, Germans Trias i Pujol Research Institute (IGTP), 08916 Barcelona, Spain; (J.G.); (H.R.-L.)
- Department of Endocrinology and Nutrition, Germans Trias i Pujol University Hospital, 08916 Barcelona, Spain; (M.M.-P.); (I.S.)
- Biomedical Research Networking Center in Rare Diseases (CIBERER), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Medicine, Autonomous University of Barcelona, 08913 Barcelona, Spain
- Correspondence: (M.J.); (M.P.-D.); Tel.: +34-93-033-05-19 (ext. 6260) (M.J.); +34-934-978-655 (M.P.-D.)
| |
Collapse
|
14
|
Tost J. Current and Emerging Technologies for the Analysis of the Genome-Wide and Locus-Specific DNA Methylation Patterns. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:395-469. [DOI: 10.1007/978-3-031-11454-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Jiang Y, Xun Q, Wan R, Deng S, Hu X, Luo L, Li X, Feng J. GLCCI1 gene body methylation in peripheral blood is associated with asthma and asthma severity. Clin Chim Acta 2021; 523:97-105. [PMID: 34529984 DOI: 10.1016/j.cca.2021.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND AIMS Epigenetic changes play a role in the occurrence of asthma. In this study, we evaluated the methylation status of glucocorticoid-induced transcript 1 (GLCCI1) and assessed its associations with asthma and asthma severity. MATERIALS AND METHODS Peripheral blood mononuclear cells were harvested from 33 severe asthma patients, 84 mild-moderate asthma patients and 79 healthy controls of Han nationality. GLCCI1 methylation were screened using the MassArray Epityper platform (Agena). We also conducted mRNA sequencing of GLCCI1-knockout mice to further explore possible functions of this gene. RESULTS We found 5 GLCCI1 methylation sites independently correlated with asthma (adjusted p < 0.05) and perform well in asthma prediction with optimum area under the curve (AUC) value was 0.846 (p < 0.0001). In asthmatic group, only one sites independently associates with severe asthma. Area under the curve in predicting severe asthma is comparable with forced expiratory volume in 1 s predicted (AUC 0.865 and 0.857, p = 0.291). Spearman correlate analysis denoted GLCCI1 low methylation is associates with its low expression in asthma PBMCs. Its reduced level may influence PI3k-Akt and MAPK pathways by the results of RNA sequencing of GLCCI1-knockout mice (adjusted p value < 0.01). CONCLUSIONS Our research indicates a low GLCCI1 methylation level in asthma with certain sites are lower in severe asthma group. These GLCCI1 methylation sites may be contributed to detect asthma and asthma severity.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qiufen Xun
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Respiratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Rongjun Wan
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shuanglinzi Deng
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xinyue Hu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lisha Luo
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiaozhao Li
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Juntao Feng
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
16
|
Salivary DNA Methylation as an Epigenetic Biomarker for Head and Neck Cancer. Part II: A Cancer Risk Meta-Analysis. J Pers Med 2021; 11:jpm11070606. [PMID: 34206840 PMCID: PMC8304899 DOI: 10.3390/jpm11070606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
Aberrant methylation of tumor suppressor genes has been reported as an important epigenetic silencer in head and neck cancer (HNC) pathogenesis. Here, we performed a comprehensive meta-analysis to evaluate the overall and specific impact of salivary gene promoter methylation on HNC risk. The methodological quality was assessed using the Newcastle–Ottawa scale (NOS). Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to evaluate the strength of the association and Egger’s and Begg’s tests were applied to detect publication bias. The frequency of salivary DNA promoter methylation was significantly higher in HNC patients than in healthy controls (OR: 8.34 (95% CI = 6.10–11.39; p < 0.01). The pooled ORs showed a significant association between specific tumor-related genes and HNC risk: p16 (3.75; 95% CI = 2.51–5.60), MGMT (5.72; 95% CI = 3.00–10.91), DAPK (5.34; 95% CI = 2.18–13.10), TIMP3 (3.42; 95% CI = 1.99–5.88), and RASSF1A (7.69; 95% CI = 3.88–15.23). Overall, our meta-analysis provides precise evidence on the association between salivary DNA promoter hypermethylation and HNC risk. Thus, detection of promoter DNA methylation in saliva is a potential biomarker for predicting HNC risk.
Collapse
|
17
|
Noble AJ, Pearson JF, Boden JM, Horwood LJ, Gemmell NJ, Kennedy MA, Osborne AJ. A validation of Illumina EPIC array system with bisulfite-based amplicon sequencing. PeerJ 2021; 9:e10762. [PMID: 33614276 PMCID: PMC7881719 DOI: 10.7717/peerj.10762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022] Open
Abstract
The Illumina Infinium® MethylationEPIC BeadChip system (hereafter EPIC array) is considered to be the current gold standard detection method for assessing DNA methylation at the genome-wide level. EPIC arrays are often used for hypothesis generation or pilot studies, the natural conclusion to which is to validate methylation candidates and expand these in a larger cohort, in a targeted manner. As such, an accurate smaller-scale, targeted technique, that generates data at the individual CpG level that is equivalent to the EPIC array, is needed. Here, we tested an alternative DNA methylation detection technique, known as bisulfite-based amplicon sequencing (BSAS), to determine its ability to validate CpG sites detected in EPIC array studies. BSAS was able to detect differential DNA methylation at CpG sites to a degree which correlates highly with the EPIC array system at some loci. However, BSAS correlated less well with EPIC array data in some instances, and most notably, when the magnitude of change via EPIC array was greater than 5%. Therefore, our data suggests that BSAS can be used to validate EPIC array data, but each locus must be compared on an individual basis, before being taken forward into large scale screening. Further, BSAS does offer advantages compared to the probe-based EPIC array; BSAS amplifies a region of the genome (∼500 bp) around a CpG of interest, allowing analyses of other CpGs in the region that may not be present on the EPIC array, aiding discovery of novel CpG sites and differentially methylated regions of interest. We conclude that BSAS offers a valid investigative tool for specific regions of the genome that are currently not contained on the array system.
Collapse
Affiliation(s)
- Alexandra J Noble
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - John F Pearson
- Department of Pathology and Biomedical Sciences, University of Otago, Christchurch, New Zealand
| | - Joseph M Boden
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| | - L John Horwood
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, Univeristy of Otago, Dunedin, New Zealand
| | - Martin A Kennedy
- Department of Pathology and Biomedical Sciences, University of Otago, Christchurch, New Zealand
| | - Amy J Osborne
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
18
|
De Chiara L, Leiro-Fernandez V, Rodríguez-Girondo M, Valverde D, Botana-Rial MI, Fernández-Villar A. Comparison of Bisulfite Pyrosequencing and Methylation-Specific qPCR for Methylation Assessment. Int J Mol Sci 2020; 21:ijms21239242. [PMID: 33287451 PMCID: PMC7730915 DOI: 10.3390/ijms21239242] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/18/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022] Open
Abstract
Different methodological approaches are available to assess DNA methylation biomarkers. In this study, we evaluated two sodium bisulfite conversion-dependent methods, namely pyrosequencing and methylation-specific qPCR (MS-qPCR), with the aim of measuring the closeness of agreement of methylation values between these two methods and its effect when setting a cut-off. Methylation of tumor suppressor gene p16/INK4A was evaluated in 80 lung cancer patients from which cytological lymph node samples were obtained. Cluster analyses were used to establish methylated and unmethylated groups for each method. Agreement and concordance between pyrosequencing and MS-qPCR was evaluated with Pearson’s correlation, Bland–Altman, Cohen’s kappa index and ROC curve analyses. Based on these analyses, cut-offs were derived for MS-qPCR. An acceptable correlation (Pearson’s R2 = 0.738) was found between pyrosequencing (PYRmean) and MS-qPCR (NMP; normalized methylation percentage), providing similar clinical results when categorizing data as binary using cluster analysis. Compared to pyrosequencing, MS-qPCR tended to underestimate methylation for values between 0 and 15%, while for methylation >30% overestimation was observed. The estimated cut-off for MS-qPCR data based on cluster analysis, kappa-index agreement and ROC curve analysis were much lower than that derived from pyrosequencing. In conclusion, our results indicate that independently of the approach used for estimating the cut-off, the methylation percentage obtained through MS-qPCR is lower than that calculated for pyrosequencing. These differences in data and therefore in the cut-off should be examined when using methylation biomarkers in the clinical practice.
Collapse
Affiliation(s)
- Loretta De Chiara
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain;
- Centro de Investigaciones Biomédicas (CINBIO), Centro Singular de Investigación de Galicia, Universidad de Vigo, 36310 Vigo, Spain
- Correspondence: ; Tel.: +34-986-813-841
| | - Virginia Leiro-Fernandez
- Pulmonary Department, Hospital Álvaro Cunqueiro, EOXI Vigo, 36213 Vigo, Spain; (V.L.-F.); (M.I.B.-R.); (A.F.-V.)
- PneumoVigo I +i Research Group, Sanitary Research Institute Galicia Sur (IIS Galicia Sur), 36213 Vigo, Spain
| | - Mar Rodríguez-Girondo
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, 2300RC Leiden, The Netherlands;
| | - Diana Valverde
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain;
- Centro de Investigaciones Biomédicas (CINBIO), Centro Singular de Investigación de Galicia, Universidad de Vigo, 36310 Vigo, Spain
| | - María Isabel Botana-Rial
- Pulmonary Department, Hospital Álvaro Cunqueiro, EOXI Vigo, 36213 Vigo, Spain; (V.L.-F.); (M.I.B.-R.); (A.F.-V.)
- PneumoVigo I +i Research Group, Sanitary Research Institute Galicia Sur (IIS Galicia Sur), 36213 Vigo, Spain
| | - Alberto Fernández-Villar
- Pulmonary Department, Hospital Álvaro Cunqueiro, EOXI Vigo, 36213 Vigo, Spain; (V.L.-F.); (M.I.B.-R.); (A.F.-V.)
- PneumoVigo I +i Research Group, Sanitary Research Institute Galicia Sur (IIS Galicia Sur), 36213 Vigo, Spain
| |
Collapse
|
19
|
Rodenkirchen V, Schettgen T, Rink L. Zinc deficiency impairs interferon-γ production on post-transcriptional level. J Trace Elem Med Biol 2020; 62:126598. [PMID: 32645654 DOI: 10.1016/j.jtemb.2020.126598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Zinc is a trace element and is thus commonly known to be indispensable for regular cellular function. Until today, zinc deficiency is a widespread health problem, affecting approximately one sixth of the world's population. Especially the immune system has proven to be highly dependent on zinc. Interferon-γ (IFN-γ) is a key element in the defense against intracellular pathogens. A lack of this cytokine results in immunological impairment, whereas an excess can lead to autoimmunity, highlighting the importance of a well-regulated IFN-γ expression. In a state of zinc deficiency, the production of this cytokine has long been shown to be reduced. Providing further insight into the molecular mechanisms responsible for this interaction is the primary objective of this study. METHODS Zinc-deficient or -supplemented cell culture, ELISA, quantitative PCR, methylation analysis. RESULTS Promoter methylation is a typical mechanism of gene silencing and a strong regulating factor for IFN-γ production. An analysis of the methylation status of IFN-γ and its transcription factor IRF4 in human PBMC in a state of cellular zinc deficiency or excess showed no dependency on the trace metal. Unexpectedly, zinc-deficient PBMC, which secreted significantly less IFN-γ protein, showed significantly higher mRNA levels of the cytokine compared to cells with high total zinc levels. CONCLUSION This report is the first about this unconventional ratio of IFN-γ mRNA to protein. Such a mismatch is highly relevant to the study of protein production in general and that of IFN-γ in particular. Based on our results and the latest research, we hypothesize a strong post-transcriptional effect of zinc on IFN-γ.
Collapse
Affiliation(s)
- Vera Rodenkirchen
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Thomas Schettgen
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074 Aachen, Germany.
| |
Collapse
|
20
|
Greve G, Schüler J, Grüning BA, Berberich B, Stomper J, Zimmer D, Gutenkunst L, Bönisch U, Meier R, Blagitko-Dorfs N, Grishina O, Pfeifer D, Weichenhan D, Plass C, Lübbert M. Decitabine Induces Gene Derepression on Monosomic Chromosomes: In Vitro and In Vivo Effects in Adverse-Risk Cytogenetics AML. Cancer Res 2020; 81:834-846. [PMID: 33203699 DOI: 10.1158/0008-5472.can-20-1430] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/21/2020] [Accepted: 11/12/2020] [Indexed: 11/16/2022]
Abstract
Hypomethylating agents (HMA) have become the backbone of nonintensive acute myeloid leukemia/myelodysplastic syndrome (AML/MDS) treatment, also by virtue of their activity in patients with adverse genetics, for example, monosomal karyotypes, often with losses on chromosome 7, 5, or 17. No comparable activity is observed with cytarabine, a cytidine analogue without DNA-hypomethylating properties. As evidence exists for compounding hypermethylation and gene silencing of hemizygous tumor suppressor genes (TSG), we thus hypothesized that this effect may preferentially be reversed by the HMAs decitabine and azacitidine. An unbiased RNA-sequencing approach was developed to interrogate decitabine-induced transcriptome changes in AML cell lines with or without a deletion of chromosomes 7q, 5q or 17p. HMA treatment preferentially upregulated several hemizygous TSG in this genomic region, significantly derepressing endogenous retrovirus (ERV)3-1, with promoter demethylation, enhanced chromatin accessibility, and increased H3K4me3 levels. Decitabine globally reactivated multiple transposable elements, with activation of the dsRNA sensor RIG-I and interferon regulatory factor (IRF)7. Induction of ERV3-1 and RIG-I mRNA was also observed during decitabine treatment in vivo in serially sorted peripheral blood AML blasts. In patient-derived monosomal karyotype AML murine xenografts, decitabine treatment resulted in superior survival rates compared with cytarabine. Collectively, these data demonstrate preferential gene derepression and ERV reactivation in AML with chromosomal deletions, providing a mechanistic explanation that supports the clinical observation of superiority of HMA over cytarabine in this difficult-to-treat patient group. SIGNIFICANCE: These findings unravel the molecular mechanism underlying the intriguing clinical activity of HMAs in AML/MDS patients with chromosome 7 deletions and other monosomal karyotypes.See related commentary by O'Hagan et al., p. 813.
Collapse
Affiliation(s)
- Gabriele Greve
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julia Schüler
- Charles River Discovery Research Services Germany GmbH, Freiburg, Germany
| | - Björn A Grüning
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Bettina Berberich
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julia Stomper
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dennis Zimmer
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lea Gutenkunst
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ulrike Bönisch
- Deep Sequencing Facility, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Ruth Meier
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Clinic for Pediatric and Adolescent Medicine Klinikum Karlsruhe, Karlsruhe, Germany
| | - Nadja Blagitko-Dorfs
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Olga Grishina
- Clinical Trials Unit, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dietmar Pfeifer
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dieter Weichenhan
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Lübbert
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,DKTK Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
21
|
Figueroa-González G, Carrillo-Hernández JF, Perez-Rodriguez I, Cantú de León D, Campos-Parra AD, Martínez-Gutiérrez AD, Coronel-Hernández J, García-Castillo V, López-Camarillo C, Peralta-Zaragoza O, Jacobo-Herrera NJ, Guardado-Estrada M, Pérez-Plasencia C. Negative Regulation of Serine Threonine Kinase 11 (STK11) through miR-100 in Head and Neck Cancer. Genes (Basel) 2020; 11:1058. [PMID: 32911741 PMCID: PMC7563199 DOI: 10.3390/genes11091058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Serine Threonine Kinase 11 (STK11), also known as LKB1, is a tumor suppressor gene that regulates several biological processes such as apoptosis, energetic metabolism, proliferation, invasion, and migration. During malignant progression, different types of cancer inhibit STK11 function by mutation or epigenetic inactivation. In Head and Neck Cancer, it is unclear what mechanism is involved in decreasing STK11 levels. Thus, the present work aims to determine whether STK11 expression might be regulated through epigenetic or post-translational mechanisms. METHODS Expression levels and methylation status for STK11 were analyzed in 59 cases of head and neck cancer and 10 healthy tissue counterparts. Afterward, we sought to identify candidate miRNAs exerting post-transcriptional regulation of STK11. Then, we assessed a luciferase gene reporter assay to know if miRNAs directly target STK11 mRNA. The expression levels of the clinical significance of mir-100-3p, -5p, and STK11 in 495 HNC specimens obtained from the TCGA database were further analyzed. Finally, the Kaplan-Meier method was used to estimate the prognostic significance of the miRNAs for Overall Survival, and survival curves were compared through the log-rank test. RESULTS STK11 was under-expressed, and its promoter region was demethylated or partially methylated. miR-17-5p, miR-106a-5p, miR-100-3p, and miR-100-5p could be negative regulators of STK11. Our experimental data suggested evidence that miR-100-3p and -5p were over-expressed in analyzed tumor patient samples. Luciferase gene reporter assay experiments showed that miR-100-3p targets and down-regulates STK11 mRNA directly. With respect to overall survival, STK11 expression level was significant for predicting clinical outcomes. CONCLUSION This is, to our knowledge, the first report of miR-100-3p targeting STK11 in HNC. Together, these findings may support the importance of regulation of STK11 through post-transcriptional regulation in HNC and the possible contribution to the carcinogenesis process in this neoplasia.
Collapse
Affiliation(s)
- Gabriela Figueroa-González
- Unidad Multidisciplinaria de Investigación Experimental Zaragoza (UMIEZ), Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Mexico City 09230, Mexico;
- Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (J.F.C.-H.); (I.P.-R.); (D.C.d.L.); (A.D.C.-P.); (A.D.M.-G.); (J.C.-H.)
| | - José F. Carrillo-Hernández
- Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (J.F.C.-H.); (I.P.-R.); (D.C.d.L.); (A.D.C.-P.); (A.D.M.-G.); (J.C.-H.)
| | - Itzel Perez-Rodriguez
- Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (J.F.C.-H.); (I.P.-R.); (D.C.d.L.); (A.D.C.-P.); (A.D.M.-G.); (J.C.-H.)
| | - David Cantú de León
- Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (J.F.C.-H.); (I.P.-R.); (D.C.d.L.); (A.D.C.-P.); (A.D.M.-G.); (J.C.-H.)
| | - Alma D. Campos-Parra
- Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (J.F.C.-H.); (I.P.-R.); (D.C.d.L.); (A.D.C.-P.); (A.D.M.-G.); (J.C.-H.)
| | - Antonio D. Martínez-Gutiérrez
- Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (J.F.C.-H.); (I.P.-R.); (D.C.d.L.); (A.D.C.-P.); (A.D.M.-G.); (J.C.-H.)
| | - Jossimar Coronel-Hernández
- Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (J.F.C.-H.); (I.P.-R.); (D.C.d.L.); (A.D.C.-P.); (A.D.M.-G.); (J.C.-H.)
| | - Verónica García-Castillo
- Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica del Cáncer, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edo.Mex, Mexico;
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City 09790, Mexico;
| | - Oscar Peralta-Zaragoza
- Dirección de Infecciones Crónicas y Cáncer, Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Morelos, Mexico;
| | - Nadia J. Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Nutrición y Ciencias Médicas, Salvador Zubirán, Mexico City 14000, Mexico;
| | - Mariano Guardado-Estrada
- Laboratorio de Genética, Licenciatura en Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04360, Mexico;
| | - Carlos Pérez-Plasencia
- Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (J.F.C.-H.); (I.P.-R.); (D.C.d.L.); (A.D.C.-P.); (A.D.M.-G.); (J.C.-H.)
- Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica del Cáncer, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edo.Mex, Mexico;
| |
Collapse
|
22
|
Genome-wide identification of differentially methylated promoters and enhancers associated with response to anti-PD-1 therapy in non-small cell lung cancer. Exp Mol Med 2020; 52:1550-1563. [PMID: 32879421 PMCID: PMC8080767 DOI: 10.1038/s12276-020-00493-8] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/22/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022] Open
Abstract
Although approved programmed cell death protein (PD)-1 inhibitors show durable responses, clinical benefits to these agents are only seen in one-third of patients in most cancer types. Therefore, strategies for improving the response to PD-1 inhibitor for treating various cancers including non-small cell lung cancer (NSCLC) are urgently needed. Compared with genome and transcriptome, tumor DNA methylome in anti-PD-1 response was relatively unexplored. We compared the pre-treatment methylation status of cis-regulatory elements between responders and non-responders to treatment with nivolumab or pembrolizumab using the Infinium Methylation EPIC Array, which can profile ~850,000 CpG sites, including ~350,000 CpG sites located in enhancer regions. Then, we analyzed differentially methylated regions overlapping promoters (pDMRs) or enhancers (eDMRs) between responders and non-responders to PD-1 inhibitors. We identified 1007 pDMRs and 607 eDMRs associated with the anti-PD-1 response. We also identified 1109 and 1173 target genes putatively regulated by these pDMRs and eDMRs, respectively. We found that eDMRs contribute to the epigenetic regulation of the anti-PD-1 response more than pDMRs. Hypomethylated pDMRs of Cytohesin 1 Interacting Protein (CYTIP) and TNF superfamily member 8 (TNFSF8) were more predictive than programmed cell death protein ligand 1 (PD-L1) expression for anti-PD-1 response and progression-free survival (PFS) and overall survival (OS) in a validation cohort, suggesting their potential as predictive biomarkers for anti-PD-1 immunotherapy. The catalog of promoters and enhancers differentially methylated between responders and non-responders to PD-1 inhibitors presented herein will guide the development of biomarkers and therapeutic strategies for improving anti-PD-1 immunotherapy in NSCLC.
Collapse
|
23
|
de Ruijter TC, van der Heide F, Smits KM, Aarts MJ, van Engeland M, Heijnen VCG. Prognostic DNA methylation markers for hormone receptor breast cancer: a systematic review. Breast Cancer Res 2020; 22:13. [PMID: 32005275 PMCID: PMC6993426 DOI: 10.1186/s13058-020-1250-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/15/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND In patients with hormone receptor-positive breast cancer, differentiating between patients with a low and a high risk of recurrence is an ongoing challenge. In current practice, prognostic clinical parameters are used for risk prediction. DNA methylation markers have been proven to be of additional prognostic value in several cancer types. Numerous prognostic DNA methylation markers for breast cancer have been published in the literature. However, to date, none of these markers are used in clinical practice. METHODS We conducted a systematic review of PubMed and EMBASE to assess the number and level of evidence of published DNA methylation markers for hormone receptor-positive breast cancer. To obtain an overview of the reporting quality of the included studies, all were scored according to the REMARK criteria that were established as reporting guidelines for prognostic biomarker studies. RESULTS A total of 74 studies were identified reporting on 87 different DNA methylation markers. Assessment of the REMARK criteria showed variation in reporting quality of the studies. Eighteen single markers and one marker panel were studied in multiple independent populations. Hypermethylation of the markers RASSF1, BRCA, PITX2, CDH1, RARB, PCDH10 and PGR, and the marker panel GSTP1, RASSF1 and RARB showed a statistically significant correlation with poor disease outcome that was confirmed in at least one other, independent study. CONCLUSION This systematic review provides an overview on published prognostic DNA methylation markers for hormone receptor-positive breast cancer and identifies eight markers that have been independently validated. Analysis of the reporting quality of included studies suggests that future research on this topic would benefit from standardised reporting guidelines.
Collapse
Affiliation(s)
- Tim C. de Ruijter
- Division of Medical Oncology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| | - Frank van der Heide
- Division of Medical Oncology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Kim M. Smits
- Division of Medical Oncology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
- Department of Pathology, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands
| | - Maureen J. Aarts
- Division of Medical Oncology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| | - Manon van Engeland
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
- Department of Pathology, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands
| | - Vivianne C. G. Heijnen
- Division of Medical Oncology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
24
|
Šutić M, Motzek A, Bubanović G, Linke M, Sabol I, Vugrek O, Ozretić P, Brčić L, Seiwerth S, Debeljak Ž, Jakovčević A, Janevski Z, Stančić-Rokotov D, Vukić-Dugac A, Jakopović M, Samaržija M, Zechner U, Knežević J. Promoter methylation status of ASC/TMS1/PYCARD is associated with decreased overall survival and TNM status in patients with early stage non-small cell lung cancer (NSCLC). Transl Lung Cancer Res 2019; 8:1000-1015. [PMID: 32010578 PMCID: PMC6976376 DOI: 10.21037/tlcr.2019.12.08] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 11/15/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related death worldwide, with 5-year overall survival less than 15%. Therefore, it is essential to find biomarkers for early detection and prognosis. Aberrant DNA methylation is a common feature of human cancers and its utility is already recognized in cancer management. The aim of this study was to explore the diagnostic and prognostic value of the promoter methylation status of the ASC/TMS1/PYCARD and MyD88 genes, key adaptor molecules in the activation of the innate immune response and apoptosis pathways. METHODS A total of 50 non-small cell lung cancer (NSCLC) patients were enrolled in the study. Methylation of bisulphite converted DNA was quantified by pyrosequencing in fresh frozen malignant tissues and adjacent non-malignant tissues. Associations between methylation and lung function, tumor grade and overall survival were evaluated using receiver-operating characteristics (ROC) analysis and statistical tests of hypothesis. RESULTS Methylation level of tested genes is generally low but significantly decreased in tumor tissues (ASC/TMS1/PYCARD, P<0.0001; MyD88, P<0.0002), which correlates with increased protein expression. Three CpG sites were identified as promising diagnostic marker candidates; CpG11 (-63 position) in ASC/TMS1/PYCARD and CpG1 (-253 position) and 2 (-265 position) in MyD88. The association study showed that the methylation status of the ASC/TMS1 CpG4 site (-34 position) in malignant and non-malignant tissues is associated with the overall survival (P=0.019) and the methylation status of CpG8 site (-92 position) is associated with TNM-stage (P=0.011). CONCLUSIONS The methylation status of the ASC/TMS1/PYCARD and MyD88 promoters are promising prognostic biomarker candidates. However, presented results should be considered as a preliminary and should be confirmed on the larger number of the samples.
Collapse
Affiliation(s)
- Maja Šutić
- Ruđer Bošković Institute, Division for Molecular Medicine, Zagreb, Croatia
| | - Antje Motzek
- Institute for Human Genetics, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Gordana Bubanović
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Matthias Linke
- Institute for Human Genetics, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ivan Sabol
- Ruđer Bošković Institute, Division for Molecular Medicine, Zagreb, Croatia
| | - Oliver Vugrek
- Ruđer Bošković Institute, Division for Molecular Medicine, Zagreb, Croatia
| | - Petar Ozretić
- Ruđer Bošković Institute, Division for Molecular Medicine, Zagreb, Croatia
| | - Luka Brčić
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Željko Debeljak
- Institute of Clinical Laboratory Diagnostics, University Hospital Osijek, Osijek, Croatia
- Faculty of Medicine, Department of Pharmacology, JJ Strossmayer University of Osijek, Osijek, Croatia
| | - Antonija Jakovčević
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Zoran Janevski
- Department of Thoracic Surgery Jordanovac, Clinical Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dinko Stančić-Rokotov
- Department of Thoracic Surgery Jordanovac, Clinical Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Andrea Vukić-Dugac
- Department for Respiratory Diseases, Clinic for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marko Jakopović
- Department for Respiratory Diseases, Clinic for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Miroslav Samaržija
- Department for Respiratory Diseases, Clinic for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ulrich Zechner
- Institute for Human Genetics, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jelena Knežević
- Ruđer Bošković Institute, Division for Molecular Medicine, Zagreb, Croatia
| |
Collapse
|
25
|
Li Q, Hong J, Shen Z, Deng H, Shen Y, Wu Z, Zhou C. A systematic review and meta-analysis approach on diagnostic value of MLH1 promoter methylation for head and neck squamous cell carcinoma. Medicine (Baltimore) 2019; 98:e17651. [PMID: 31651887 PMCID: PMC6824735 DOI: 10.1097/md.0000000000017651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is the leading histological type among head and neck cancers. Several studies have explored an association between aberrant methylation of MutL homolog-1 (MLH1) promoter and HNSCC risk. We aimed to explore the associations between MLH1 promoter methylation and HNSCC by using a meta-analysis. METHODS Systematic literature search was conducted among PubMed, Google Scholar, Web of Science, and China National Knowledge Infrastructure, and Wanfang databases to retrieve relevant articles published up to June 30, 2018. A total of 12 studies were included in this meta-analysis (including 717 HNSCC and 609 controls). RESULTS The results demonstrated that MLH1 promoter methylation was notably higher in patients with HNSCC than in controls (odds ratios [ORs] = 2.52, 95% confidence intervals [CIs] = 1.33-4.79). Besides, MLH1 promoter methylation was not associated with tumor stage, lymph node status, smoking behavior, age, clinical stage, gender, and differentiation grade (all P > .05). The pooled sensitivity and specificity rates of MLH1 methylation for HNSCC were 0.23 (95% CI = 0.12-0.38) and 0.95 (95% CI, 0.82-0.99), respectively. The area under the receiver operating characteristic (ROC) curve was presented as 0.64 (95% CI = 0.60-0.68). CONCLUSION The results of this meta-analysis suggested that hypermethylation of MLH1 promoter was associated with HNSCC. Methylated MLH1 could be a potential diagnostic biomarker for diagnose of HNSCC.
Collapse
Affiliation(s)
- Qun Li
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital (Lihuili Hospital of Ningbo University)
| | - Jinjiong Hong
- Department of Hand Surgery, Ningbo 6th Hospital, Ningbo University
| | - Zhisen Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital (Lihuili Hospital of Ningbo University)
| | - Hongxia Deng
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital (Lihuili Hospital of Ningbo University)
| | - Yi Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital (Lihuili Hospital of Ningbo University)
| | - Zhenhua Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center, Lihuili Eastern Hospital, Ningbo, Zhejiang, People's Republic of China
| | - Chongchang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital (Lihuili Hospital of Ningbo University)
| |
Collapse
|
26
|
Liyanage C, Wathupola A, Muraleetharan S, Perera K, Punyadeera C, Udagama P. Promoter Hypermethylation of Tumor-Suppressor Genes p16INK4a, RASSF1A, TIMP3, and PCQAP/MED15 in Salivary DNA as a Quadruple Biomarker Panel for Early Detection of Oral and Oropharyngeal Cancers. Biomolecules 2019; 9:biom9040148. [PMID: 31013839 PMCID: PMC6523930 DOI: 10.3390/biom9040148] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 01/01/2023] Open
Abstract
Silencing of tumor-suppressor genes (TSGs) by DNA promoter hypermethylation is an early event in carcinogenesis; hence, TSGs may serve as early tumor biomarkers. We determined the promoter methylation levels of p16INK4a, RASSF1A, TIMP3, and PCQAP/MED15 TSGs in salivary DNA from oral cancer (OC) and oropharyngeal cancer (OPC) patients, using methylation-specific PCR coupled with densitometry analysis. We assessed the association between DNA methylation of individual TSGs with OC and OPC risk factors. The performance and the clinical validity of this quadruple-methylation marker panel were evaluated in discriminating OC and OPC patients from healthy controls using the CombiROC web tool. Our study reports that RASSF1A, TIMP3, and PCQAP/MED15 TSGs were significantly hypermethylated in OC and OPC cases compared to healthy controls. DNA methylation levels of TSGs were significantly augmented by smoking, alcohol use, and betel quid chewing, indicating the fact that frequent exposure to risk factors may drive oral and oropharyngeal carcinogenesis through TSG promoter hypermethylation. Also, this quadruple-methylation marker panel of p16INK4a, RASSF1A, TIMP3, and PCQAP/MED15 TSGs demonstrated excellent diagnostic accuracy in the early detection of OC at 91.7% sensitivity and 92.3% specificity and of OPC at 99.8% sensitivity and 92.1% specificity from healthy controls.
Collapse
Affiliation(s)
- Chamikara Liyanage
- Department of Zoology and Environment Sciences, University of Colombo, Colombo 03 00300, Sri Lanka.
| | - Asanga Wathupola
- Department of Zoology and Environment Sciences, University of Colombo, Colombo 03 00300, Sri Lanka.
| | - Sanjayan Muraleetharan
- Department of Zoology and Environment Sciences, University of Colombo, Colombo 03 00300, Sri Lanka.
| | - Kanthi Perera
- National Cancer Institute of Sri Lanka, Maharagama, 10280, Sri Lanka.
| | - Chamindie Punyadeera
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia.
- Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, QLD 4102, Australia.
| | - Preethi Udagama
- Department of Zoology and Environment Sciences, University of Colombo, Colombo 03 00300, Sri Lanka.
| |
Collapse
|
27
|
Gentner E, Vegi NM, Mulaw MA, Mandal T, Bamezai S, Claus R, Tasdogan A, Quintanilla-Martinez L, Grunenberg A, Döhner K, Döhner H, Bullinger L, Haferlach T, Buske C, Rawat VPS, Feuring-Buske M. VENTX induces expansion of primitive erythroid cells and contributes to the development of acute myeloid leukemia in mice. Oncotarget 2018; 7:86889-86901. [PMID: 27888632 PMCID: PMC5349961 DOI: 10.18632/oncotarget.13563] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/09/2016] [Indexed: 12/02/2022] Open
Abstract
Homeobox genes are key regulators in normal and malignant hematopoiesis. The human Vent-like homeobox gene VENTX, a putative homolog of the Xenopus laevis Xvent-2 gene, was shown to be highly expressed in normal myeloid cells and in patients with acute myeloid leukemia. We now demonstrate that constitutive expression of VENTX suppresses expression of genes responsible for terminal erythroid differentiation in normal CD34+ stem and progenitor cells. Transplantation of bone marrow progenitor cells retrovirally engineered to express VENTX caused massive expansion of primitive erythroid cells and partly acute erythroleukemia in transplanted mice. The leukemogenic potential of VENTX was confirmed in the AML1-ETO transplantation model, as in contrast to AML1-ETO alone co-expression of AML1-ETO and VENTX induced acute myeloid leukemia, partly expressing erythroid markers, in all transplanted mice. VENTX was highly expressed in patients with primary human erythroleukemias and knockdown of VENTX in the erythroleukemic HEL cell line significantly blocked cell growth. In summary, these data indicate that VENTX is able to perturb erythroid differentiation and to contribute to myeloid leukemogenesis when co-expressed with appropriate AML oncogenes and point to its potential significance as a novel therapeutic target in AML.
Collapse
Affiliation(s)
- Eva Gentner
- Institute of Experimental Cancer Research, CCC and University Hospital of Ulm, 89081 Ulm, Germany
| | - Naidu M Vegi
- Institute of Experimental Cancer Research, CCC and University Hospital of Ulm, 89081 Ulm, Germany
| | - Medhanie A Mulaw
- Institute of Experimental Cancer Research, CCC and University Hospital of Ulm, 89081 Ulm, Germany
| | - Tamoghna Mandal
- Institute of Experimental Cancer Research, CCC and University Hospital of Ulm, 89081 Ulm, Germany
| | - Shiva Bamezai
- Institute of Experimental Cancer Research, CCC and University Hospital of Ulm, 89081 Ulm, Germany
| | - Rainer Claus
- Department of Internal Medicine I, University Hospital Freiburg, 79106 Freiburg, Germany
| | | | | | - Alexander Grunenberg
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany
| | - Hartmut Döhner
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany
| | - Lars Bullinger
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany
| | | | - Christian Buske
- Institute of Experimental Cancer Research, CCC and University Hospital of Ulm, 89081 Ulm, Germany
| | - Vijay P S Rawat
- Institute of Experimental Cancer Research, CCC and University Hospital of Ulm, 89081 Ulm, Germany
| | | |
Collapse
|
28
|
Park HC, Ahn ER, Jung JY, Park JH, Lee JW, Lim SK, Kim W. Enhanced sensitivity of CpG island search and primer design based on predicted CpG island position. Forensic Sci Int Genet 2018; 34:134-140. [PMID: 29477876 DOI: 10.1016/j.fsigen.2018.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 10/18/2022]
Abstract
DNA methylation has important biological roles, such as gene expression regulation, as well as practical applications in forensics, such as in body fluid identification and age estimation. DNA methylation often occurs in the CpG site, and methylation within the CpG islands affects various cellular functions and is related to tissue-specific identification. Several programs have been developed to identify CpG islands; however, the size, location, and number of predicted CpG islands are not identical due to different search algorithms. In addition, they only provide structural information for predicted CpG islands without experimental information, such as primer design. We developed an analysis pipeline package, CpGPNP, to integrate CpG island prediction and primer design. CpGPNP predicts CpG islands more accurately and sensitively than other programs, and designs primers easily based on the predicted CpG island locations. The primer design function included standard, bisulfite, and methylation-specific PCR to identify the methylation of particular CpG sites. In this study, we performed CpG island prediction on all chromosomes and compared CpG island search performance of CpGPNP with other CpG island prediction programs. In addition, we compared the position of primers designed for a specific region within the predicted CpG island using other bisulfite PCR primer programs. The primers designed by CpGPNP were used to experimentally verify the amplification of the target region of markers for body fluid identification and age estimation. CpGPNP is freely available at http://forensicdna.kr/cpgpnp/.
Collapse
Affiliation(s)
- Hyun-Chul Park
- Forensic DNA Division, National Forensic Service, Wonju 26460, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Eu-Ree Ahn
- Forensic DNA Division, National Forensic Service, Wonju 26460, Republic of Korea.
| | - Ju Yeon Jung
- Forensic DNA Division, National Forensic Service, Wonju 26460, Republic of Korea.
| | - Ji-Hye Park
- Forensic DNA Division, National Forensic Service, Wonju 26460, Republic of Korea.
| | - Jee Won Lee
- Forensic DNA Division, National Forensic Service, Wonju 26460, Republic of Korea.
| | - Si-Keun Lim
- Forensic DNA Division, National Forensic Service, Wonju 26460, Republic of Korea.
| | - Won Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
29
|
The correlation between DNA methylation and transcriptional expression of human dopamine transporter in cell lines. Neurosci Lett 2017; 662:91-97. [PMID: 29030220 DOI: 10.1016/j.neulet.2017.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 10/07/2017] [Accepted: 10/09/2017] [Indexed: 01/03/2023]
Abstract
This study aims to investigate the relationship between DNA methylation and expression of human dopamine transporter (hDAT). We examined methylation status of hDAT in cells with various hDAT expression levels, including two dopaminergic neural cell lines (SK-N-AS and SH-SY-5Y) and one non-dopaminergic cell line (HEK293) by bisulfite sequencing PCR(BSP). The effects of DNA methyltransferase inhibitor 5-aza-dC or/and histone deacetylase inhibitor (HDACi, sodium butyrate, NaB) on the DNA methylation status and mRNA expression levels of hDAT were examined. The results revealed marked hypomethylation of the two promoter regions (-1214 to -856bp and -48 to 439bp, the first base of exon 1 was taken as +1 bp)of hDAT in SK-N-AS (4.7%±2.0mC and 3.5%±1.0mC, respectively) compared with SH-SY-5Y (88.0%±4.4%mC and 81.1%±8.8%mC) and HEK293 (90.7%±2.4mC and 84.4%±8.6% mC) cell lines, indicating a cell-specific methylation regulation of hDAT. 5-aza-dC and NaB decreased hypermethylation,while increase hDAT expression in SH-SY-5Y cells and recovered hDAT mRNA expression in HEK293 cells. DNA methylation enabled the cell-specific differential expression of the hDAT gene. hDAT silencing was reversed by the introduction of DNA hypomethylation via 5-aza-dC or/and NaB.
Collapse
|
30
|
Fluhr S, Krombholz CF, Meier A, Epting T, Mücke O, Plass C, Niemeyer CM, Flotho C. Epigenetic dysregulation of the erythropoietic transcription factor KLF1 and the β-like globin locus in juvenile myelomonocytic leukemia. Epigenetics 2017; 12:715-723. [PMID: 28749240 DOI: 10.1080/15592294.2017.1356959] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Increased levels of fetal hemoglobin (HbF) are a hallmark of more than half of the children diagnosed with juvenile myelomonocytic leukemia (JMML). Elevated HbF levels in JMML are associated with DNA hypermethylation of distinct gene promoter regions in leukemic cells. Since the regulation of globin gene transcription is known to be under epigenetic control, we set out to study the relation of DNA methylation patterns at β-/γ-globin promoters, mRNA and protein expression of globins, and epigenetic modifications of genes encoding the globin-regulatory transcription factors BCL11A and KLF1 in nucleated erythropoietic precursor cells of patients with JMML. We describe several altered epigenetic components resulting in disordered globin synthesis in JMML. We identify a cis-regulatory upstream KLF1 enhancer sequence as highly sensitive to DNA methylation and frequently hypermethylated in JMML. The data indicate that the dysregulation of β-like globin genes is a genuine attribute of the leukemic cell clone in JMML and involves mechanisms not taking part in the normal fetal-to-adult hemoglobin switch.
Collapse
Affiliation(s)
- Silvia Fluhr
- a Department of Pediatrics and Adolescent Medicine , Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg , Freiburg , Germany
| | - Christopher Felix Krombholz
- a Department of Pediatrics and Adolescent Medicine , Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg , Freiburg , Germany
| | - Angelina Meier
- a Department of Pediatrics and Adolescent Medicine , Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg , Freiburg , Germany
| | - Thomas Epting
- b Clinical Chemistry and Laboratory Medicine, Medical Center, Faculty of Medicine, University of Freiburg , Freiburg , Germany
| | - Oliver Mücke
- c Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center , Heidelberg , Germany
| | - Christoph Plass
- c Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center , Heidelberg , Germany.,d Multicenter Consortium, The German Cancer Consortium , Heidelberg , Germany
| | - Charlotte M Niemeyer
- a Department of Pediatrics and Adolescent Medicine , Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg , Freiburg , Germany.,d Multicenter Consortium, The German Cancer Consortium , Heidelberg , Germany
| | - Christian Flotho
- a Department of Pediatrics and Adolescent Medicine , Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg , Freiburg , Germany.,d Multicenter Consortium, The German Cancer Consortium , Heidelberg , Germany
| |
Collapse
|
31
|
Lee S, Borah S, Bahrami A. Detection of Aberrant TERT Promoter Methylation by Combined Bisulfite Restriction Enzyme Analysis for Cancer Diagnosis. J Mol Diagn 2017; 19:378-386. [PMID: 28284778 PMCID: PMC5417004 DOI: 10.1016/j.jmoldx.2017.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/13/2016] [Accepted: 01/05/2017] [Indexed: 12/12/2022] Open
Abstract
Aberrant CpG dinucleotide methylation in a specific region of the telomerase reverse transcriptase (TERT) promoter is associated with increased TERT mRNA levels and malignancy in several cancer types. However, routine screening of this region to aid cancer diagnosis can be challenging because i) several established methylation assays may inaccurately report on hypermethylation of this particular region, ii) interpreting the results of methylation assays can sometimes be difficult for clinical laboratories, and iii) use of high-throughput methylation assays for a few patient samples can be cost prohibitive. Herein, we describe the use of combined bisulfite restriction enzyme analysis (COBRA) as a diagnostic tool for detecting the hypermethylated TERT promoter using in vitro methylated and unmethylated genomic DNA as well as genomic DNA from four melanomas and two benign melanocytic lesions. We compare COBRA with MassARRAY, a more commonly used high-throughput approach, in screening for promoter hypermethylation in 28 formalin-fixed, paraffin-embedded neuroblastoma samples. COBRA sensitively and specifically detected samples with hypermethylated TERT promoter and was as effective as MassARRAY at differentiating high-risk from benign or low-risk tumors. This study demonstrates the utility of this low-cost, technically straightforward, and easily interpretable assay for cancer diagnosis in tumors of an ambiguous nature.
Collapse
Affiliation(s)
- Seungjae Lee
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sumit Borah
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Armita Bahrami
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee.
| |
Collapse
|
32
|
Assessing alternative base substitutions at primer CpG sites to optimise unbiased PCR amplification of methylated sequences. Clin Epigenetics 2017; 9:31. [PMID: 28392841 PMCID: PMC5379501 DOI: 10.1186/s13148-017-0328-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/20/2017] [Indexed: 11/20/2022] Open
Abstract
Background Determining the role of DNA methylation in various biological processes is dependent on the accurate representation of often highly complex patterns. Accurate representation is dependent on unbiased PCR amplification post bisulfite modification, regardless of methylation status of any given epiallele. This is highly dependent on primer design. Particular difficulties are raised by the analysis of CpG-rich regions, which are the usual regions of interest. Here, it is often difficult or impossible to avoid placing primers in CpG-free regions, particularly if one wants to target a specific part of a CpG-rich region. This can cause biased amplification of methylated sequences if the C is placed at those positions or to unmethylated sequences if a T is placed at those positions. Methods We examined the effect of various base substitutions at the cytosine position of primer CpGs on the representational amplification of templates and also examined the role of the annealing temperature during PCR. These were evaluated using methylation-sensitive high-resolution melting and Pyrosequencing. Results For a mixture of fully methylated and unmethylated templates, amplification using the C-, C/T (Y-) and inosine-containing primers was biased towards amplification of methylated DNA. The bias towards methylated sequences increased with annealing temperature. Amplification using primers with an A/C/G/T (N) degeneracy at the cytosine positions was not biased at the lowest temperature used but became increasingly biased towards methylated DNA with increased annealing temperature. Using primers matching neither C nor T was in the main unbiased but at the cost of poor PCR amplification efficiency. Primers with abasic sites were also unbiased but could only amplify DNA for one out of the two assays tested. However, with heterogeneous methylation, it appeared that both the primer type and stringency used have a minimal influence on PCR bias. Conclusions This is the first comprehensive analysis of base substitutions at CpG sites in primers and their effect on PCR bias for the analysis of DNA methylation. Our findings are relevant to the appropriate design of a wide range of assays, including amplicon-based next-generation sequencing approaches that need to measure DNA methylation. Electronic supplementary material The online version of this article (doi:10.1186/s13148-017-0328-4) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
Cappi C, Diniz JB, Requena GL, Lourenço T, Lisboa BCG, Batistuzzo MC, Marques AH, Hoexter MQ, Pereira CA, Miguel EC, Brentani H. Epigenetic evidence for involvement of the oxytocin receptor gene in obsessive-compulsive disorder. BMC Neurosci 2016; 17:79. [PMID: 27903255 PMCID: PMC5131547 DOI: 10.1186/s12868-016-0313-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 11/24/2016] [Indexed: 12/22/2022] Open
Abstract
Background
Obsessive–compulsive disorder (OCD) is a chronic neurodevelopmental disorder that affects up to 3% of the general population. Although epigenetic mechanisms play a role in neurodevelopment disorders, epigenetic pathways associated with OCD have rarely been investigated. Oxytocin is a neuropeptide involved in neurobehavioral functions. Oxytocin has been shown to be associated with the regulation of complex socio-cognitive processes such as attachment, social exploration, and social recognition, as well as anxiety and other stress-related behaviors. Oxytocin has also been linked to the pathophysiology of OCD, albeit inconsistently. The aim of this study was to investigate methylation in two targets sequences located in the exon III of the oxytocin receptor gene (OXTR), in OCD patients and healthy controls. We used bisulfite sequencing to quantify DNA methylation in peripheral blood samples collected from 42 OCD patients and 31 healthy controls.
Results We found that the level of methylation of the cytosine-phosphate-guanine sites in two targets sequences analyzed was greater in the OCD patients than in the controls. The higher methylation in the OCD patients correlated with OCD severity. We measured DNA methylation in the peripheral blood, which prevented us from drawing any conclusions about processes in the central nervous system. Conclusion To our knowledge, this is the first study investigating DNA methylation of the OXTR in OCD. Further studies are needed to evaluate the roles that DNA methylation and oxytocin play in OCD.
Collapse
Affiliation(s)
- Carolina Cappi
- Department of Psychiatry, School of Medicine, University of São Paulo, R. Dr. Ovídio Pires de Campos, 785, 3º andar, sala 9, São Paulo, SP, 05403-010, Brazil.
| | - Juliana Belo Diniz
- Department of Psychiatry, School of Medicine, University of São Paulo, R. Dr. Ovídio Pires de Campos, 785, 3º andar, sala 9, São Paulo, SP, 05403-010, Brazil
| | - Guaraci L Requena
- Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
| | - Tiaya Lourenço
- Department of Psychiatry, School of Medicine, University of São Paulo, R. Dr. Ovídio Pires de Campos, 785, 3º andar, sala 9, São Paulo, SP, 05403-010, Brazil
| | - Bianca Cristina Garcia Lisboa
- Department of Psychiatry, School of Medicine, University of São Paulo, R. Dr. Ovídio Pires de Campos, 785, 3º andar, sala 9, São Paulo, SP, 05403-010, Brazil
| | - Marcelo Camargo Batistuzzo
- Department of Psychiatry, School of Medicine, University of São Paulo, R. Dr. Ovídio Pires de Campos, 785, 3º andar, sala 9, São Paulo, SP, 05403-010, Brazil
| | - Andrea H Marques
- Department of Psychiatry, School of Medicine, University of São Paulo, R. Dr. Ovídio Pires de Campos, 785, 3º andar, sala 9, São Paulo, SP, 05403-010, Brazil
| | - Marcelo Q Hoexter
- Department of Psychiatry, School of Medicine, University of São Paulo, R. Dr. Ovídio Pires de Campos, 785, 3º andar, sala 9, São Paulo, SP, 05403-010, Brazil
| | - Carlos A Pereira
- Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
| | - Euripedes Constantino Miguel
- Department of Psychiatry, School of Medicine, University of São Paulo, R. Dr. Ovídio Pires de Campos, 785, 3º andar, sala 9, São Paulo, SP, 05403-010, Brazil
| | - Helena Brentani
- Department of Psychiatry, School of Medicine, University of São Paulo, R. Dr. Ovídio Pires de Campos, 785, 3º andar, sala 9, São Paulo, SP, 05403-010, Brazil
| |
Collapse
|
34
|
High-content screening identifies kinase inhibitors that overcome venetoclax resistance in activated CLL cells. Blood 2016; 128:934-47. [PMID: 27297795 DOI: 10.1182/blood-2015-12-687814] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 06/08/2016] [Indexed: 12/12/2022] Open
Abstract
Novel agents such as the Bcl-2 inhibitor venetoclax (ABT-199) are changing treatment paradigms for chronic lymphocytic leukemia (CLL) but important problems remain. Although some patients exhibit deep and durable responses to venetoclax as a single agent, other patients harbor subpopulations of resistant leukemia cells that mediate disease recurrence. One hypothesis for the origin of resistance to venetoclax is by kinase-mediated survival signals encountered in proliferation centers that may be unique for individual patients. An in vitro microenvironment model was developed with primary CLL cells that could be incorporated into an automated high-content microscopy-based screen of kinase inhibitors (KIs) to identify agents that may improve venetoclax therapy in a personalized manner. Marked interpatient variability was noted for which KIs were effective; nevertheless, sunitinib was identified as the most common clinically available KI effective in overcoming venetoclax resistance. Examination of the underlying mechanisms indicated that venetoclax resistance may be induced by microenvironmental signals that upregulate antiapoptotic Bcl-xl, Mcl-1, and A1, which can be counteracted more efficiently by sunitinib than by ibrutinib or idelalisib. Although patient-specific drug responses are common, for many patients, combination therapy with sunitinib may significantly improve the therapeutic efficacy of venetoclax.
Collapse
|
35
|
Draht MXG, Smits KM, Jooste V, Tournier B, Vervoort M, Ramaekers C, Chapusot C, Weijenberg MP, van Engeland M, Melotte V. Analysis of RET promoter CpG island methylation using methylation-specific PCR (MSP), pyrosequencing, and methylation-sensitive high-resolution melting (MS-HRM): impact on stage II colon cancer patient outcome. Clin Epigenetics 2016; 8:44. [PMID: 27118999 PMCID: PMC4845472 DOI: 10.1186/s13148-016-0211-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/14/2016] [Indexed: 12/20/2022] Open
Abstract
Background Already since the 1990s, promoter CpG island methylation markers have been considered promising diagnostic, prognostic, and predictive cancer biomarkers. However, so far, only a limited number of DNA methylation markers have been introduced into clinical practice. One reason why the vast majority of methylation markers do not translate into clinical applications is lack of independent validation of methylation markers, often caused by differences in methylation analysis techniques. We recently described RET promoter CpG island methylation as a potential prognostic marker in stage II colorectal cancer (CRC) patients of two independent series. Methods In the current study, we analyzed the RET promoter CpG island methylation of 241 stage II colon cancer patients by direct methylation-specific PCR (MSP), nested-MSP, pyrosequencing, and methylation-sensitive high-resolution melting (MS-HRM). All primers were designed as close as possible to the same genomic region. In order to investigate the effect of different DNA methylation assays on patient outcome, we assessed the clinical sensitivity and specificity as well as the association of RET methylation with overall survival for three and five years of follow-up. Results Using direct-MSP and nested-MSP, 12.0 % (25/209) and 29.6 % (71/240) of the patients showed RET promoter CpG island methylation. Methylation frequencies detected by pyrosequencing were related to the threshold for positivity that defined RET methylation. Methylation frequencies obtained by pyrosequencing (threshold for positivity at 20 %) and MS-HRM were 13.3 % (32/240) and 13.8 % (33/239), respectively. The pyrosequencing threshold for positivity of 20 % showed the best correlation with MS-HRM and direct-MSP results. Nested-MSP detected RET promoter CpG island methylation in deceased patients with a higher sensitivity (33.1 %) compared to direct-MSP (10.7 %), pyrosequencing (14.4 %), and MS-HRM (15.4 %). While RET methylation frequencies detected by nested-MSP, pyrosequencing, and MS-HRM varied, the prognostic effect seemed similar (HR 1.74, 95 % CI 0.97–3.15; HR 1.85, 95 % CI 0.93–3.86; HR 1.83, 95 % CI 0.92–3.65, respectively). Conclusions Our results show that upon optimizing and aligning four RET methylation assays with regard to primer location and sensitivity, differences in methylation frequencies and clinical sensitivities are observed; however, the effect on the marker’s prognostic outcome is minimal. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0211-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Muriel X G Draht
- Department of Pathology, GROW - School for Oncology & Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Kim M Smits
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Valérie Jooste
- Registre Bourguignon des cancers digestifs, INSERM U866, Universite de Bourgogne, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - Benjamin Tournier
- Service de Pathologie, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - Martijn Vervoort
- Zuyd University of Applied Sciences, Heerlen, The Netherlands ; Chemelot Innovation and Learning Labs, Geleen, The Netherlands
| | | | - Caroline Chapusot
- Service de Pathologie, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - Matty P Weijenberg
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Manon van Engeland
- Department of Pathology, GROW - School for Oncology & Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Veerle Melotte
- Department of Pathology, GROW - School for Oncology & Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
36
|
Kostareli E, Hielscher T, Zucknick M, Baboci L, Wichmann G, Holzinger D, Mücke O, Pawlita M, Del Mistro A, Boscolo-Rizzo P, Da Mosto MC, Tirelli G, Plinkert P, Dietz A, Plass C, Weichenhan D, Hess J. Gene promoter methylation signature predicts survival of head and neck squamous cell carcinoma patients. Epigenetics 2016; 11:61-73. [PMID: 26786582 DOI: 10.1080/15592294.2015.1137414] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Infection with high-risk types of human papilloma virus (HPV) is currently the best-established prognostic marker for head and neck squamous cell carcinoma (HNSCC), one of the most common and lethal human malignancies worldwide. Clinical trials have been launched to address the concept of treatment de-escalation for HPV-positive HNSCC with the final aim to reduce treatment related toxicity and debilitating long-term impacts on the quality of life. However, HPV-related tumors are mainly restricted to oropharyngeal SCC (OPSCC) and there is an urgent need to establish reliable biomarkers for all patients at high risk for treatment failure. A patient cohort (n = 295) with mainly non-OPSCC (72.9%) and a low prevalence of HPV16-related tumors (8.8%) was analyzed by MassARRAY to determine a previously established prognostic methylation score (MS). Kaplan-Meier revealed a highly significant correlation between a high MS and a favorable survival for OPSCC (P = 0.0004) and for non-OPSCC (P<0.0001), which was confirmed for all HNSCC by multivariate Cox regression models (HR: 9.67, 95% CI [4.61-20.30], P<0.0001). Next, we established a minimal methylation signature score (MMSS), which consists of ten most informative of the originally 62 CpG units used for the MS. The prognostic value of the MMSS was confirmed by Kaplan-Meier analysis for all HNSCC (P<0.0001) and non-OPSCC (P = 0.0002), and was supported by multivariate Cox regression models for all HNSCC (HR: 2.15, 95% CI [1.36-3.41], P = 0.001). In summary, the MS and the MMSS exhibit an excellent performance as prognosticators for survival, which is not limited by the anatomical site, and both could be implemented in future clinical trials.
Collapse
Affiliation(s)
- Efterpi Kostareli
- a Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ) , Heidelberg , Germany.,b Department of Otolaryngology , Head and Neck Surgery, University Hospital , Heidelberg, Heidelberg , Germany
| | - Thomas Hielscher
- c Division of Biostatistics, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Manuela Zucknick
- c Division of Biostatistics, German Cancer Research Center (DKFZ) , Heidelberg , Germany.,d Oslo Center for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo , Norway
| | - Lorena Baboci
- e Veneto Institute of Oncology IOV - IRCCS, Immunology and Molecular Oncology Unit , Padua , Italy.,f Division of Molecular Diagnostics of Oncogenic Infections, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Gunnar Wichmann
- g Department of Otorhinolaryngology , University Hospital Leipzig , Germany
| | - Dana Holzinger
- f Division of Molecular Diagnostics of Oncogenic Infections, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Oliver Mücke
- a Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Michael Pawlita
- f Division of Molecular Diagnostics of Oncogenic Infections, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Annarosa Del Mistro
- e Veneto Institute of Oncology IOV - IRCCS, Immunology and Molecular Oncology Unit , Padua , Italy
| | - Paolo Boscolo-Rizzo
- h Department of Neurosciences , ENT Clinic and Regional Center for Head and Neck Cancer, University of Padua, School of Medicine, Treviso Regional Hospital , Treviso , Italy
| | - Maria Cristina Da Mosto
- h Department of Neurosciences , ENT Clinic and Regional Center for Head and Neck Cancer, University of Padua, School of Medicine, Treviso Regional Hospital , Treviso , Italy
| | - Giancarlo Tirelli
- i Head and Neck Department, Hospital of Cattinara, University of Trieste , Trieste , Italy
| | - Peter Plinkert
- b Department of Otolaryngology , Head and Neck Surgery, University Hospital , Heidelberg, Heidelberg , Germany
| | - Andreas Dietz
- g Department of Otorhinolaryngology , University Hospital Leipzig , Germany
| | - Christoph Plass
- a Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Dieter Weichenhan
- a Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Jochen Hess
- b Department of Otolaryngology , Head and Neck Surgery, University Hospital , Heidelberg, Heidelberg , Germany.,j Research Group Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| |
Collapse
|
37
|
Perez-Janices N, Blanco-Luquin I, Tuñón MT, Barba-Ramos E, Ibáñez B, Zazpe-Cenoz I, Martinez-Aguillo M, Hernandez B, Martínez-Lopez E, Fernández AF, Mercado MR, Cabada T, Escors D, Megias D, Guerrero-Setas D. EPB41L3, TSP-1 and RASSF2 as new clinically relevant prognostic biomarkers in diffuse gliomas. Oncotarget 2016; 6:368-80. [PMID: 25621889 PMCID: PMC4381601 DOI: 10.18632/oncotarget.2745] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/12/2014] [Indexed: 12/17/2022] Open
Abstract
Hypermethylation of tumor suppressor genes is one of the hallmarks in the progression of brain tumors. Our objectives were to analyze the presence of the hypermethylation of EPB41L3, RASSF2 and TSP-1 genes in 132 diffuse gliomas (astrocytic and oligodendroglial tumors) and in 10 cases of normal brain, and to establish their association with the patients’ clinicopathological characteristics. Gene hypermethylation was analyzed by methylation-specific-PCR and confirmed by pyrosequencing (for EPB41L3 and TSP-1) and bisulfite-sequencing (for RASSF2). EPB41L3, RASSF2 and TSP-1 genes were hypermethylated only in tumors (29%, 10.6%, and 50%, respectively), confirming their cancer-specific role. Treatment of cells with the DNA-demethylating-agent 5-aza-2′-deoxycytidine restores their transcription, as confirmed by quantitative-reverse-transcription-PCR and immunofluorescence. Immunohistochemistry for EPB41L3, RASSF2 and TSP-1 was performed to analyze protein expression; p53, ki-67, and CD31 expression and 1p/19q co-deletion were considered to better characterize the tumors. EPB41L3 and TSP-1 hypermethylation was associated with worse (p = 0.047) and better (p = 0.037) prognosis, respectively. This observation was confirmed after adjusting the results for age and tumor grade, the role of TSP-1 being most pronounced in oligodendrogliomas (p = 0.001). We conclude that EPB41L3, RASSF2 and TSP-1 genes are involved in the pathogenesis of diffuse gliomas, and that EPB41L3 and TSP-1 hypermethylation are of prognostic significance.
Collapse
Affiliation(s)
- N Perez-Janices
- Cancer Epigenetics Group, Navarrabiomed-Fundación Miguel Servet, Navarra, Spain
| | - I Blanco-Luquin
- Cancer Epigenetics Group, Navarrabiomed-Fundación Miguel Servet, Navarra, Spain
| | - M T Tuñón
- Department of Pathology Section A, Complejo Hospitalario de Navarra, Navarra Health Service, Navarra, Spain
| | - E Barba-Ramos
- Department of Pathology Section A, Complejo Hospitalario de Navarra, Navarra Health Service, Navarra, Spain
| | - B Ibáñez
- Navarrabiomed-Fundación Miguel Servet, Navarra, Spain. Red de Evaluación en Servicios Sanitarios y Enfermedades Crónicas (REDISSEC), Navarra, Spain
| | - I Zazpe-Cenoz
- Department of Neurosurgery, Complejo Hospitalario de Navarra, Navarra Health Service, Navarra, Spain
| | - M Martinez-Aguillo
- Department of Medical Oncology, Complejo Hospitalario de Navarra, Navarra Health Service, Navarra, Spain
| | - B Hernandez
- Department of Medical Oncology, Complejo Hospitalario de Navarra, Navarra Health Service, Navarra, Spain
| | - E Martínez-Lopez
- Department of Radiation Oncology, Complejo Hospitalario de Navarra, Navarra Health Service, Navarra, Spain
| | - A F Fernández
- Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), HUCA, Universidad de Oviedo, Asturias, Spain
| | - M R Mercado
- Department of Pathology Section A, Complejo Hospitalario de Navarra, Navarra Health Service, Navarra, Spain
| | - T Cabada
- Department of Radiology, Complejo Hospitalario de Navarra, Navarra Health Service, Navarra, Spain
| | - D Escors
- Navarrabiomed-Fundación Miguel Servet, Navarra, Spain
| | - D Megias
- Confocal Microscopy Core Unit, Spanish National Cancer Research Centre, Madrid, Spain
| | - D Guerrero-Setas
- Cancer Epigenetics Group, Navarrabiomed-Fundación Miguel Servet, Navarra, Spain
| |
Collapse
|
38
|
Current and Emerging Technologies for the Analysis of the Genome-Wide and Locus-Specific DNA Methylation Patterns. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:343-430. [DOI: 10.1007/978-3-319-43624-1_15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Review of the development of DNA methylation as a marker of response to neoadjuvant therapy and outcomes in rectal cancer. Clin Epigenetics 2015. [PMID: 26203306 PMCID: PMC4511540 DOI: 10.1186/s13148-015-0111-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
There is much debate around the preoperative treatment of colorectal cancer and, in particular, neoadjuvant chemoradiotherapy in locally advanced rectal cancer. This treatment carries a significant risk of harmful side effects and has a highly variable response rate. Predictive biomarkers have been the subject of a great deal of study with the aim of pretreatment risk stratification in order to more accurately determine which patients will derive the most benefit and least harm from these treatments. The study of epigenetics in colorectal cancer is relatively recent, and distinct patterns of aberrant DNA methylation, in particular the cytosine-phosphate-guanine (CpG) island methylator phenotype (CIMP), have been demonstrated in colorectal cancer, and their characterisation and significance are under debate, particularly in rectal cancer. These patterns of DNA methylation have been associated with differences in response to therapy and treatment outcomes and therefore have the potential to be used as biomarkers in tailored therapy regimes for patients with rectal cancer. This review aims to summarise the current state of the art in rectal cancer, with particular regard to the determination of DNA methylation patterns, the CpG island methylator phenotype and its potential as a novel biomarker in rectal cancer treatment and prediction of outcomes and response after neoadjuvant chemoradiotherapy.
Collapse
|
40
|
Identification of a DNA methylation signature to predict disease-free survival in locally advanced rectal cancer. Oncotarget 2015; 5:8123-35. [PMID: 25261372 PMCID: PMC4226671 DOI: 10.18632/oncotarget.2347] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In locally advanced rectal cancer a preoperative predictive biomarker is necessary to adjust treatment specifically for those patients expected to suffer relapse. We applied whole genome methylation CpG island array analyses to an initial set of patients (n=11) to identify differentially methylated regions (DMRs) that separate a good from a bad prognosis group. Using a quantitative high-resolution approach, candidate DMRs were first validated in a set of 61 patients (test set) and then confirmed DMRs were further validated in additional independent patient cohorts (n=71, n=42). We identified twenty highly discriminative DMRs and validated them in the test set using the MassARRAY technique. Ten DMRs could be confirmed which allowed separation into prognosis groups (p=0.0207, HR=4.09). The classifier was validated in two additional cohorts (n=71, p=0.0345, HR=3.57 and n=42, p=0.0113, HR=3.78). Interestingly, six of the ten DMRs represented regions close to the transcriptional start sites of genes which are also marked by the Polycomb Repressor Complex component EZH2. In conclusion we present a classifier comprising 10 DMRs which predicts patient prognosis with a high degree of accuracy. These data may now help to discriminate between patients that may respond better to standard treatments from those that may require alternative modalities.
Collapse
|
41
|
Abstract
Inhibitor of DNA binding/differentiation protein 4 (ID4) is dominant negative helix loop helix transcriptional regulator is epigenetically silenced due to promoter hyper-methylation in many cancers including prostate. However, the underlying mechanism involved in epigenetic silencing of ID4 is not known. Here, we demonstrate that ID4 promoter methylation is initiated by EZH2 dependent tri-methylation of histone 3 at lysine 27 (H3K27me3). ID4 expressing (LNCaP) and non-expressing (DU145 and C81) prostate cancer cell lines were used to investigate EZH2, H3K27me3 and DNMT1 enrichment on ID4 promoter by Chromatin immuno-precipitation (ChIP). Enrichment of EZH2, H3K27Me3 and DNMT1 in DU145 and C81 cell lines compared to ID4 expressing LNCaP cell line. Knockdown of EZH2 in DU145 cell line led to re-expression of ID4 and decrease in enrichment of EZH2, H3K27Me3 and DNMT1 demonstrating that ID4 is regulated in an EZH2 dependent manner. ChIP data on prostate cancer tissue specimens and cell lines suggested EZH2 occupancy and H3K27Me3 marks on the ID4 promoter. Collectively, our data indicate a PRC2 dependent mechanism in ID4 promoter silencing in prostate cancer through recruitment of EZH2 and a corresponding increase in H3K27Me3. Increased EZH2 but decreased ID4 expression in prostate cancer strongly supports this model.
Collapse
|
42
|
Tian X, Chen D, Zhang R, Zhou J, Peng X, Yang X, Zhang X, Zheng Z. Quantitative survey of multiple CpGs from 5 genes identifies CpG methylation panel discriminating between high- and low-grade cervical intraepithelial neoplasia. Clin Epigenetics 2015; 7:4. [PMID: 25699113 PMCID: PMC4334603 DOI: 10.1186/s13148-014-0037-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/16/2014] [Indexed: 12/14/2022] Open
Abstract
Background Studies of methylation biomarkers for cervical cancer often involved only few randomly selected CpGs per candidate gene analyzed by methylation-specific PCR-based methods, with often inconsistent results from different laboratories. We evaluated the role of different CpGs from multiple genes as methylation biomarkers for high-grade cervical intraepithelial neoplasia (CIN). Results We applied a mass spectrometry-based platform to survey the quantitative methylation levels of 34 CpG units from SOX1, PAX1, NKX6-1, LMX1A, and ONECUT1 genes in 100 cervical formalin-fixed paraffin-embedded (FFPE) tissues. We then used nonparametric statistics and Random Forest algorithm to rank significant CpG methylations and support vector machine with 10-fold cross validation and 200 times bootstrap resampling to build a predictive model separating CIN II/III from CIN I/normal subjects. We found only select CpG units showed significant differences in methylation between CIN II/III and CIN I/normal groups, while mean methylation levels per gene were similar between the two groups for each gene except PAX1. An optimal classification model involving five CpG units from SOX1, PAX1, NKX6-1, and LMX1A achieved 81.2% specificity, 80.4% sensitivity, and 80.8% accuracy. Conclusions Our study suggested that during CIN development, the methylation of CpGs within CpG islands is not uniform, with varying degrees of significance as biomarkers. Our study emphasizes the importance of not only methylated marker genes but also specific CpGs for identifying high-grade CINs. The 5-CpG classification model provides a promising biomarker panel for the early detection of cervical cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13148-014-0037-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoyi Tian
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, No. 5 Dong Dan San Tiao, Beijing, 100005 China
| | - Di Chen
- Department of Pathology, Aerospace Central Hospital, No. 15 Yuquan Road, Beijing, 100049 China
| | - Ran Zhang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, No. 5 Dong Dan San Tiao, Beijing, 100005 China
| | - Jun Zhou
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, No. 5 Dong Dan San Tiao, Beijing, 100005 China
| | - Xiaozhong Peng
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, No. 5 Dong Dan San Tiao, Beijing, 100005 China
| | - Xiaolin Yang
- Department of Biomedical Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, No. 5 Dong Dan San Tiao, Beijing, 100005 China
| | - Xiuru Zhang
- Department of Pathology, Beijing Tiantan Hospital Affiliated with Capital Medical University, No. 6 Tiantan Xili, Beijing, 100050 China
| | - Zhi Zheng
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, No. 5 Dong Dan San Tiao, Beijing, 100005 China
| |
Collapse
|
43
|
Quantitative methodology is critical for assessing DNA methylation and impacts on correlation with patient outcome. Clin Epigenetics 2014; 6:22. [PMID: 25859283 PMCID: PMC4391486 DOI: 10.1186/1868-7083-6-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/17/2014] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND DNA hypermethylation is reported as a frequent event and prognostic marker in head and neck squamous cell carcinomas (HNSCC). Methylation has been commonly assessed with non-quantitative methodologies, such as methylation-specific PCR (MSP). We investigated previously reported hypermethylated genes with quantitative methodology in oral tongue squamous cell carcinomas (OTSCC). RESULTS The methylation status of 12 genes in 115 OTSCC samples was assessed by one or more of three quantitative analyses: methylation sensitive high resolution melting (MS-HRM), sensitive-melting analysis after real time-methylation specific PCR (SMART-MSP), and bisulfite pyrosequencing. In contrast to much of the literature, either no or infrequent locus-specific methylation was identified by MS-HRM for DAPK1, RASSF1A, MGMT, MLH1, APC, CDH1, CDH13, BRCA1, ERCC1, and ATM. The most frequently methylated loci were RUNX3 (18/108 methylated) and ABO (22/107 methylated). Interrogation of the Cancer Genome Atlas (TCGA) HNSCC cohort confirmed the frequency of significant methylation for the loci investigated. Heterogeneous methylation of RUNX3 (18/108) and ABO (22/107) detected by MS-HRM, conferred significantly worse survival (P = 0.01, and P = 0.03). However, following quantification of methylation levels using pyrosequencing, only four tumors had significant quantities (>15%) of RUNX3 methylation which correlated with a worse patient outcome (P <0.001), while the prognostic significance of ABO hypermethylation was lost. RUNX3 methylation was not prognostic for the TCGA cohort (P = 0.76). CONCLUSIONS We demonstrated the critical need for quantification of methylation levels and its impact on correlative analyses. In OTSCC, we found little evidence of significant or frequent hypermethylation of many loci reported to be commonly methylated. It is likely that previous reports have overestimated the frequency of significant methylation events as a consequence of the use of non-quantitative methodology.
Collapse
|
44
|
Daskalakis NP, Yehuda R. Site-specific methylation changes in the glucocorticoid receptor exon 1F promoter in relation to life adversity: systematic review of contributing factors. Front Neurosci 2014; 8:369. [PMID: 25484853 PMCID: PMC4240065 DOI: 10.3389/fnins.2014.00369] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 10/28/2014] [Indexed: 12/20/2022] Open
Abstract
There has been recent interest in epigenetics in psychiatry since it offers a means of understanding how stressful life experiences, in interaction with the genotype, result in epigenetic changes that result in altered gene expression, ultimately affecting the risk for mental disorders. Many studies focused on methylation of the glucocorticoid receptor exon 1F promoter following an initial observation that changes in this region could be modulated by the environment. This review examines all published studies that have attempted to measure methylation in this region using different techniques, several tissue types, populations at different behavioral state and stages of development. Methodological issues have been raised with the aim of attempting to understand methylation quantification and site of action. We propose that it is useful to examine whether methylation at specific sites within the promoter region may be particularly relevant to psychiatric vulnerability to stress-related outcomes.
Collapse
Affiliation(s)
- Nikolaos P Daskalakis
- Traumatic Stress Studies Division, Department of Psychiatry, Icahn School of Medicine at Mount Sinai New York, NY, USA ; Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center Bronx, New York, NY, USA ; Laboratory of Molecular Neuropsychiatry, Department of Psychiatry, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Rachel Yehuda
- Traumatic Stress Studies Division, Department of Psychiatry, Icahn School of Medicine at Mount Sinai New York, NY, USA ; Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center Bronx, New York, NY, USA ; Department of Neuroscience, Icahn School of Medicine at Mount Sinai New York, NY, USA
| |
Collapse
|
45
|
DNA methylation biomarkers: cancer and beyond. Genes (Basel) 2014; 5:821-64. [PMID: 25229548 PMCID: PMC4198933 DOI: 10.3390/genes5030821] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 08/17/2014] [Accepted: 09/01/2014] [Indexed: 12/23/2022] Open
Abstract
Biomarkers are naturally-occurring characteristics by which a particular pathological process or disease can be identified or monitored. They can reflect past environmental exposures, predict disease onset or course, or determine a patient's response to therapy. Epigenetic changes are such characteristics, with most epigenetic biomarkers discovered to date based on the epigenetic mark of DNA methylation. Many tissue types are suitable for the discovery of DNA methylation biomarkers including cell-based samples such as blood and tumor material and cell-free DNA samples such as plasma. DNA methylation biomarkers with diagnostic, prognostic and predictive power are already in clinical trials or in a clinical setting for cancer. Outside cancer, strong evidence that complex disease originates in early life is opening up exciting new avenues for the detection of DNA methylation biomarkers for adverse early life environment and for estimation of future disease risk. However, there are a number of limitations to overcome before such biomarkers reach the clinic. Nevertheless, DNA methylation biomarkers have great potential to contribute to personalized medicine throughout life. We review the current state of play for DNA methylation biomarkers, discuss the barriers that must be crossed on the way to implementation in a clinical setting, and predict their future use for human disease.
Collapse
|
46
|
Yoo SS, Lee SM, Do SK, Lee WK, Kim DS, Park JY. Unmethylation of the CHRNB4 gene is an unfavorable prognostic factor in non-small cell lung cancer. Lung Cancer 2014; 86:85-90. [PMID: 25172267 DOI: 10.1016/j.lungcan.2014.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/22/2014] [Accepted: 08/04/2014] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Lung cancer is the leading cause of cancer-related deaths and is currently a major health problem owing to difficulties in diagnosis at the early stage of the disease. Changes in DNA methylation status have now been identified as a critical component in the initiation of lung cancer, and the detection of DNA methylation is expected to be an important method for the early diagnosis of lung cancer. Nicotine, the principal tobacco alkaloid, directly contributes to lung carcinogenesis through the activation of nicotinic acetylcholine receptors (nAchRs). MATERIALS AND METHODS To investigate the role of the CHRNB4 gene, which encodes the nAchR β4 subunit that is ubiquitously expressed on lung epithelial cells, we analyzed its methylation status in 266 patients with non-small cell lung cancer (NSCLC) by using methylation-specific polymerase chain reaction and compared it with clinicopathological parameters. RESULTS AND CONCLUSION The frequency of CHRNB4 unmethylation was 13.5% and 8.3% in malignant and nonmalignant tissues, respectively. CHRNB4 demethylation was associated with upregulation of its mRNA expression and was more frequent in squamous cell carcinoma and pathological stages II-IIIA disease than in adenocarcinoma and pathological stage I disease, respectively (P=0.003 and P=0.01, respectively). Univariate and multivariate analyses showed that CHRNB4 unmethylation was significantly associated with unfavorable overall survival in the entire patient group as well as in men and ever-smokers. These results suggest that epigenetic regulation of CHRNB4 may affect tumor progression and survival in patients with NSCLC. Further investigation into the molecular basis of the role of CHRNB4 in the progression of NSCLC is warranted.
Collapse
Affiliation(s)
- Seung Soo Yoo
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 702-422, Republic of Korea
| | - Su Man Lee
- Department of Anatomy and BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, 2-101 Dongin-dong, Jung-gu, Daegu 702-422, Republic of Korea
| | - Sook Kyung Do
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 702-422, Republic of Korea
| | - Won Kee Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu 702-422, Republic of Korea
| | - Dong Sun Kim
- Department of Anatomy and BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, 2-101 Dongin-dong, Jung-gu, Daegu 702-422, Republic of Korea.
| | - Jae Yong Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 702-422, Republic of Korea.
| |
Collapse
|
47
|
van Kempen PMW, van Bockel L, Braunius WW, Moelans CB, van Olst M, de Jong R, Stegeman I, van Diest PJ, Grolman W, Willems SM. HPV-positive oropharyngeal squamous cell carcinoma is associated with TIMP3 and CADM1 promoter hypermethylation. Cancer Med 2014; 3:1185-96. [PMID: 25065733 PMCID: PMC4302669 DOI: 10.1002/cam4.313] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 12/30/2022] Open
Abstract
Oropharyngeal squamous cell carcinoma (OPSCC) is associated with human papillomavirus (HPV) in a proportion of tumors. HPV-positive OPSCC is considered a distinct molecular entity with a prognostic advantage compared to HPV-negative cases. Silencing of cancer-related genes by DNA promoter hypermethylation may play an important role in the development of OPSCC. Hence, we examined promoter methylation status in 24 common tumor suppressor genes in a group of 200 OPSCCs to determine differentially methylated genes in HPV-positive versus HPV-negative primary OPSCC. Methylation status was correlated with HPV status, clinical features, and patient survival using multivariate methods. Additionally, methylation status of 16 cervical squamous cell carcinomas (SCC) was compared with HPV-positive OPSCC. Using methylation-specific probe amplification, HPV-positive OPSCC showed a significantly higher cumulative methylation index (CMI) compared to HPV-negative OPSCC (P=0.008). For the genes CDH13, DAPK1, and RARB, both HPV-positive and HPV-negative OPSCC showed promoter hypermethylation in at least 20% of the tumors. HPV status was found to be an independent predictor of promoter hypermethylation of CADM1 (P < 0.001), CHFR (P = 0.027), and TIMP3 (P < 0.001). CADM1 and CHFR showed similar methylation patterns in OPSCC and cervical SCC, but TIMP3 showed no methylation in cervical SCC in contrast to OPSCC. Methylation status of neither individual gene nor CMI was associated with survival. These results suggest that HPV-positive tumors are to a greater extent driven by promotor hypermethylation in these tumor suppressor genes. Especially CADM1 and TIMP3 are significantly more frequently hypermethylated in HPV-positive OPSCC and CHFR in HPV-negative tumors.
Collapse
Affiliation(s)
- Pauline M W van Kempen
- Department of Otorhinolaryngology - Head and Neck Surgery, University Medical Center Utrecht, Utrecht, The Netherlands; Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Noorlag R, van Kempen PMW, Moelans CB, de Jong R, Blok LER, Koole R, Grolman W, van Diest PJ, van Es RJJ, Willems SM. Promoter hypermethylation using 24-gene array in early head and neck cancer: better outcome in oral than in oropharyngeal cancer. Epigenetics 2014; 9:1220-7. [PMID: 25147921 DOI: 10.4161/epi.29785] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Silencing of tumor suppressor genes (TSGs) by DNA promoter hypermethylation is an early event in carcinogenesis and a potential target for personalized cancer treatment. In head and neck cancer, little is known about the role of promoter hypermethylation in survival. Using methylation specific multiplex ligation-dependent probe amplification (MS-MLPA) we investigated the role of promoter hypermethylation of 24 well-described genes (some of which are classic TSGs), which are frequently methylated in different cancer types, in 166 HPV-negative early oral squamous cell carcinomas (OSCC), and 51 HPV-negative early oropharyngeal squamous cell carcinomas (OPSCC) in relation to clinicopathological features and survival. Early OSCC showed frequent promoter hypermethylation in RARB (31% of cases), CHFR (20%), CDH13 (13%), DAPK1 (12%), and APC (10%). More hypermethylation (≥ 2 genes) independently correlated with improved disease specific survival (hazard ratio 0.17, P = 0.014) in early OSCC and could therefore be used as prognostic biomarker. Early OPSCCs showed more hypermethylation of CDH13 (58%), TP73 (14%), and total hypermethylated genes. Hypermethylation of two or more genes has a significantly different effect on survival in OPSCC compared with OSCC, with a trend toward worse instead of better survival. This could have a biological explanation, which deserves further investigation and could possibly lead to more stratified treatment in the future.
Collapse
Affiliation(s)
- Rob Noorlag
- Department of Oral and Maxillofacial Surgery; University Medical Center Utrecht; Utrecht, the Netherlands
| | - Pauline M W van Kempen
- Department of Otorhinolaryngology; University Medical Center Utrecht; Utrecht, the Netherlands
| | - Cathy B Moelans
- Department of Pathology; University Medical Center Utrecht; Utrecht, the Netherlands
| | - Rick de Jong
- Department of Pathology; University Medical Center Utrecht; Utrecht, the Netherlands
| | - Laura E R Blok
- Department of Pathology; University Medical Center Utrecht; Utrecht, the Netherlands
| | - Ronald Koole
- Department of Oral and Maxillofacial Surgery; University Medical Center Utrecht; Utrecht, the Netherlands
| | - Wilko Grolman
- Department of Otorhinolaryngology; University Medical Center Utrecht; Utrecht, the Netherlands
| | - Paul J van Diest
- Department of Pathology; University Medical Center Utrecht; Utrecht, the Netherlands
| | - Robert J J van Es
- Department of Oral and Maxillofacial Surgery; University Medical Center Utrecht; Utrecht, the Netherlands
| | - Stefan M Willems
- Department of Pathology; University Medical Center Utrecht; Utrecht, the Netherlands
| |
Collapse
|
49
|
Validation of ZAP-70 methylation and its relative significance in predicting outcome in chronic lymphocytic leukemia. Blood 2014; 124:42-8. [PMID: 24868078 DOI: 10.1182/blood-2014-02-555722] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
ZAP-70 methylation 223 nucleotides downstream of transcription start (CpG+223) predicts outcome in chronic lymphocytic leukemia (CLL), but its impact relative to CD38 and ZAP-70 expression or immunoglobulin heavy chain variable region (IGHV) status is uncertain. Additionally, standardizing ZAP-70 expression analysis has been unsuccessful. CpG+223 methylation was quantitatively determined in 295 untreated CLL cases using MassARRAY. Impact on clinical outcome vs CD38 and ZAP-70 expression and IGHV status was evaluated. Cases with low methylation (<20%) had significantly shortened time to first treatment (TT) and overall survival (OS) (P < .0001). For TT, low methylation defined a large subset of ZAP-70 protein-negative cases with significantly shortened TT (median, 8.0 vs 3.9 years for high vs low methylation; hazard ratio [HR] = 0.43; 95% confidence interval [CI], 0.25-0.74). Conversely, 16 ZAP-70 protein-positive cases with high methylation had poor outcome (median, 1.1 vs 2.3 years for high vs low methylation; HR = 1.62; 95% CI, 0.87-3.03). For OS, ZAP-70 methylation was the strongest risk factor; CD38 and ZAP-70 expression or IGHV status did not significantly improve OS prediction. A pyrosequencing assay was established that reproduced the MassARRAY data (κ coefficient > 0.90). Thus, ZAP-70 CpG+223 methylation represents a superior biomarker for TT and OS that can be feasibly measured, supporting its use in risk-stratifying CLL.
Collapse
|
50
|
Maeda T, Higashimoto K, Jozaki K, Yatsuki H, Nakabayashi K, Makita Y, Tonoki H, Okamoto N, Takada F, Ohashi H, Migita M, Kosaki R, Matsubara K, Ogata T, Matsuo M, Hamasaki Y, Ohtsuka Y, Nishioka K, Joh K, Mukai T, Hata K, Soejima H. Comprehensive and quantitative multilocus methylation analysis reveals the susceptibility of specific imprinted differentially methylated regions to aberrant methylation in Beckwith-Wiedemann syndrome with epimutations. Genet Med 2014; 16:903-12. [PMID: 24810686 PMCID: PMC4262761 DOI: 10.1038/gim.2014.46] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 04/07/2014] [Indexed: 01/20/2023] Open
Abstract
Purpose: Expression of imprinted genes is regulated by DNA methylation of differentially methylated regions (DMRs). Beckwith–Wiedemann syndrome is an imprinting disorder caused by epimutations of DMRs at 11p15.5. To date, multiple methylation defects have been reported in Beckwith–Wiedemann syndrome patients with epimutations; however, limited numbers of DMRs have been analyzed. The susceptibility of DMRs to aberrant methylation, alteration of gene expression due to aberrant methylation, and causative factors for multiple methylation defects remain undetermined. Methods: Comprehensive methylation analysis with two quantitative methods, matrix-assisted laser desorption/ionization mass spectrometry and bisulfite pyrosequencing, was conducted across 29 DMRs in 54 Beckwith–Wiedemann syndrome patients with epimutations. Allelic expressions of three genes with aberrant methylation were analyzed. All DMRs with aberrant methylation were sequenced. Results: Thirty-four percent of KvDMR1–loss of methylation patients and 30% of H19DMR–gain of methylation patients showed multiple methylation defects. Maternally methylated DMRs were susceptible to aberrant hypomethylation in KvDMR1–loss of methylation patients. Biallelic expression of the genes was associated with aberrant methylation. Cis-acting pathological variations were not found in any aberrantly methylated DMR. Conclusion: Maternally methylated DMRs may be vulnerable to DNA demethylation during the preimplantation stage, when hypomethylation of KvDMR1 occurs, and aberrant methylation of DMRs affects imprinted gene expression. Cis-acting variations of the DMRs are not involved in the multiple methylation defects.
Collapse
Affiliation(s)
- Toshiyuki Maeda
- 1] Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan [2] Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan
| | - Ken Higashimoto
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Kosuke Jozaki
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Hitomi Yatsuki
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yoshio Makita
- Education Center, Asahikawa Medical University, Asahikawa, Japan
| | - Hidefumi Tonoki
- Department of Pediatrics, Maternal, Perinatal, and Child Medical Center, Tenshi Hospital, Sapporo, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Medical Center and Research Institute for Maternal and Child Health, Izumi, Japan
| | - Fumio Takada
- Department of Medical Genetics, Kitasato University Graduate School of Medical Sciences, Kanagawa, Japan
| | - Hirofumi Ohashi
- Division of Medical Genetics, Saitama Children's Medical Center, Saitama, Japan
| | - Makoto Migita
- Department of Pediatrics, Nippon Medical School, Tokyo, Japan
| | - Rika Kosaki
- Division of Medical Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Muneaki Matsuo
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuhei Hamasaki
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan
| | - Yasufumi Ohtsuka
- 1] Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan [2] Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan
| | - Kenichi Nishioka
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Keiichiro Joh
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | | | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hidenobu Soejima
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|