1
|
Yu J, Sun Q, Hui Y, Xu J, Shi P, Chen Y, Chen Y. Vitamin D receptor prevents tumour development by regulating the Wnt/β-catenin signalling pathway in human colorectal cancer. BMC Cancer 2023; 23:336. [PMID: 37046222 PMCID: PMC10091620 DOI: 10.1186/s12885-023-10690-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 02/28/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a common disease threatening human lives worldwide, and vitamin D receptor (VDR) contributes protective roles in this disease. However, the molecular mechanisms underlying VDR protection in CRC progression require further investigation. METHODS In this study, we statistically analyzed the relationship between VDR expression and CRC development in patients and detected invasion and apoptosis in CRC cells with VDR overexpression and interference. We also detected the expression of key genes involved in Wnt/β-catenin signalling (β-catenin, lymphoid enhancer factor (LEF)-1 and cyclin D1) in SW480 cells and nude mice injected with VDR-overexpressing SW480 cells and observed tumour development. Additionally, we performed Co-immunoprecipitation (Co-IP) and glutathione-S-transferase (GST) pull-down assays to identify the protein interactions of VDR with β-catenin, dual luciferase (LUC) and chromatin immunoprecipitation (ChIP) to detect the activation of LEF-1 by VDR. RESULTS The VDR level was closely related to the development and prognosis of CRC patients. VDR overexpression inhibited invasion but promoted apoptosis in cancer cells. β-catenin shRNA contributed oppositely to cancer cell activity with VDR shRNA. Additionally, VDR interacted with β-catenin at the protein level and blocked its nuclear accumulation. VDR regulated the expression of β-catenin, cyclin D1 and LEF-1 and directly activated LEF-1 transcription in vitro. Furthermore, nude mice injected with VDR-overexpressing SW480 cells revealed suppression of tumour growth and decreased expression of β-catenin, cyclin D1 and LEF-1. CONCLUSIONS This study indicated that VDR protected against CRC disease in humans by inhibiting Wnt/β-catenin signalling to control cancer cell invasion and apoptosis, providing new evidence to explore VDR biomarkers or agonists for CRC patient diagnosis and treatment.
Collapse
Affiliation(s)
- Jie Yu
- Department of Pathology, The People's Hospital of Suzhou New District, No. 95, Huashan Road, High Tech Zone, Suzhou, Jiangsu Prov, China
| | - Qi Sun
- Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yi Hui
- Department of Pathology, The People's Hospital of Suzhou New District, No. 95, Huashan Road, High Tech Zone, Suzhou, Jiangsu Prov, China
| | - Jinping Xu
- Department of Pathology, The People's Hospital of Suzhou New District, No. 95, Huashan Road, High Tech Zone, Suzhou, Jiangsu Prov, China
| | - Pancheng Shi
- Department of Pathology, The People's Hospital of Suzhou New District, No. 95, Huashan Road, High Tech Zone, Suzhou, Jiangsu Prov, China
| | - Yu Chen
- Department of Pathology, The People's Hospital of Suzhou New District, No. 95, Huashan Road, High Tech Zone, Suzhou, Jiangsu Prov, China
| | - Yunzhao Chen
- Department of Pathology, The People's Hospital of Suzhou New District, No. 95, Huashan Road, High Tech Zone, Suzhou, Jiangsu Prov, China.
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, China.
| |
Collapse
|
2
|
Huang S, Xie J, Lei S, Fan P, Zhang C, Huang Z. CircDUSP1 regulates tumor growth, metastasis, and paclitaxel sensitivity in triple-negative breast cancer by targeting miR-761/DACT2 signaling axis. Mol Carcinog 2023; 62:450-463. [PMID: 36562476 DOI: 10.1002/mc.23498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Triple-negative breast cancer TNBC) is a malignant tumor with high incidence and high mortality that threaten the health of women worldwide. Circular RNAs (circRNAs) are a new class of noncoding RNAs that participate in the biological processes of various tumors, but the regulatory roles of circRNAs in TNBC have not been fully elucidated. In this study, the expression and characterization of circDUSP1 was detected via quantitative real-time PCR, nuclear-cytoplasmic fractionation assay, and fluorescence in situ hybridization. Then, in vitro and in vivo functional experiments were performed to evaluate the effects of circDUSP1 in TNBC. The interaction among circDUSP1, miR-761, DACT2 were confirmed by dual luciferase reporter assay, RNA pull-down, and RNA immunoprecipitation experiments. We identified the circRNA named circDUSP1 that was inversely correlated with tumorigenesis and progression in TNBC. Overexpression of circDUSP1 significantly attenuated cell proliferation, migration, invasion, and epithelial-mesenchymal transition, while increased the sensitivity of TNBC cells to paclitaxel. In-depth mechanism analysis indicated that circDUSP1 acts as an endogenous sponge of miR-761 to reduce its suppression on target gene DACT2 expression in TNBC. Upregulation of miR-761 or downregulation of DACT2 partially reversed the biological process of TNBC and the prognosis of paclitaxel affected by circDUSP1. Taken together, our findings revealed a role for the regulation of the miR-761/DACT2 axis by circDUSP1 in the biological process of TNBC. These results provided new insights into the biological mechanism and targeted therapy of TNBC.
Collapse
Affiliation(s)
- Shulin Huang
- Department of Breast and Thyroid Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Jing Xie
- Department of Breast and Thyroid Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Shanshan Lei
- Department of Breast and Thyroid Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Peizhi Fan
- Department of Breast and Thyroid Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Chaojie Zhang
- Department of Breast and Thyroid Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Zhongcheng Huang
- Department of General Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| |
Collapse
|
3
|
Hou G, Ding D, Tian T, Dong W, Sun D, Liu G, Yang Y, Zhou W. Metabolomics-based classification reveals subtypes of hepatocellular carcinoma. Mol Carcinog 2022; 61:989-1001. [PMID: 36121331 DOI: 10.1002/mc.23455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/24/2022] [Accepted: 07/27/2022] [Indexed: 11/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death, and the prognosis varies due to its high heterogeneity, systematic evaluation of HCC is mainly based on genomic and transcriptomic features, metabolomics-based classification has yet to be reported. Here we performed RNA-seq on 50 paired samples and metabolomics analysis on 72 paired samples of both normal and tumor tissues from HCC patients. Through unsupervised hierarchical cluster analysis with train and test data sets, metabolic and gene expression signatures were identified. We found that most fluxes related to glutamate are attenuated, except for the glutamate-proline pathway. Three subgroups were identified with distinct survival, clinical observations, and metabolic/gene signatures. S1 is characterized by a relatively poor prognosis, a low concentration of the degradation products of phosphatidylcholine and phosphatidylethanolamine, an enrichment of specific genes related to focal adhesion, and an upregulation of genes on chromosome 6q27. Beyond commonly downregulated metabolites, S2 tumors are largely characterized by few alterations in metabolites and genes, as well as low incidence of mutations/loss of heterozygosity, the metabolite signature of this group consists of hexoses and their phosphates, and the prognosis is the best, with a 5-year survival rate of greater than 80%. S3 is characterized by the worst survival (an approximately 20% 5-year survival rate), unsaturated fatty acid metabolites, an upregulation of specific genes involved in metastasis, and an upregulation of genes on chromosome 1q21. The metabolite-based classifications are more stable and reproducible, with each subgroup characterized by a distinct molecular signature and disease prognosis.
Collapse
Affiliation(s)
- Guojun Hou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Dongyang Ding
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Tao Tian
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Wei Dong
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Dapeng Sun
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Gang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yuan Yang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Weiping Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
4
|
Zeng Y, Zhang J, Yue J, Han G, Liu W, Liu L, Lin X, Zha Y, Liu J, Tan Y. The Role of DACT Family Members in Tumorigenesis and Tumor Progression. Int J Biol Sci 2022; 18:4532-4544. [PMID: 35864965 PMCID: PMC9295065 DOI: 10.7150/ijbs.70784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/21/2022] [Indexed: 11/21/2022] Open
Abstract
Disheveled-associated antagonist of β-catenin (DACT), which ubiquitously expressed in human tissue, is critical for regulating cell proliferation and several developmental processes in different cellular contexts. In addition, DACT is essential for some other cellular processes, such as cell apoptosis, migration and differentiation. Given the importance of DACT in these cellular processes, many scientists are gradually interested in studying the role of DACT in tumorigenesis and cancer progression. This review article focuses on the latest research regarding the essential functions and potential DACT mechanisms in the occurrence and progression of tumors. Our study indicates that DACT may act as a tumor biomarker for cancer diagnosis and prognosis, as well as a promising therapeutic target in cancers.
Collapse
Affiliation(s)
- Yu Zeng
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jiqin Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jianhe Yue
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guoqiang Han
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Weijia Liu
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Lin Liu
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xin Lin
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yan Zha
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jian Liu
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Ying Tan
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
5
|
Wang X, Zhou Y, Wang C, Zhao Y, Cheng Y, Yu S, Li X, Zhang W, Zhang Y, Quan H. HCV Core protein represses DKK3 expression via epigenetic silencing and activates the Wnt/β-catenin signaling pathway during the progression of HCC. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:1998-2009. [PMID: 35768685 DOI: 10.1007/s12094-022-02859-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022]
Abstract
The Wnt/β-catenin signaling pathway is frequently activated in hepatocellular carcinoma (HCC). A number of studies have focused on the aberrant hypermethylation of the DKK family proteins and its role in regulating the activation of specific signaling pathways. However, the exact way by which DKK regulates the signaling pathway caused by Core protein of HCV has not been reported. In the present study, we evaluated the expression level of DKK and its aberrant promoter methylation to investigate the involvement of epigenetic regulation in hepatoma cell lines. The transcription and protein expression of DKK1 was significantly increased, whereas the transcription and protein expression levels of DKK2, DKK3, and DKK4 were significantly decreased following overexpression of Core protein. Pyrosequencing indicated that hypermethylation of DKK3 was increased. This was associated with increased expression of Dnmt1. The investigation of the molecular mechanism indicated that HCV Core protein interacted with Dnmt1, which combined with the promoter of DKK3, leading to methylation of DKK3. Functional studies indicated that Core protein promoted the growth, migration and invasion of cancer cells. However, upregulation of the expression of DKK3 and/or the knockdown of the expression of Dnmt1 inhibited the growth, migration and invasion of cancer cells. Taken together, the data indicated that epigenetic silencing of DKK3 caused by Dnmt1 activated the Wnt/β-catenin pathway in HCV Core-mediated HCC. Therefore, DKK3 may be a potential diagnostic and therapeutic target for HCC.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yun Zhou
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Chunfu Wang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yanyan Zhao
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yan Cheng
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Suhuai Yu
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Xiaofeng Li
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Wenjing Zhang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Ying Zhang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Huiqin Quan
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
6
|
Yang C, Passos Gibson V, Hardy P. The Role of MiR-181 Family Members in Endothelial Cell Dysfunction and Tumor Angiogenesis. Cells 2022; 11:1670. [PMID: 35626707 PMCID: PMC9140109 DOI: 10.3390/cells11101670] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Endothelial dysfunction plays a critical role in many human angiogenesis-related diseases, including cancer and retinopathies. Small non-coding microRNAs (miRNAs) repress gene expression at the post-transcriptional level. They are critical for endothelial cell gene expression and function and are involved in many pathophysiological processes. The miR-181 family is one of the essential angiogenic regulators. This review summarizes the current state of knowledge of the role of miR-181 family members in endothelial cell dysfunction, with emphasis on their pathophysiological roles in aberrant angiogenesis. The actions of miR-181 members are summarized concerning their targets and associated major angiogenic signaling pathways in a cancer-specific context. Elucidating the underlying functional mechanisms of miR-181 family members that are dysregulated in endothelial cells or cancer cells is invaluable for developing miRNA-based therapeutics for angiogenesis-related diseases such as retinopathies, angiogenic tumors, and cancer. Finally, potential clinical applications of miR-181 family members in anti-angiogenic tumor therapy are discussed.
Collapse
Affiliation(s)
- Chun Yang
- Research Center of CHU Sainte-Justine, University of Montréal, Quebec, QC H3T 1C5, Canada;
| | - Victor Passos Gibson
- Departments of Pharmacology and Physiology, University of Montréal, Quebec, QC H3T 1C5, Canada;
| | - Pierre Hardy
- Research Center of CHU Sainte-Justine, University of Montréal, Quebec, QC H3T 1C5, Canada;
- Departments of Pharmacology and Physiology, University of Montréal, Quebec, QC H3T 1C5, Canada;
- Departments of Pediatrics, University of Montréal, Quebec, QC H3T 1C5, Canada
| |
Collapse
|
7
|
Asadian S, Piryaei A, Farzaneh Z, Aziz Kalantari B, Azad M, Moghbeli Nejad S, Davarpanah MR, Mohamadi M, Shpichka, A, Nematolah G, Timashev P, Vosough M. 188Rhenium Treatment Induces DACT2 Expression in Hepatocellular Carcinoma Cells. CELL JOURNAL 2022; 24:215-221. [PMID: 35717568 PMCID: PMC9445516 DOI: 10.22074/cellj.2022.7894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/19/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Epigenetic alterations, including any change in DNA methylation pattern, could be the missing link of understanding radiation-induced genomic instability. Dapper, Dishevelled-associated antagonist of β-catenin homolog 2 (DACT2) is a tumor suppressor gene regulating Wnt/β-catenin. In hepatocellular carcinoma (HCC), DACT2 is hypermethylated, while methylation status of its promoter regulates the corresponding expression. Radionuclides have been used to reduce proliferation and induce apoptosis in cancerous cells. Epigenetic impact of radionuclides as therapeutic agents for treatment of HCC is still unknown. The aim of this study was to evaluate epigenetic impact of 188Rhenium perrhenate (188ReO4) on HCC cells. MATERIALS AND METHODS In this in vitro experimental study, HepG2 and Huh7 cells were treated with 188ReO4, receiving 55 and 73 Mega Becquerel (MBq) exposures, respectively. For cell viability measurement, live/dead staining was carried out 18, 24, and 48 hours post-exposure. mRNA expression level of β-Catenin, Wnt1, DNMT1, DACT2 and WIF- 1 genes were quantified by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Then, possible regulatory impact of DACT2 upregulation was investigated through evaluating methylation-specific PCR (MS-PCR). RESULTS Results showed that viability of both cells was reduced after treatment with 188ReO4 at three time points postexposure compared to the control groups. The qRT-PCR results showed that DACT2 mRNA level was significantly increased at 24, and 48 hours post-exposure in HepG2 cells compared to the control group, while, no significant change was observed in Huh7 cells. Methylation pattern of DACT2 promoter remained unchanged in HepG2 and Huh7 cells. CONCLUSION Treatment with 188ReO4 reduced viability of HepG2 and Huh7 cells. Although DACT2 expression was increased after 188ReO4 exposure in HepG2 cells, methylation pattern of its promoter remained unchanged. This study assessed impacts of the 188ReO4 β-irradiation on expression and induction of DACT2 epigenetic aberrations as well as the correlation of this agent with viability of cells.
Collapse
Affiliation(s)
- Samieh Asadian
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of
Medical Sciences, Qazvin, Iran ,Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR,
Tehran, Iran ,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and
Technology, ACECR, Tehran, Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran ,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti
University of Medical Sciences, Tehran, Iran
| | - Zahra Farzaneh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR,
Tehran, Iran ,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and
Technology, ACECR, Tehran, Iran
| | | | - Mehdi Azad
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of
Medical Sciences, Qazvin, Iran
| | - Sahar Moghbeli Nejad
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of
Medical Sciences, Qazvin, Iran
| | | | - Morteza Mohamadi
- Department of Physical Chemistry, Faculty of Science, University of Tehran, Tehran, Iran
| | - Anastasia Shpichka,
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia ,World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University,
Moscow, Russia ,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Gheibi Nematolah
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of
Medical Sciences, Qazvin, Iran ,Cellular and Molecular Research CenterResearch Institute for Prevention of Non-Communicable DiseasesQazvin
University of Medical SciencesQazvinIranP.O.Box: 16635-148Department of Regenerative MedicineCell Science Research CenterRoyan Institute for Stem
Cell Biology and TechnologyACECRTehranIran
Emails:,
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia ,World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University,
Moscow, Russia ,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR,
Tehran, Iran ,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and
Technology, ACECR, Tehran, Iran,Cellular and Molecular Research CenterResearch Institute for Prevention of Non-Communicable DiseasesQazvin
University of Medical SciencesQazvinIranP.O.Box: 16635-148Department of Regenerative MedicineCell Science Research CenterRoyan Institute for Stem
Cell Biology and TechnologyACECRTehranIran
Emails:,
| |
Collapse
|
8
|
Hou J, Huang S, Long Y, Huang J, Yang S, Yao J, Chen G, Yue Y, Liang M, Mei B, Li J, Wu Z. DACT2 regulates structural and electrical atrial remodeling in atrial fibrillation. J Thorac Dis 2020; 12:2039-2048. [PMID: 32642106 PMCID: PMC7330378 DOI: 10.21037/jtd-19-4206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Atrial fibrillation (AF) is the most common sustained arrhythmia. DACT2 is a novel and important mediator of signaling pathways. The aim of this study was to investigate the clinical significance and functions of DACT2 expression in AF. Methods Immunohistochemistry was used to detect the DACT2 expression pattern in valvular disease patients. DACT2 was overexpressed in HL-1 cells and primary atrial fibroblasts. The expression levels of the potassium channel, the L-type calcium current channel, sodium ion channel proteins and collagen proteins were detected by real-time polymerase chain reaction (RT-PCR). The proteins involved in the Wnt and TGF-β signaling pathways were detected after DACT2 overexpression by western blotting. Results DACT2 expression was significantly associated with AF (P=0.016). The fibrosis ratio in the strong DACT2 expression group was significantly lower than that in the weak DACT2 expression group (weak: 0.198±0.091, strong: 0.129±0.064, P=0.048), and a negative correlation between DACT2 expression levels and fibrosis severity was observed (Spearman rho =−0.476, P=0.010). DACT2 significantly increased the expression levels of KCNE5 and decreased the levels of KCNH2 and SCN5A. Overexpression of DACT2 significantly inhibited the expression of collagen I and collagen III in primary rat atrial fibroblasts. DACT2 could facilitate β-catenin accumulation by reducing its phosphorylation at Thr41/Ser45 in HL-1 cells and inhibit the TGF-β signaling pathway in primary atrial fibroblasts. Conclusions DACT2 played a role in AF by regulating both structural and electrical atrial remodeling and by affecting β-catenin accumulation and TGF-β signaling, and it could serve as a protective factor against AF in valvular heart disease.
Collapse
Affiliation(s)
- Jian Hou
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shaojie Huang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yan Long
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jiaxing Huang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Song Yang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jianping Yao
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Guangxian Chen
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yuan Yue
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Mengya Liang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Bo Mei
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jiawen Li
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhongkai Wu
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
9
|
Kim DH, Kim EJ, Kim DH, Park SW. Dact2 is involved in the regulation of epithelial-mesenchymal transition. Biochem Biophys Res Commun 2020; 524:190-197. [PMID: 31983425 DOI: 10.1016/j.bbrc.2019.12.090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 12/24/2019] [Indexed: 12/28/2022]
Abstract
Dishevelled-associated antagonist of beta-catenin 2 (Dact2) is involved in the regulation of intracellular signaling pathways during development. It negatively regulates the Nodal signaling pathway, possibly by promoting lysosomal degradation of Nodal receptors such as TGFBR1, and plays an inhibitory role during the re-epithelialization of skin wounds by attenuating transforming growth factor-β signaling. Dact2 is known to act as a functional tumor suppressor in colon cancer; reduced Dact2 can promote liver cancer progression and suppress gastric cancer proliferation, invasion, and metastasis by inhibiting Wnt signaling. Zebrafish is used as a model of cancer biology because it shows similar tumorigenesis and morphogenesis as in humans and gene manipulation in this organism is possible. This study was performed to explore phenotypic changes in Dact2 knockout zebrafish and investigate the function of Dact2. A 10-base pair deletion Dact2 knockout zebrafish was prepared using the CRISPR-Cas9 genome editing system. Dact2 knockout enhanced the expression of the MMP2 and MMP9 genes, which are related to tumor invasion and migration, and the Snail, VEGF, and ZEB genes, which are related to epithelial-mesenchymal transition (EMT). The absence of Dact2 also resulted in hyperplasia of the gastrointestinal epithelium, fibrosis in the pancreas and liver, increased proliferation of the pancreatic and hepatic bile ducts, and invasive proliferation into the pancreas. A wound healing assay confirmed that the absence of Dact2 enhanced EMT, thus accelerating wound healing. This study suggests that a loss of function of Dact2 impacts EMT-related gene regulation and tumor generation in a zebrafish knockout model, which is a useful model for exploring the mechanisms of these processes.
Collapse
Affiliation(s)
- Dong Hee Kim
- Postgraduate School of Nano Science and Technology, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Eun Ji Kim
- Postgraduate School of Nano Science and Technology, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Do Hee Kim
- Postgraduate School of Nano Science and Technology, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seung Woo Park
- Department of Internal Medicine, Institute of Gastroenterology, Graduate Program of Nanoscience and Technology, Yonsei University College of Medicine, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
10
|
DACT2 modulated by TFAP2A-mediated allelic transcription promotes EGFR-TKIs efficiency in advanced lung adenocarcinoma. Biochem Pharmacol 2019; 172:113772. [PMID: 31866302 DOI: 10.1016/j.bcp.2019.113772] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/17/2019] [Indexed: 01/30/2023]
Abstract
Patients with epidermal growth factor receptor (EGFR)-mutant advanced non-small-cell lung cancer (NSCLC) benefits from EGFR-tyrosine kinase inhibitor (TKI) treatment. However, drug resistance to EGFR-TKIs remains a great challenge. Single nucleotide polymorphisms (SNPs) may significantly influence prognosis of EGFR-TKI therapy. Herein, we hypothesized that the functional SNP in DACT2, coding a pivotal inhibitor of the Wnt/β-catenin signaling, may affect gene expression, which in turn, impact prognosis of NSCLC treated with EGFR-TKIs. Genotypes of the DACT2 promoter rs9364433 SNP were determined in two independent cohorts consisted of 319 EGFR-TKI treated stage IIIB/IV NSCLC patients. The allele-specific regulation on DACT2 expression by rs9364433 and impacts of DACT2 on gefitinib sensitivity was evaluated in vitro and in vivo. Cox regression analyses demonstrated that rs9364433 was significantly associated with patient survival in both cohorts (all P < 0.05). Reporter gene assays and Electrophoretic Mobility Shift Assays demonstrated that rs9364433 has an allele-specific effect on gene expression modulated by transcription factor TFAP2A. The G allele associated with diminished TFAP2A binding leads to significantly decreased DACT2 expression in NSCLC cell lines and tissues. Consistently, DACT2 could evidently increase the anti-proliferation effect of gefitinib on NSCLC cells. Our findings elucidated potential clinical implications of DACT2, which may result in better understanding and outcome assessment of EGFR-TKI treatments.
Collapse
|
11
|
Jalilvand A, Soltanpour MS. Investigating the methylation status of DACT2 gene and its association with MTHFR C677T polymorphism in patients with colorectal cancer. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2019; 8:53-58. [PMID: 31531376 DOI: 10.22099/mbrc.2019.33006.1393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
Colorectal cancer (CRC) is one of the common causes of cancer death in Iranian population. Both genetic and epigenetic changes have been implicated in CRC pathogenesis. DACT2 gene as one of the WNT signaling pathway inhibitor was shown to display tumor suppressor activity in many cancers. The aim of present study was to investigate the methylation status of DACT2 gene and its association with methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism in CRC patients. Fifty formalin-fixed paraffin-embedded cancerous and adjacent healthy tissues obtained from CRC patient were investigated. Genomic DNA was isolated using a FFPE commercial DNA extraction kit. The methylation status was evaluated by methylation specific PCR. Genotyping of MTHFR C677T polymorphism was performed using PCR-RFLP technique. Statistical analysis was done by GraphPad Prism 8. Results indicated that the frequency of methylated DACT2 gene was significantly higher in cancerous tissue relative to adjacent healthy tissue (P<0.001). DACT2 gene methylation was significantly more common among carriers of MTHFR 677CC genotype (P=0.035) and significantly less common among carriers of MTHFR 677T allele (P value =0.006). In conclusion the present study identified DACT2 gene methylation as a significant risk factor for CRC development. Moreover, the low frequency of DACT2 gene methylation among carriers of MTHFR 677T allele may confer a protective role for this common polymorphism against CRC risk.
Collapse
Affiliation(s)
- Ahmad Jalilvand
- Department of Pathology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Soleiman Soltanpour
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
12
|
Li H, Zhang M, Linghu E, Zhou F, Herman JG, Hu L, Guo M. Epigenetic silencing of TMEM176A activates ERK signaling in human hepatocellular carcinoma. Clin Epigenetics 2018; 10:137. [PMID: 30400968 PMCID: PMC6219251 DOI: 10.1186/s13148-018-0570-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/21/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The role of TMEM176A in human hepatocellular carcinoma (HCC) is unknown. This study explored the epigenetic regulation and function of TMEM176A in human HCC. MATERIALS AND METHODS Twelve HCC cell lines and 126 cases of primary cancer were analyzed. Methylation-specific PCR, immunohistochemistry, flow cytometry, and xenograft mouse models were employed. RESULTS TMEM176A was highly expressed in SNU387, SNU182, Huh1, and SNU475 cells; reduced expression was observed in HepG2 and PLC/PRF/5 cells; and no expression was found in SNU449, HBXF344, SMMC7721, Huh7, and LM3 cells. Unmethylation of the TMEM176A promoter was detected in SNU387, SNU182, Huh1, and SNU475 cells; partial methylation was observed in HepG2 and PLC/PRF/5 cells; and complete methylation was found in SNU449, HBXF344, SMMC7721, Huh7, and LM3 cells. Upon treatment with 5-Aza-2-deoxycytidine, re-expression of TMEM176A was detected in SNU449, HBXF344, SMMC7721, Huh7, and LM3 cells; increased expression of TMEM176A was observed in HepG2 and PLC/PRF/5 cells; and no expression changes were found in SNU387, SNU182, Huh1, and SNU475 cells. The TMEM176A promoter region was methylated in 75.4% (95/126) of primary human HCC. Reduced expression of TMEM176A was associated with promoter region methylation (P < 0.05). No association was found between TMEM176A promoter methylation and age, gender, HBV infection, liver cirrhosis, tumor size, lymph node metastasis, vessel cancerous embolus, number of lesions, and TNM stage (all P > 0.05). These results demonstrated that the expression of TMEM176A is regulated by promoter region methylation. Methylation of the TMEM176A promoter was significantly associated with tumor cell differentiation (P < 0.05) and was an independent prognostic factor for poor 3-year overall survival (OS, P < 0.05). TMEM176A expression induced cell apoptosis; inhibited cell proliferation, migration, and invasion; suppressed human HCC cell xenograft growth in mice; and inhibited ERK signaling in HCC cells. CONCLUSION The promoter region of TMEM176A is frequently methylated in human HCC, and the expression of TMEM176A is regulated by promoter region methylation. Methylation of the TMEM176A promoter may serve as a diagnostic and prognostic marker in HCC. TMEM176A suppresses HCC growth by inhibiting the ERK signaling pathway.
Collapse
Affiliation(s)
- Hongxia Li
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124 China
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - Meiying Zhang
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - Enqiang Linghu
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - Fuyou Zhou
- Department of Thoracic Surgery, Anyang Tumor Hospital, Anyang, 455000 China
| | - James G. Herman
- The Hillman Cancer Center, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Suite 2.18/Research, Pittsburgh, PA 15213 USA
| | - Liming Hu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124 China
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| |
Collapse
|
13
|
Lin Q, Hou S, Guan F, Lin C. HORMAD2 methylation-mediated epigenetic regulation of gene expression in thyroid cancer. J Cell Mol Med 2018; 22:4640-4652. [PMID: 30039914 PMCID: PMC6156446 DOI: 10.1111/jcmm.13680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/07/2018] [Indexed: 12/14/2022] Open
Abstract
This study is aimed to investigate the methylation level of candidate genes and its impact on thyroid carcinoma (THCA) development. Infinium Human Methylation 450 BeadChip Arrays by Illumina (Illumina HM450K) was the most popular CpG microarray platform widely used in biological and medical research. The methylation level of differentially expressed genes and their corresponding CpG sites were analysed by R programme. The expression of HORMAD2 was evaluated by qRT-PCR and Western blot, while the methylation level was examined via methylation-specific PCR. Cell viability, metastasis, cell cycle and apoptosis were detected by MTT assay, transwell and wound healing assay and flow cytometry, respectively, after treatment with 5-aza-2'-deoxycytidine (5-Aza). Tumour formation assay was used to analyse thyroid tumour growth in nude mice in vivo. The methylation levels of all 116 differentially expressed genes were analysed. HORMAD2 was significantly hypermethylated and its mRNA expression was inhibited in THCA cells. After treatment with 5-Aza, HORMAD2 expression was up-regulated in THCA cells and its overexpression can suppress thyroid cancer cell viability, mobility and invasiveness remarkably. Up-regulation of HORMAD2 in THCA cells could prolong G0/G1 phase and shorten S phase to impede cell mitosis as well as promote thyroid cancer cells apoptosis. Furthermore, tumour formation assay showed that increased HORMAD2 level impeded tumour growth in vivo. Hypermethylation of HORMAD2 could induce THCA progression, while hypomethylation of HORMAD2 retard cell growth and mobility and facilitate apoptosis through increasing its mRNA expression.
Collapse
Affiliation(s)
- Qiuyu Lin
- Department of Nuclear MedicineThe First Hospital of Jilin UniversityChangchunChina
| | - Sen Hou
- Department of Nuclear MedicineThe First Hospital of Jilin UniversityChangchunChina
| | - Feng Guan
- Department of Nuclear MedicineThe First Hospital of Jilin UniversityChangchunChina
| | - Chenghe Lin
- Department of Nuclear MedicineThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
14
|
Zhao L, Fan W, Fan Y, Gao S. MicroRNA-214 promotes the proliferation, migration and invasion of gastric cancer MKN28 cells by suppressing the expression of Dact2. Exp Ther Med 2018; 16:4909-4917. [PMID: 30542447 DOI: 10.3892/etm.2018.6771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 09/07/2018] [Indexed: 12/14/2022] Open
Abstract
The present study examined the expression of Dapper, antagonist of β-catenin 2 (Dact2) and microRNA (miR)-214 in gastric cancer at tissue and cellular levels, and to understand their biological roles. A total of 42 gastric cancer patients were enrolled in the present study. Bioinformatics tool was used to predict the miR molecule that potentially regulates Dact2 expression. To measure the expression of miR-214 and Dact2, reverse transcription-quantitative polymerase chain reaction was employed. Mixed gastric adenocarcinoma type MKN28 cells were transfected with negative control (NC), miR-214 mimics or inhibitor. The CCK-8 assay was used to investigate the proliferation of mixed gastric adenocarcinoma type MKN28 cells. To study migration and invasion abilities of mixed gastric adenocarcinoma type MKN28 cells, the Transwell assay was performed. To determine the expression of Dact2 protein, western blotting was conducted and the rescue assay was utilized to study the biological roles of miR-214 and Dact2 in mixed gastric adenocarcinoma type MKN28 cells. To test whether Dact2 is a direct target of miR-214, the dual luciferase reporter assay was performed. Results indicated that the expression of miR-214 was elevated, but expression of Dact2 mRNA was decreased in gastric cancer tissues, which was closely correlated with the invasion, metastasis, occurrence and development of gastric cancer. Notably, miR-214 promoted the proliferation of mixed gastric adenocarcinoma type MKN28 cells in vitro, whereas but Dact2 inhibited the proliferation of these cells. Downregulation of miR-214 expression or upregulation of Dact2 expression inhibited the migration and invasion of mixed gastric adenocarcinoma type MKN28 cells. Furthermore, miR-214 regulated the expression of Dact2 protein and its downstream β-catenin protein in mixed gastric adenocarcinoma type MKN28 cells. Dact2 reversed the effect of miR-214 on the proliferation, migration and invasion of mixed gastric adenocarcinoma type MKN28 cells. In addition, miR-214 directly targeted the 3'-UTR seeding region of Dact2 mRNA to regulate its expression. The present study demonstrated that expression of miR-214 was upregulated in gastric cancer tissues, and positively correlated with lymphatic metastasis and clinical staging. In addition, expression of Dact2 was downregulated in gastric cancer tissues and negatively correlated with lymphatic metastasis and clinical staging. Notably, the present findings suggest that miR-214 promoted the proliferation, migration and invasion of mixed gastric adenocarcinoma type MKN28 cells by suppressing the expression of Dact2.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Weiwei Fan
- Department of Infectious Internal Medicine, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Yujing Fan
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Shanling Gao
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
15
|
Zhang Y, Fan J, Fan Y, Li L, He X, Xiang Q, Mu J, Zhou D, Sun X, Yang Y, Ren G, Tao Q, Xiang T. The new 6q27 tumor suppressor DACT2, frequently silenced by CpG methylation, sensitizes nasopharyngeal cancer cells to paclitaxel and 5-FU toxicity via β-catenin/Cdc25c signaling and G2/M arrest. Clin Epigenetics 2018; 10:26. [PMID: 30359298 PMCID: PMC6136178 DOI: 10.1186/s13148-018-0459-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 02/14/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is prevalent in South China, including Hong Kong and Southeast Asia, constantly associated with Epstein-Barr virus (EBV) infection. Epigenetic etiology attributed to EBV plays a critical role in NPC pathogenesis. Through previous CpG methylome study, we identified Disheveled-associated binding antagonist of beta-catenin 2 (DACT2) as a methylated target in NPC. Although DACT2 was shown to regulate Wnt signaling in some carcinomas, its functions in NPC pathogenesis remain unclear. METHODS RT-PCR, qPCR, MSP, and BGS were applied to measure expression levels and promoter methylation of DACT2 in NPC. Transwell, flow cytometric analysis, colony formation, and BrdU-ELISA assay were used to assess different biological functions affected by DACT2. Immunofluorescence, Western blot, and dual-luciferase reporter assay were used to explore the mechanisms of DACT2 functions. Chemosensitivity assay was used to measure the impact of DACT2 on chemotherapy drugs. RESULTS We found that DACT2 is readily expressed in multiple normal adult tissues including upper respiratory tissues. However, it is frequently downregulated in NPC and correlated with promoter methylation. DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine restored its expression in NPC cells. DACT2 methylation was further detected in 29/32 (91%) NPC tumors but not in any (0/8) normal nasopharyngeal tissue samples. Ectopic expression of DACT2 in NPC cells suppressed their proliferation, migration, and invasion through downregulating matrix metalloproteinases. DACT2 expression also induced G2/M arrest in NPC cells through directly suppressing β-catenin/Cdc25c signaling, which sensitized NPC cells to paclitaxel and 5-FU, but not cisplatin. CONCLUSION Our results demonstrate that DACT2 is frequently inactivated epigenetically by CpG methylation in NPC, while it inhibits NPC cell proliferation and metastasis via suppressing β-catenin/Cdc25c signaling. Our study suggests that DACT2 promoter methylation is a potential epigenetic biomarker for the detection and chemotherapy guidance of NPC.
Collapse
Affiliation(s)
- Yan Zhang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiangxia Fan
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yichao Fan
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoqian He
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junhao Mu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Danfeng Zhou
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuejuan Sun
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yucheng Yang
- Department of Otolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Tao
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China. .,Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China.
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
16
|
Guo L, Wang X, Yang Y, Xu H, Zhang Z, Yin L, Wang Y, Yang M, Zhao S, Bai S, Zhao L, Wang Z, Lian X, Liu Y, Zhang Q. Methylation of DACT2 contributes to the progression of breast cancer through activating WNT signaling pathway. Oncol Lett 2017; 15:3287-3294. [PMID: 29435071 DOI: 10.3892/ol.2017.7633] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/11/2016] [Indexed: 12/16/2022] Open
Abstract
The activation of the Wnt/β-catenin signaling pathway has been demonstrated to play important roles in breast carcinogenesis and to be associated with a poorer prognosis in breast cancer patients. However, genetic mutation is not the major reason for Wnt/β-catenin activation in breast cancer. Dishevelled-associated antagonist of β-catenin homolog 2 (DACT2) is a negative regulator of β-catenin and acts as a tumor suppressor in numerous cancer types; however, the expression change and potential role of DACT2 in breast cancer is unknown. The present study detected the expression and function of DACT2 in breast cancer progression. It was identified that the expression of DACT2 significantly decreased in breast cancer tissues compared with paired adjacent normal breast tissues. Additional investigation demonstrated that the hypermethylation of DACT2 gene promoter contributes to the loss of the gene in breast cancer. It was also demonstrated that DACT2 is a tumor suppressor in breast cancer and inhibits the proliferation and invasion of breast cancer cells by repressing the expression of β-catenin target genes associated with tumor growth and metastasis. The present study indicates that the loss of DACT2 may contribute to breast cancer progression and provides a promising therapeutic target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Li Guo
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Xiaohong Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Yuguang Yang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Hongchun Xu
- Department of Thoracic Surgery, Mudanjiang Tumor Hospital, Mudanjiang, Heilongjiang 157000, P.R. China
| | - Zhihong Zhang
- Obstetrics and Gynecology Department, General Hospital of Daqing Oil Field, Daqing, Heilongjiang 163000, P.R. China
| | - Lili Yin
- Obstetrics and Gynecology Department, Heilongjiang Electric Power Hospital, Harbin, Heilongjiang 150090, P.R. China
| | - Yan Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Maopeng Yang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Shu Zhao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Shuping Bai
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Ling Zhao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Zhipeng Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Xin Lian
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Ying Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Qingyuan Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
17
|
Zhao H, Yang L, Han Y, Li H, Ling Z, Wang Y, Wang E, Wu G. Dact3 inhibits the malignant phenotype of non-small cell lung cancer through downregulation of c-Myb. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:11580-11587. [PMID: 31966514 PMCID: PMC6966047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 11/03/2017] [Indexed: 06/10/2023]
Abstract
Dact3 is a negative regulator of Wnt/β-catenin signaling. c-Myb promotes tumor cell invasion through Wnt/β-catenin pathway. However, the detailed mechanism by which Dact3 and c-Myb modulate the progression of non-small cell lung cancer (NSCLC) remains unclear. In this study, the expressions of Dact3 and c-Myb in 254 surgically resected NSCLC samples were detected by immunohistochemistry. We transfected Dact3 cDNA to A549 and H157 cells or siRNA-Dact3 to SPC cells and examined above effects on the activity of Wnt/β-catenin signaling by Western blot and luciferase activity assay, in addition to cell biological behavior by Transwell and MTT assay. Dact3 expression was reduced in NSCLC tissue. Reduced Dact3 expression was correlated with lymph node metastasis and poor prognosis of NSCLC (P<0.05). In addition, Dact3 expression was negatively correlated with the c-Myb expression (R = -0.626, P<0.05). Dact3 transfection resulted in c-Myb reduced expression in NSCLC cells, as well as decreased activity of Wnt/β-catenin signaling and reduced cell invasive and proliferative capacity. siRNA-Dact3 transfection had the opposite effect. Our results indicate that Dact3 may inhibit the malignant phenotype of NSCLC through downregulation of c-Myb.
Collapse
Affiliation(s)
- Huanyu Zhao
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical UniversityShenyang, Liaoning, China
| | - Lianhe Yang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical UniversityShenyang, Liaoning, China
| | - Yang Han
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical UniversityShenyang, Liaoning, China
| | - Hongqiang Li
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical UniversityShenyang, Liaoning, China
| | - Zihan Ling
- Liaoning Province Shiyan High SchoolShenyang, Liaoning, China
| | - Yan Wang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical UniversityShenyang, Liaoning, China
| | - Enhua Wang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical UniversityShenyang, Liaoning, China
| | - Guangping Wu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical UniversityShenyang, Liaoning, China
| |
Collapse
|
18
|
Lu L, Wang Y, Ou R, Feng Q, Ji L, Zheng H, Guo Y, Qi X, Kong ANT, Liu Z. DACT2 Epigenetic Stimulator Exerts Dual Efficacy for Colorectal Cancer Prevention and Treatment. Pharmacol Res 2017; 129:318-328. [PMID: 29199082 DOI: 10.1016/j.phrs.2017.11.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/30/2022]
Abstract
DACT2, a tumor suppressor gene in various tumors, is frequently down-regulated via hypermethylation. We found DACT2 gene expressions were dramatically silenced (P = 0.002, n = 8) in our clinical colorectal cancer (CRC) tissues, and TCGA data revealed DACT2 hypermethylation correlated to CRC poor prognosis (P = 0.0129, HR = 0.2153, n = 248). Thus, by screening twelve nutritional compounds, we aimed to find out an effective DACT2 epigenetic stimulator to determine whether DACT2 epigenetic restoration could reverse CRC tumorigenesis. We found that kaempferol significantly increased DACT2 expressions up to 3.47-fold in three CRC cells (HCT116, HT29, and YB5). Furthermore, kaempferol remarkably decreased DACT2 methylation (range: 19.58%-67.00%, P < 0.01), while increased unmethylated DACT2 by 13.72-fold (P < 0.01) via directly binding to DNA methyltransferases DNMT1. By epigenetic reactivating DACT2 transcription, kaempferol notably inhibited nuclear β-catenin expression to inactivate Wnt/β-catenin pathway, which consequently restricted CRC cells proliferation and migration. Moreover, in AOM/DSS-induced CRC tumorigenesis, kaempferol-demethylated DACT2 effectively decreased tumor load (range: 50.00%-73.52%, P < 0.05). By determining the chemopreventive and chemotherapeutic efficacy of a novel DACT2 demethylating stimulator, we demonstrated that DACT2 epigenetic restoration could successfully slow down and reverse CRC tumorigenesis.
Collapse
Affiliation(s)
- Linlin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Ying Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Rilan Ou
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Qian Feng
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Liyan Ji
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Hongming Zheng
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yue Guo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Xiaoxiao Qi
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Ah-Ng Tony Kong
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
19
|
Guo Y, Peng Y, Gao D, Zhang M, Yang W, Linghu E, Herman JG, Fuks F, Dong G, Guo M. Silencing HOXD10 by promoter region hypermethylation activates ERK signaling in hepatocellular carcinoma. Clin Epigenetics 2017; 9:116. [PMID: 29075359 PMCID: PMC5654145 DOI: 10.1186/s13148-017-0412-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/27/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma is the fifth most common malignancy and the third leading cause of cancer-related death worldwide. Dysregulation of HomeoboxD10 (HOXD10) was found to suppress or promote cancer progression in different cancer types. The function and regulation of HOXD10 remain unclear in human hepatocellular carcinoma (HCC). METHODS Primary HCC samples (117), normal liver tissue samples (15), and 13 HCC cell lines (SNU182, SNU449, HBXF344, SMMC7721, Huh7, HepG2, LM3, PLC/PRF/5, BEL7402, SNU387, SNU475, QGY7703, and Huh1) were included in this study. Methylation-specific PCR, flow cytometry, western blot, transwell, siRNA, and chromatin immunoprecipitation assays were employed. RESULTS HOXD10 was methylated in 76.9% (90/117) of human primary HCC samples. HOXD10 methylation was significantly associated with vessel cancerous embolus, tumor cell differentiation, and the 3-year overall survival rate (all P < 0.05). The expression of HOXD10 was regulated by promoter region methylation. HOXD10 suppressed colony formation, cell proliferation, cell invasion and migration, and induced G2/M phase arrest and apoptosis in HCC cells. HOXD10 suppressed HCC cell xenograft growth in mice. HOXD10 suppresses HCC growth by inhibiting ERK signaling. CONCLUSION HOXD10 is frequently methylated in human HCC, and the expression of HOXD10 is regulated by promoter region methylation. HOXD10 suppresses HCC cell growth both in vitro and in vivo. HOXD10 suppresses human HCC by inhibiting ERK signaling.
Collapse
Affiliation(s)
- Yulin Guo
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
- Department of General Surgery, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - Yaojun Peng
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - Dan Gao
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
- Medical College of NanKai University, #94 Weijin Road, Tianjin, 300071 China
| | - Meiying Zhang
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
- Medical College of NanKai University, #94 Weijin Road, Tianjin, 300071 China
| | - Weili Yang
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
- Medical College of NanKai University, #94 Weijin Road, Tianjin, 300071 China
| | - Enqiang Linghu
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - James G. Herman
- The Hillman Cancer Center, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Suite 2.18/Research, Pittsburgh, PA 15213 USA
| | - François Fuks
- Laboratory of Cancer Epigenetics, Free University of Brussels (U.L.B.), 808 Route de Lennik, 1070 Brussels, Belgium
| | - Guanglong Dong
- Department of General Surgery, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| |
Collapse
|
20
|
Tan Y, Li QM, Huang N, Cheng S, Zhao GJ, Chen H, Chen S, Tang ZH, Zhang WQ, Huang Q, Cheng Y. Upregulation of DACT2 suppresses proliferation and enhances apoptosis of glioma cell via inactivation of YAP signaling pathway. Cell Death Dis 2017; 8:e2981. [PMID: 28796248 PMCID: PMC5596571 DOI: 10.1038/cddis.2017.385] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/02/2017] [Accepted: 07/07/2017] [Indexed: 01/01/2023]
Abstract
DACT2, one of the Dact gene family members, was shown to function as a tumor suppressor. However, its function in gliomas remains largely unknown. In this study, we investigated the role of DACT2, underlying molecular mechanisms and its clinical significance in glioma patients. Downexpression of DACT2 in gliomas compared with adjacent normal brain tissues was correlated with glioma grade and poor survival. Cox regression analysis revealed that the DACT2 is an independent prognostic indicator for glioma patients. Overexpression of DACT2 in glioma cells inhibited proliferation, cell cycle and enhanced apoptosis, sensitivity to temozolomide in vitro and suppressed tumor growth in vivo. Whereas knockdown of DACT2 induce opposite reaction. Mechanistically, overexpression of DACT2 resulted in upregulation of important signaling molecules such as p-YAP and p-β-catenin, and prevent YAP translocating into nucleus and sequestering in the cytoplasm to degrade. The study further proved that DACT2 can suppress YAP through Wnt/β-catenin signaling pathway. Collectively, these data indicate that DACT2 has a tumor suppressor function via inactivation of YAP pathway, providing a promising target for the treatment of gliomas.
Collapse
Affiliation(s)
- Ying Tan
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiu-Meng Li
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ning Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Si Cheng
- Department of Orthopaedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guan-Jian Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Chen
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Song Chen
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhao-Hua Tang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wen-Qian Zhang
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
21
|
Li J, Zhang M, He T, Li H, Cao T, Zheng L, Guo M. Methylation of DACT2 promotes breast cancer development by activating Wnt signaling. Sci Rep 2017; 7:3325. [PMID: 28607412 PMCID: PMC5468316 DOI: 10.1038/s41598-017-03647-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/02/2017] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most common malignant tumor in women worldwide. To explore the role of DACT2 in breast cancer, 5 cell lines and 153 cases of primary cancer were studied. The expression of DACT2 was detected in BT474, MDA-MB-231 and BT549 cells, while no expression was found in MDA-MB-468 and HBL100 cells. Complete methylation of DACT2 was found in MDA-MB-468 and HBL100 cells, partial methylation was observed in BT474 and BT549 cells, and no methylation was detected in MDA-MB-231 cells. Restoration of DACT2 expression was induced by 5-Aza in MDA-MB-468 and HBL100 cells. DACT2 was methylated in 49.7% (76/153) of primary breast cancer samples. Methylation of DACT2 was significantly associated with tumor size (P < 0.05). Reduced DACT2 expression was significantly associated with promoter region methylation in primary breast cancer (P < 0.05). DACT2 suppressed breast cancer cell growth and induced G1/S phase arrest in breast cancer cells. DACT2 inhibited Wnt/β-catenin signaling in human breast cancer cells and suppressed breast cancer cell tumor growth in xenograft mice. In conclusion, our results demonstrate that DACT2 is frequently methylated in human breast cancer, methylation of DACT2 activates Wnt signaling, and DACT2 suppresses breast cancer cell growth both in vitro and in vivo.
Collapse
Affiliation(s)
- Jingyi Li
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Meiying Zhang
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, 100853, China.,Medical College of NanKai University, Tianjin, 300071, China
| | - Tao He
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Hongxia Li
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, 100853, China.,Colloge of Life Science and Bioengineering, Beijing University of Technology, 100124, Beijing, China
| | - Tingting Cao
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, 100853, China.,Colloge of Life Science and Bioengineering, Beijing University of Technology, 100124, Beijing, China
| | - Lili Zheng
- Department of Endocrinology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
22
|
Guo YL, Shan BE, Guo W, Dong ZM, Zhou Z, Shen SP, Guo X, Liang J, Kuang G. Aberrant methylation of DACT1 and DACT2 are associated with tumor progression and poor prognosis in esophageal squamous cell carcinoma. J Biomed Sci 2017; 24:6. [PMID: 28077137 PMCID: PMC5225534 DOI: 10.1186/s12929-016-0308-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 12/05/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The DACT (Dishevelled-associated antagonist of β-catenin) family of scaffold proteins may play important roles in tumorigenesis. However, the epigenetic changes of DACT1, 2, 3 and their effect on esophageal squamous cell carcinoma (ESCC) have not been investigated so far. The aim of this study was to investigate the promoter methylation and expression of DACT family, in order to elucidate more information on the role of DACT with regard to the progression and prognosis of ESCC. METHODS MSP and BGS methods were respectively applied to examine the methylation status of DACT; RT-PCR, Western blot and immunohistochemistry methods were respectively used to determine the mRNA and protein expression of DACT; MTT, Colony-formation and Wound-healing assay were performed to assess the effect of DACT1 and DACT2 on proliferation and migration of esophageal cancer cells. RESULTS Frequent reduced expression of DACT1, DACT2 and DACT3 were found in esophageal cancer cell lines and the expression levels of DACT1 and DACT2 were reversed by 5-Aza-Dc. Decreased mRNA and protein expression of DACT1 and DACT2 were observed in ESCC tumor tissues and were associated with the methylation status of transcription start site (TSS) region. The hypermethylation of CpG islands (CGI) shore region in DACT1 was observed both in tumor and corresponding adjacent tissues but wasn't related to the transcriptional inhibition of DACT1. The methylation status of TSS region in DACT1 and DACT2 and the protein expression of DACT2 were independently associated with ESCC patients' prognosis. CONCLUSIONS The TSS region hypermethylation may be one of the main mechanisms for reduced expression of DACT1 and DACT2 in ESCC. The simultaneous methylation of DACT1 and DACT2 may play important roles in progression of ESCC and may serve as prognostic methylation biomarkers for ESCC patients.
Collapse
Affiliation(s)
- Yan-li Guo
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankanglu 12, Shijiazhuang, 050011 Hebei China
| | - Bao-En Shan
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankanglu 12, Shijiazhuang, 050011 Hebei China
| | - Wei Guo
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankanglu 12, Shijiazhuang, 050011 Hebei China
| | - Zhi-Ming Dong
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankanglu 12, Shijiazhuang, 050011 Hebei China
| | - Zhen Zhou
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankanglu 12, Shijiazhuang, 050011 Hebei China
| | - Su-Peng Shen
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankanglu 12, Shijiazhuang, 050011 Hebei China
| | - Xin Guo
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankanglu 12, Shijiazhuang, 050011 Hebei China
| | - Jia Liang
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankanglu 12, Shijiazhuang, 050011 Hebei China
| | - Gang Kuang
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankanglu 12, Shijiazhuang, 050011 Hebei China
| |
Collapse
|
23
|
Liu LJ, Xie SX, Chen YT, Xue JL, Zhang CJ, Zhu F. Aberrant regulation of Wnt signaling in hepatocellular carcinoma. World J Gastroenterol 2016; 22:7486-7499. [PMID: 27672271 PMCID: PMC5011664 DOI: 10.3748/wjg.v22.i33.7486] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/07/2016] [Accepted: 07/20/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies in the world. Several signaling pathways, including the wingless/int-1 (Wnt) signaling pathway, have been shown to be commonly activated in HCC. The Wnt signaling pathway can be triggered via both catenin β1 (CTNNB1)-dependent (also known as "canonical") and CTNNB1-independent (often referred to as "non-canonical") pathways. Specifically, the canonical Wnt pathway is one of those most frequently reported in HCC. Aberrant regulation from three complexes (the cell-surface receptor complex, the cytoplasmic destruction complex and the nuclear CTNNB1/T-cell-specific transcription factor/lymphoid enhancer binding factor transcriptional complex) are all involved in HCC. Although the non-canonical Wnt pathway is rarely reported, two main non-canonical pathways, Wnt/planar cell polarity pathway and Wnt/Ca(2+) pathway, participate in the regulation of hepatocarcinogenesis. Interestingly, the canonical Wnt pathway is antagonized by non-canonical Wnt signaling in HCC. Moreover, other signaling cascades have also been demonstrated to regulate the Wnt pathway through crosstalk in HCC pathogenesis. This review provides a perspective on the emerging evidence that the aberrant regulation of Wnt signaling is a critical mechanism for the development of HCC. Furthermore, crosstalk between different signaling pathways might be conducive to the development of novel molecular targets of HCC.
Collapse
|
24
|
Tian Y, Mok MTS, Yang P, Cheng ASL. Epigenetic Activation of Wnt/β-Catenin Signaling in NAFLD-Associated Hepatocarcinogenesis. Cancers (Basel) 2016; 8:E76. [PMID: 27556491 PMCID: PMC4999785 DOI: 10.3390/cancers8080076] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/01/2016] [Accepted: 08/15/2016] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), characterized by fat accumulation in liver, is closely associated with central obesity, over-nutrition and other features of metabolic syndrome, which elevate the risk of developing hepatocellular carcinoma (HCC). The Wnt/β-catenin signaling pathway plays a significant role in the physiology and pathology of liver. Up to half of HCC patients have activation of Wnt/β-catenin signaling. However, the mutation frequencies of CTNNB1 (encoding β-catenin protein) or other antagonists targeting Wnt/β-catenin signaling are low in HCC patients, suggesting that genetic mutations are not the major factor driving abnormal β-catenin activities in HCC. Emerging evidence has demonstrated that obesity-induced metabolic pathways can deregulate chromatin modifiers such as histone deacetylase 8 to trigger undesired global epigenetic changes, thereby modifying gene expression program which contributes to oncogenic signaling. This review focuses on the aberrant epigenetic activation of Wnt/β-catenin in the development of NAFLD-associated HCC. A deeper understanding of the molecular mechanisms underlying such deregulation may shed light on the identification of novel druggable epigenetic targets for the prevention and/or treatment of HCC in obese and diabetic patients.
Collapse
Affiliation(s)
- Yuan Tian
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Myth T S Mok
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
| | - Pengyuan Yang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Alfred S L Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
- State Key Laboratory of Digestive Disease and Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
25
|
Zhang M, Linghu E, Zhan Q, He T, Cao B, Brock MV, Herman JG, Xiang R, Guo M. Methylation of DACT2 accelerates esophageal cancer development by activating Wnt signaling. Oncotarget 2016; 7:17957-17969. [PMID: 26919254 PMCID: PMC4951263 DOI: 10.18632/oncotarget.7647] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 02/06/2016] [Indexed: 01/11/2023] Open
Abstract
Esophageal cancer is one of the most common malignancies worldwide. DACT2 is frequently methylated in human lung, hepatic, gastric and thyroid cancers. The methylation status and function of DACT2 remain to be elucidated in human esophageal cancer. Ten esophageal cancer cell lines, 42 cases of dysplasia and 126 cases of primary esophageal cancer samples were analyzed in this study. The expression of DACT2 was detected in YES2 cells, while reduced DACT2 expression levels were found in TE8 and KYSE70 cells, and complete loss of DACT2 expression was found in KYSE30, KYSE140, KYSE150, KYSE410, KYSE450, TE3 and TE7 cells. Loss of expression or reduced expression of DACT2 correlated with promoter region hypermethylation in esophageal cancer cells. Restoration of DACT2 expression was induced by 5-aza-2'-deoxycytidine. In human primary esophageal squamous carcinoma, 69% (87/126) of samples were methylated. Methylation of DACT2 was significantly associated with tumor stage and metastasis (P < 0.01, P < 0.05). DACT2 suppressed colony formation, cell migration and invasion in esophageal cancer cells, and it also suppressed esophageal cancer cell xenograft growth. DACT2 inhibited Wnt signaling in human esophageal cancer cells. In conclusion, DACT2 is frequently methylated in human esophageal cancer and its expression is regulated by promoter region methylation. DACT2 suppresses esophageal cancer growth by inhibiting Wnt signaling.
Collapse
Affiliation(s)
- Meiying Zhang
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing 100853, China
- Medical College of NanKai University, Tianjin 300071, China
| | - Enqiang Linghu
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing 100853, China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R.China
| | - Tao He
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing 100853, China
| | - Baoping Cao
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing 100853, China
| | - Malcolm V. Brock
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland 21231, USA
| | - James G. Herman
- The Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Rong Xiang
- Medical College of NanKai University, Tianjin 300071, China
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
26
|
Li X, Yu J, Brock MV, Tao Q, Herman JG, Liang P, Guo M. Epigenetic silencing of BCL6B inactivates p53 signaling and causes human hepatocellular carcinoma cell resist to 5-FU. Oncotarget 2016; 6:11547-60. [PMID: 25909168 PMCID: PMC4484475 DOI: 10.18632/oncotarget.3413] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/19/2015] [Indexed: 12/13/2022] Open
Abstract
BCL6B is a potential tumor suppressor in human gastric cancer, but the regulation and mechanism of BCL6B in human hepatocellular carcinogenesis remain unclear. This study is to explore the epigenetic change and mechanism of BCL6B in human hepatocellular carcinoma (HCC). Nineteen hepatic cancer cell lines, 50 cases of adjacent tissue and 149 cases of HCC samples were employed. BCL6B is methylated in 100% (19/19) of human HCC cell lines, 40.0% (20/50) of adjacent tissue samples and 86.6% (129/149) of primary cancer samples. Methylation of BCL6B is associated with HBV positive (p < 0.05). But no association was found with age, sex, tumor size, differentiation, TNM stage, recurrence and survival. Loss of BCL6B expression was found in 19 of completely methylated HCC cell lines. BCL6B was re-expressed after 5-aza-2′-deoxycytidine treatment. Restoration of BCL6B expression suppressed cell proliferation, induced apoptosis and G1/S arrest in HCC cells. The expression of EGR1, a key component of p53 signaling, was increased after re-expression BCL6B in HCC cells. Re-expression of BCL6B activated p53 signaling and sensitized HCC cells to 5-fluorouracil. BCL6B is frequently methylated in human HCC and the expression of BCL6B is regulated by promoter region hypermethylation. BCL6B activates p53 signaling by increasing EGR1 expression in HCC.
Collapse
Affiliation(s)
- Xin Li
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China.,Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, Beijing, China
| | - Jie Yu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Malcolm V Brock
- Oncology Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Qian Tao
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - James G Herman
- Oncology Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ping Liang
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Mingzhou Guo
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
27
|
Jin Y, Cao B, Zhang M, Zhan Q, Herman JG, Yu M, Guo M. RASSF10 suppresses hepatocellular carcinoma growth by activating P53 signaling and methylation of RASSF10 is a docetaxel resistant marker. Genes Cancer 2015; 6:231-40. [PMID: 26124922 PMCID: PMC4482244 DOI: 10.18632/genesandcancer.67] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/28/2015] [Indexed: 01/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignances and the second leading cause of cancer related death worldwide. RASSF10 is located on chromosome 11p15.2, a region that shows frequent loss of heterozygosity (LOH) in several cancer types. Our previous study found that RASSF10 suppresses colorectal cancer growth by activating P53 signaling. To explore the epigenetic changes and the mechanism of RASSF10 in human HCC, 69 cases of primary HCC, twenty cases of normal liver tissue samples and 17 HCC cell lines were involved in this study. We found that RASSF10 was methylated in 82.6% (57/69) of human primary HCC and methylation of RASSF10 was significantly associated with tumor size (P < 0.05) and TNM stage (P < 0.05). The expression of RASSF10 was regulated by promoter region methylation. Restoration of RASSF10 expression suppressed cell proliferation, induced apoptosis and G2/M phase arrest, as well as sensitized cells to docetaxel and activated P53 signaling in HepG2 and QGY7703 cells. In conclusion, we demonstrated that RASSF10 is frequently methylated in human HCC and its methylation is a potential docetaxel resistant marker. Our data also indicate that RASSF10 suppresses human HCC growth by activating P53 signaling.
Collapse
Affiliation(s)
- Yongshuai Jin
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, Beijing, China ; Department of Interventional Radiology, Chinese PLA General Hospital, Beijing, China
| | - Baoping Cao
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, Beijing, China ; Medical College of NanKai University, Tianjin, China
| | - Meiying Zhang
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, Beijing, China ; Medical College of NanKai University, Tianjin, China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - James G Herman
- The Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Miao Yu
- Department of Interventional Radiology, Chinese PLA General Hospital, Beijing, China
| | - Mingzhou Guo
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
28
|
Yu Y, Yan W, Liu X, Jia Y, Cao B, Yu Y, Lv Y, Brock MV, Herman JG, Licchesi J, Yang Y, Guo M. DACT2 is frequently methylated in human gastric cancer and methylation of DACT2 activated Wnt signaling. Am J Cancer Res 2014; 4:710-724. [PMID: 25520862 PMCID: PMC4266706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/10/2014] [Indexed: 06/04/2023] Open
Abstract
Dapper, Dishevelled-associated antagonist of β-catenin (DACT), is a key regulator of Wnt signaling pathway. The purpose of this study is to explore the epigenetic changes and the function ofDACT2 in human gastric cancer (GC). Eight human gastric cancer cell lines, 167 cases of primary gastric cancer and 8 cases of normal gastric mucosa were involved in this study. In addition, methylation Specific PCR (MSP), semi-quantitative RT-PCR, colony formation assay, flow cytometry assay, siRNA, immunofluorescence techniques and xenograft mice models were employed. The results indicate that DACT2 is frequently methylated in human primary gastric cancer (55.7%), and that methylation of DACT2 is associated with lost or reduction in its expression (X(2) test, P<0.01). We found that DACT2 expression was regulated by promoter region hypermethylation. Methylation of DACT2 is associated with tumor differentiation, invasion and intravascular cancerous emboli (X(2) test, P<0.05, P<0.05 and P<0.05). In gastric cancer patients treated with 5-FU and cisplatin, the five-year survival rates are higher in DACT2 methylated cases. DACT2 inhibits cell proliferation, migration and invasion in gastric cancer cells and suppresses gastric cancer xenografts in mice. Restoration of DACT2 expression inhibits both canonical and noncanonical WNT signaling in SGC7901 cells. Restoration of DACT2 expression sensitized gastric cancer cells to paclitaxel and 5-FU. In conclusion, DACT2 is frequently methylated in human gastric cancer and DACT2 expression is silenced by promoter region hypermethylation. DACT2 suppressed gastric cancer proliferation, invasion and metastasis by inhibiting Wnt signaling both in vitro and in vivo.
Collapse
Affiliation(s)
- Yuanzi Yu
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital#28 Fuxing Road, Beijing 100853, China
- Department of Gastroenterology, Provincial Hospital Affiliated to Shandong University324 Jingwu Weiqi Road, Jinan, 250021, China
| | - Wenji Yan
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital#28 Fuxing Road, Beijing 100853, China
| | - Xuefeng Liu
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital#28 Fuxing Road, Beijing 100853, China
| | - Yan Jia
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital#28 Fuxing Road, Beijing 100853, China
- Breast Cancer Medical Oncology, Tianjin Medical University Cancer Institute and HospitalHuan-Hu-Xi Road, Tianjin 300060, China
| | - Baoping Cao
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital#28 Fuxing Road, Beijing 100853, China
- Medical College of NanKai University#94 Weijin Road, Tianjin 300071, China
| | - Yingyan Yu
- Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine#800 Dongchuan Road, Shanghai, 200240, China
| | - Youyong Lv
- Beijing Institute for Cancer Research, Peking University School of OncologyBeijing 100034, China
| | - Malcolm V Brock
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University#1650 Orleans Street, Baltimore, Maryland, 21231, USA
| | - Jame G Herman
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University#1650 Orleans Street, Baltimore, Maryland, 21231, USA
| | - Julien Licchesi
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University#1650 Orleans Street, Baltimore, Maryland, 21231, USA
| | - Yunsheng Yang
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital#28 Fuxing Road, Beijing 100853, China
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital#28 Fuxing Road, Beijing 100853, China
| |
Collapse
|
29
|
Zhao Z, Herman JG, Brock MV, Sheng J, Zhang M, Liu B, Guo M. Methylation of DACT2 promotes papillary thyroid cancer metastasis by activating Wnt signaling. PLoS One 2014; 9:e112336. [PMID: 25375359 PMCID: PMC4223043 DOI: 10.1371/journal.pone.0112336] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 10/08/2014] [Indexed: 01/26/2023] Open
Abstract
Thyroid cancer is the most common endocrine malignant disease and the incidence is increasing. DACT2 was found frequently methylated in human lung cancer and hepatocellular carcinoma. To explore the epigenetic change and the role of DACT2 in thyroid cancer, 7 thyroid cancer cell lines, 10 cases of non-cancerous thyroid tissue samples and 99 cases of primary thyroid cancer samples were involved in this study. DACT2 was expressed and unmethylated in K1, SW579, FTC-133, TT, W3 and 8505C cell lines. Loss of expression and complete methylation was found in TPC-1 cells. Restoration of DACT2 expression was induced by 5-aza-2′deoxycytidine treatment. It demonstrates that the expression of DACT2 was regulated by promoter region methylation. In human primary papillary thyroid cancer, 64.6% (64/99) was methylated and methylation of DACT2 was related to lymph node metastasis (p<0.01). Re-expression of DACT2 suppresses cell proliferation, invasion and migration in TPC-1 cells. The activity of TCF/LEF was inhibited by DACT2 in wild-type or mutant β-catenin cells. The activity of TCF/LEF was increased by co-transfecting DACT2 and Dvl2 in wild-type or mutant β-catenin cells. Overexpression of wild-type β-catenin promotes cell migration and invasion in DACT2 stably expressed cells. The expression of β-catenin, c-myc, cyclinD1 and MMP-9 were decreased and the level of phosphorylated β-catenin (p-β-catenin) was increased after restoration of DACT2 expression in TPC-1 cells. The expression of β-catenin, c-myc, cyclinD1 and MMP-9 were increased and the level of p-β-catenin was reduced after knockdown of DACT2 in W3 and SW579 cells. These results suggest that DACT2 suppresses human papillary thyroid cancer growth and metastasis by inhibiting Wnt signaling. In conclusion, DACT2 is frequently methylated in papillary thyroid cancer. DACT2 expression was regulated by promoter region methylation. DACT2 suppresses papillary thyroid cancer proliferation and metastasis by inhibiting Wnt signaling.
Collapse
Affiliation(s)
- Zhiyan Zhao
- The Department of Head & Neck Surgery, Peking University Cancer Hospital and Institute, #52 Fucheng Road, Beijing 100036, China
- The Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing 100853, China
| | - James G. Herman
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Bunting-Blaustein Cancer Research Building, Room 543, 1650 Orleans Street, Baltimore, Maryland 21231, United States of America
| | - Malcolm V. Brock
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Bunting-Blaustein Cancer Research Building, Room 543, 1650 Orleans Street, Baltimore, Maryland 21231, United States of America
| | - Jindong Sheng
- The Department of Head & Neck Surgery, Peking University Cancer Hospital and Institute, #52 Fucheng Road, Beijing 100036, China
| | - Meiying Zhang
- The Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing 100853, China
- The Medical College of Nan Kai University, #94 Weijin Road, Tianjin 300071, China
| | - Baoguo Liu
- The Department of Head & Neck Surgery, Peking University Cancer Hospital and Institute, #52 Fucheng Road, Beijing 100036, China
- * E-mail: (MG); (BL)
| | - Mingzhou Guo
- The Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing 100853, China
- * E-mail: (MG); (BL)
| |
Collapse
|
30
|
Ma Y, Yang Y, Wang F, Wei Q, Qin H. Hippo-YAP signaling pathway: A new paradigm for cancer therapy. Int J Cancer 2014; 137:2275-86. [PMID: 25042563 DOI: 10.1002/ijc.29073] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 07/02/2014] [Indexed: 01/11/2023]
Abstract
In the past decades, the Hippo signaling pathway has been delineated and shown to play multiple roles in the control of organ size in both Drosophila and mammals. In mammals, the Hippo pathway is a kinase cascade leading from Mst1/2 to YAP and its paralog TAZ. Several studies have demonstrated that YAP/TAZ is a candidate oncogene and that other members of the Hippo pathway are tumor suppressive genes. The dysregulation of the Hippo pathway has been observed in a variety of cancers. This review chronicles the recent progress in elucidating the function of Hippo signaling in tumorigenesis and provide a rich source of potential targets for cancer therapy.
Collapse
Affiliation(s)
- Yanlei Ma
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China
| | - Yongzhi Yang
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China
| | - Feng Wang
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China
| | - Huanlong Qin
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
31
|
Shi J, Keller JM, Zhang J, Keller ET. A review on the diagnosis and treatment of hepatocellular carcinoma with a focus on the role of Wnts and the dickkopf family of Wnt inhibitors. J Hepatocell Carcinoma 2014; 1:1-7. [PMID: 27508171 PMCID: PMC4918262 DOI: 10.2147/jhc.s44537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent cancers worldwide. There are multiple etiologic factors including viral and environmental influences that can lead to HCC. Successful screening for early HCC is challenging due to the lack of well characterized and specific biomarkers. However, achieving successful screening is critically important as early diagnosis can potentially provide curative opportunities. Once HCC is advanced, there are multiple therapeutic venues, but most eventually fail, therefore developing new targeted therapies may provide greater chance for effective therapies. Along these lines, the Wnt pathway has been identified as contributing to the development and progression of HCC. Wnts can modify HCC growth and invasive ability. A key factor in the Wnt pathway is the dickkopf (DKK) family of Wnt inhibitors. DKKs have also been shown to modulate HCC progression. Additionally, several studies have suggested that DKK expression in tissue and serum has diagnostic and prognostic value.
Collapse
Affiliation(s)
- Junlin Shi
- Key Laboratory of Longevity and Ageing-Related Diseases, Ministry of Education, Nanning, Guangxi, People's Republic of China; Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jill M Keller
- Department of Urology, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jian Zhang
- Key Laboratory of Longevity and Ageing-Related Diseases, Ministry of Education, Nanning, Guangxi, People's Republic of China; Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Evan T Keller
- Key Laboratory of Longevity and Ageing-Related Diseases, Ministry of Education, Nanning, Guangxi, People's Republic of China; Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, People's Republic of China; Department of Urology, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|