1
|
D’Silva NJ, Pandiyan P. Neuroimmune cell interactions and chronic infections in oral cancers. Front Med (Lausanne) 2024; 11:1432398. [PMID: 39050547 PMCID: PMC11266022 DOI: 10.3389/fmed.2024.1432398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Inflammation is a process that is associated with the activation of distal immunosuppressive pathways that have evolved to restore homeostasis and prevent excessive tissue destruction. However, long-term immunosuppression resulting from systemic and local inflammation that may stem from dysbiosis, infections, or aging poses a higher risk for cancers. Cancer incidence and progression dramatically increase with chronic infections including HIV infection. Thus, studies on pro-tumorigenic effects of microbial stimulants from resident microbiota and infections in the context of inflammation are needed and underway. Here, we discuss chronic infections and potential neuro-immune interactions that could establish immunomodulatory programs permissive for tumor growth and progression.
Collapse
Affiliation(s)
- Nisha J. D’Silva
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
- Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
- Center for AIDS Research, Case Western Reserve University, Cleveland, OH, United States
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
2
|
Villoslada-Blanco P, Pérez-Matute P, Recio-Fernández E, Íñiguez M, Blanco-Navarrete P, Metola L, Ibarra V, Alba J, de Toro M, Oteo JA. Beyond the effects of HIV infection and integrase inhibitors-based therapies on oral bacteriome. Sci Rep 2023; 13:14327. [PMID: 37653055 PMCID: PMC10471600 DOI: 10.1038/s41598-023-41434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023] Open
Abstract
Oral microbiome is the second largest microbial community in humans after gut. Human immunodeficiency virus (HIV) infection triggers an impairment of the immune system which could favour the growth and the colonization of pathogens in the oral cavity, and this dysbiosis has been associated with oral manifestations that worsen the quality of life of these patients. Antiretroviral therapy (ART) could also drive changes in specific oral bacterial taxa associated with such periodontal diseases. Integrase strand transfer inhibitors (INSTIs), therapy of choice in the treatment of naive HIV-patients, are able to reverse the impact of HIV infection on systemic inflammation, gut permeability, and gut bacterial diversity/richness. The objective of this study was to analyse the effects of HIV infection per se and INSTIs on salivary bacteriome composition, taking into consideration other factors such as smoking, that could also have a significant impact on oral microbiome. To accomplish this objective, 26 non-HIV-infected volunteers and 30 HIV-infected patients (15 naive and 15 under INSTIs-regimen) were recruited. Salivary samples were collected to measure lysozyme levels. Oral bacteriome composition was analysed using 16S rRNA gene sequencing. Naive HIV-infected patients showed statistically higher levels of lysozyme compared to controls (p < 0.001) and INSTIs-treated patients (p < 0.05). Our study was unable to detect differences in α nor β-diversity among the three groups analysed, although significant differences in the abundance of some bacterial taxonomical orders were detected (higher abundance in the phylum Pseudomonadota, in the order Acholeplasmatales, and in the genera Ezakiella and Acholeplasma in the naive group compared to controls; and higher abundance in the phylum Mycoplasmatota, in the order Acholeplasmatales, and in the genera Acholeplasma and uncultured Eubacteriaceae bacterium in the INTIs-treated HIV-infected patients compared to controls). These differences seem to be partially independent of smoking habit. HIV infection and INSTIs effects on oral microbiota seem not to be very potent, probably due to the modulation of other factors such as smoking and the greatest outward exposure of the oral cavity.
Collapse
Affiliation(s)
- Pablo Villoslada-Blanco
- Infectious Diseases, Microbiota and Metabolism Unit, Infectious Diseases Department, Center for Biomedical Research of La Rioja (CIBIR), C/Piqueras 98, CIBIR Building, Third Floor, 26006, Logroño, La Rioja, Spain
| | - Patricia Pérez-Matute
- Infectious Diseases, Microbiota and Metabolism Unit, Infectious Diseases Department, Center for Biomedical Research of La Rioja (CIBIR), C/Piqueras 98, CIBIR Building, Third Floor, 26006, Logroño, La Rioja, Spain.
| | - Emma Recio-Fernández
- Infectious Diseases, Microbiota and Metabolism Unit, Infectious Diseases Department, Center for Biomedical Research of La Rioja (CIBIR), C/Piqueras 98, CIBIR Building, Third Floor, 26006, Logroño, La Rioja, Spain
| | - María Íñiguez
- Infectious Diseases, Microbiota and Metabolism Unit, Infectious Diseases Department, Center for Biomedical Research of La Rioja (CIBIR), C/Piqueras 98, CIBIR Building, Third Floor, 26006, Logroño, La Rioja, Spain
| | | | - Luis Metola
- Infectious Diseases Department, Hospital Universitario San Pedro, Logroño, La Rioja, Spain
| | - Valvanera Ibarra
- Infectious Diseases Department, Hospital Universitario San Pedro, Logroño, La Rioja, Spain
| | - Jorge Alba
- Infectious Diseases Department, Hospital Universitario San Pedro, Logroño, La Rioja, Spain
| | - María de Toro
- Genomics and Bioinformatics Platform, Center for Biomedical Research of La Rioja (CIBIR), Logroño, La Rioja, Spain
| | - José A Oteo
- Infectious Diseases, Microbiota and Metabolism Unit, Infectious Diseases Department, Center for Biomedical Research of La Rioja (CIBIR), C/Piqueras 98, CIBIR Building, Third Floor, 26006, Logroño, La Rioja, Spain
- Infectious Diseases Department, Hospital Universitario San Pedro, Logroño, La Rioja, Spain
| |
Collapse
|
3
|
Arumugam T, Ramphal U, Adimulam T, Chinniah R, Ramsuran V. Deciphering DNA Methylation in HIV Infection. Front Immunol 2021; 12:795121. [PMID: 34925380 PMCID: PMC8674454 DOI: 10.3389/fimmu.2021.795121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
With approximately 38 million people living with HIV/AIDS globally, and a further 1.5 million new global infections per year, it is imperative that we advance our understanding of all factors contributing to HIV infection. While most studies have focused on the influence of host genetic factors on HIV pathogenesis, epigenetic factors are gaining attention. Epigenetics involves alterations in gene expression without altering the DNA sequence. DNA methylation is a critical epigenetic mechanism that influences both viral and host factors. This review has five focal points, which examines (i) fluctuations in the expression of methylation modifying factors upon HIV infection (ii) the effect of DNA methylation on HIV viral genes and (iii) host genome (iv) inferences from other infectious and non-communicable diseases, we provide a list of HIV-associated host genes that are regulated by methylation in other disease models (v) the potential of DNA methylation as an epi-therapeutic strategy and biomarker. DNA methylation has also been shown to serve as a robust therapeutic strategy and precision medicine biomarker against diseases such as cancer and autoimmune conditions. Despite new drugs being discovered for HIV, drug resistance is a problem in high disease burden settings such as Sub-Saharan Africa. Furthermore, genetic therapies that are under investigation are irreversible and may have off target effects. Alternative therapies that are nongenetic are essential. In this review, we discuss the potential role of DNA methylation as a novel therapeutic intervention against HIV.
Collapse
Affiliation(s)
- Thilona Arumugam
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Upasana Ramphal
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Theolan Adimulam
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Romona Chinniah
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
4
|
Weinberg A, Tugizov S, Pandiyan P, Jin G, Rakshit S, Vyakarnam A, Naglik JR. Innate immune mechanisms to oral pathogens in oral mucosa of HIV-infected individuals. Oral Dis 2020; 26 Suppl 1:69-79. [PMID: 32862519 PMCID: PMC7570967 DOI: 10.1111/odi.13470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A crucial aspect of mucosal HIV transmission is the interaction between HIV, the local environmental milieu and immune cells. The oral mucosa comprises many host cell types including epithelial cells, CD4 + T cells, dendritic cells and monocytes/macrophages, as well as a diverse microbiome predominantly comprising bacterial species. While the oral epithelium is one of the first sites exposed to HIV through oral-genital contact and nursing infants, it is largely thought to be resistant to HIV transmission via mechanisms that are still unclear. HIV-1 infection is also associated with predisposition to secondary infections, such as tuberculosis, and other diseases including cancer. This review addresses the following questions that were discussed at the 8th World Workshop on Oral Health and Disease in AIDS held in Bali, Indonesia, 13 September –15 September 2019: (a) How does HIV infection affect epithelial cell signalling? (b) How does HIV infection affect the production of cytokines and other innate antimicrobial factors, (c) How is the mucosal distribution and function of immune cells altered in HIV infection? (d) How do T cells affect HIV (oral) pathogenesis and cancer? (e) How does HIV infection lead to susceptibility to TB infections?
Collapse
Affiliation(s)
- Aaron Weinberg
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sharof Tugizov
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ge Jin
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Srabanti Rakshit
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Annapurna Vyakarnam
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
5
|
Ayala-Suárez R, Díez-Fuertes F, Calonge E, De La Torre Tarazona HE, Gracia-Ruíz de Alda M, Capa L, Alcamí J. Insight in miRNome of Long-Term Non-Progressors and Elite Controllers Exposes Potential RNAi Role in Restraining HIV-1 Infection. J Clin Med 2020; 9:jcm9082452. [PMID: 32751854 PMCID: PMC7464121 DOI: 10.3390/jcm9082452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/17/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
Long-term non-progressors (LTNP) and elite controllers (EC) represent spontaneous natural models of efficient HIV-1 response in the absence of treatment. The main purposes of this work are to describe the miRNome of HIV-1 infected patients with different extreme phenotypes and identify potentially altered pathways regulated by differentially expressed (DE) miRNAs. The miRNomes from peripheral blood mononuclear cells (PBMCs) of dual phenotype EC-LTNP or LTNP with detectable viremia and HIV-infected patients with typical progression before and after treatment, were obtained through miRNA-Seq and compared among them. The administration of treatment produces 18 DE miRNAs in typical progressors. LTNP condition shows 14 DE miRNA when compared to typical progressors, allowing LTNP phenotype differentiation. A set of four miRNAs: miR-144-3p, miR-18a-5p, miR-451a, and miR-324 is strongly downregulated in LTNP and related to protein regulation as AKT, mTOR, ERK or IKK, involved in immune response pathways. Deregulation of 28 miRNA is observed between EC-LTNP and viremic-LTNP, including previously described anti-HIV miRNAs: miR-29a, associated with LTNP phenotype, and miR-155, targeting different pre-integration complexes such as ADAM10 and TNPO3. A holistic perspective of the changes observed in the miRNome of patients with different phenotypes of HIV-control and non-progression is provided.
Collapse
Affiliation(s)
- Rubén Ayala-Suárez
- AIDS Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain; (R.A.-S.); (E.C.); (H.E.D.L.T.T.); (L.C.)
| | - Francisco Díez-Fuertes
- AIDS Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain; (R.A.-S.); (E.C.); (H.E.D.L.T.T.); (L.C.)
- HIV Unit, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Correspondence: (F.D.-F.); (J.A.); Tel.: +34-91-822-3234 (F.D.-F.); +34-91-822-3943 (J.A.)
| | - Esther Calonge
- AIDS Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain; (R.A.-S.); (E.C.); (H.E.D.L.T.T.); (L.C.)
| | - Humberto Erick De La Torre Tarazona
- AIDS Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain; (R.A.-S.); (E.C.); (H.E.D.L.T.T.); (L.C.)
| | - María Gracia-Ruíz de Alda
- Sección de Enfermedades Infecciosas, Medicina Interna, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain;
| | - Laura Capa
- AIDS Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain; (R.A.-S.); (E.C.); (H.E.D.L.T.T.); (L.C.)
| | - José Alcamí
- AIDS Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain; (R.A.-S.); (E.C.); (H.E.D.L.T.T.); (L.C.)
- HIV Unit, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Correspondence: (F.D.-F.); (J.A.); Tel.: +34-91-822-3234 (F.D.-F.); +34-91-822-3943 (J.A.)
| |
Collapse
|
6
|
Oral and Gut Microbial Diversity and Immune Regulation in Patients with HIV on Antiretroviral Therapy. mSphere 2020; 5:5/1/e00798-19. [PMID: 32024712 PMCID: PMC7002309 DOI: 10.1128/msphere.00798-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A feedback loop between dysbiotic gut microbiota, increased translocation of microbial products such as lipopolysaccharide, and inflammation has been hypothesized to cause immune system dysfunction in early HIV infection. However, despite evidence of a chronic inflammatory phenotype in patients on antiretroviral therapy (ART), the role of oral microbiota in systemic immune activation and the relationship between oral and gut bacterial and fungal diversity have not been explored. Our study suggests a crucial role for oral bacterial and fungal communities in long-term systemic immune activation in patients on ART, expanding the current paradigm focused on gut bacteria. Our results indicate that interventions targeting both inflammation and microbial diversity are needed to mitigate oral inflammation-related comorbidities, particularly in HIV-positive patients. More broadly, these findings can bolster general models of microbiome-mediated chronic systemic immune activation and aid the development of precise microbiota-targeted interventions to reverse chronic inflammation. Despite evidence of a chronic inflammatory phenotype in people living with HIV (PLWH) on antiretroviral therapy (ART), the role of oral microbiota in chronic immune activation has not been fully explored. We aimed to determine the relationship between oral and gut microbiome diversity and chronic systemic inflammation in ART-treated PLWH with prevalent severe periodontitis, an inflammatory condition commonly associated with HIV infection. We assessed bacterial and fungal communities at oral and gastrointestinal sites in a cohort (n = 52) of primarily postmenopausal women on ART using 16S rRNA and internal transcribed spacer (ITS) sequencing and measured cellular and soluble markers of inflammation and immune dysfunction. Linear mixed-effect regression and differential abundance analyses were used to associate clinical characteristics and immunological markers with bacterial and fungal diversity and community composition. Bacterial α-diversity in plaque, saliva, and gut was associated with different immunological markers, while mycobial diversity was not associated with soluble or cellular biomarkers of immune stimulation or T cell dysfunction. Furthermore, lipopolysaccharide-positive (LPS+) bacteria previously linked to inflammatory outcomes were enriched at oral sites in patients with severe periodontitis. Fungal α-diversity was reduced in plaque from teeth with higher clinical attachment loss, a marker of periodontitis, and in saliva and plaque from patients with a history of AIDS. Our results show that both bacterial and fungal oral microbiome communities likely play a role in chronic systemic immune activation in PLWH. Thus, interventions targeting both inflammation and the microbiome, particularly in the oral cavity, may be necessary to reduce chronic immune dysregulation in patients with HIV. IMPORTANCE A feedback loop between dysbiotic gut microbiota, increased translocation of microbial products such as lipopolysaccharide, and inflammation has been hypothesized to cause immune system dysfunction in early HIV infection. However, despite evidence of a chronic inflammatory phenotype in patients on antiretroviral therapy (ART), the role of oral microbiota in systemic immune activation and the relationship between oral and gut bacterial and fungal diversity have not been explored. Our study suggests a crucial role for oral bacterial and fungal communities in long-term systemic immune activation in patients on ART, expanding the current paradigm focused on gut bacteria. Our results indicate that interventions targeting both inflammation and microbial diversity are needed to mitigate oral inflammation-related comorbidities, particularly in HIV-positive patients. More broadly, these findings can bolster general models of microbiome-mediated chronic systemic immune activation and aid the development of precise microbiota-targeted interventions to reverse chronic inflammation.
Collapse
|
7
|
Chen L, Zhang S, Pan X, Hu X, Zhang YH, Yuan F, Huang T, Cai YD. HIV infection alters the human epigenetic landscape. Gene Ther 2018; 26:29-39. [PMID: 30443044 DOI: 10.1038/s41434-018-0051-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 02/07/2023]
Abstract
Many complex diseases or traits are the results of both genetic and environmental factors. The environmental factors affect the human body by modifying its epigenetics, which controls the activity of genomes without mutating it. Viral infection is one of the common environmental factors for complex diseases. For example, the human immunodeficiency virus (HIV) infection can cause acquired immune deficiency syndrome (AIDS), HBV, and HCV infections are associated with hepatocellular carcinoma, and human papillomavirus infection is a causal factor in cervical carcinoma. In this study, to investigate how HIV infection affects DNA methylation, we analyzed the blood DNA methylation data of 485 512 sites in 44 HIV- and 142 HIV + patients. Several advanced computational methods were applied to identify the core distinctive features that were different between the HIV patients and the healthy controls. These methods can be used for differentiating HIV-infected patients from uninfected ones. These core distinctive DNA methylation features were confirmed to be functionally connected to premature aging and abnormal immune regulation, two typical pathological symptoms of HIV infection, revealing the potential regulatory mechanisms of HIV infection on the DNA methylation status of the host cells and provided novel insights on the pathogenesis of HIV infection and AIDS.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.,Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai, 200241, China.,College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Shiqi Zhang
- Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Xiaoyong Pan
- Department of Medical Informatics, Erasmus MC, Rotterdam, Netherlands
| | - XiaoHua Hu
- Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fei Yuan
- Department of Science & Technology, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
8
|
Boehm D, Ott M. Host Methyltransferases and Demethylases: Potential New Epigenetic Targets for HIV Cure Strategies and Beyond. AIDS Res Hum Retroviruses 2017; 33:S8-S22. [PMID: 29140109 DOI: 10.1089/aid.2017.0180] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A successful HIV cure strategy may require reversing HIV latency to purge hidden viral reservoirs or enhancing HIV latency to permanently silence HIV transcription. Epigenetic modifying agents show promise as antilatency therapeutics in vitro and ex vivo, but also affect other steps in the viral life cycle. In this review, we summarize what we know about cellular DNA and protein methyltransferases (PMTs) as well as demethylases involved in HIV infection. We describe the biology and function of DNA methyltransferases, and their controversial role in HIV infection. We further explain the biology of PMTs and their effects on lysine and arginine methylation of histone and nonhistone proteins. We end with a focus on protein demethylases, their unique modes of action and their emerging influence on HIV infection. An outlook on the use of methylation-modifying agents in investigational HIV cure strategies is provided.
Collapse
Affiliation(s)
- Daniela Boehm
- Gladstone Institute of Virology and Immunology, San Francisco, California
- Department of Medicine, University of California, San Francisco, California
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, California
- Department of Medicine, University of California, San Francisco, California
| |
Collapse
|
9
|
Nittayananta W, Weinberg A, Malamud D, Moyes D, Webster-Cyriaque J, Ghosh S. Innate immunity in HIV-1 infection: epithelial and non-specific host factors of mucosal immunity- a workshop report. Oral Dis 2017; 22 Suppl 1:171-80. [PMID: 27109285 DOI: 10.1111/odi.12451] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The interplay between HIV-1 and epithelial cells represents a critical aspect in mucosal HIV-1 transmission. Epithelial cells lining the oral cavity cover subepithelial tissues, which contain virus-susceptible host cells including CD4(+) T lymphocytes, monocytes/macrophages, and dendritic cells. Oral epithelia are among the sites of first exposure to both cell-free and cell-associated virus HIV-1 through breast-feeding and oral-genital contact. However, oral mucosa is considered to be naturally resistant to HIV-1 transmission. Oral epithelial cells have been shown to play a crucial role in innate host defense. Nevertheless, it is not clear to what degree these local innate immune factors contribute to HIV-1 resistance of the oral mucosa. This review paper addressed the following issues that were discussed at the 7th World Workshop on Oral Health and Disease in AIDS held in Hyderabad, India, during November 6-9, 2014: (i) What is the fate of HIV-1 after interactions with oral epithelial cells?; (ii) What are the keratinocyte and other anti-HIV effector oral factors, and how do they contribute to mucosal protection?; (iii) How can HIV-1 interactions with oral epithelium affect activation and populations of local immune cells?; (iv) How can HIV-1 interactions alter functions of oral epithelial cells?
Collapse
Affiliation(s)
- W Nittayananta
- Excellent Research Laboratory, Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand.,Natural Products Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - A Weinberg
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - D Malamud
- Department of Basic Science, NYU College of Dentistry, New York, NY, USA
| | - D Moyes
- Mucosal and Salivary Biology Division, King's College Dental Institute, King's College, London, UK
| | - J Webster-Cyriaque
- University of North Carolina Chapel Hill Schools of Dentistry and Medicine, Chapel Hill, NC, USA
| | - S Ghosh
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
10
|
Rosca A, Anton G, Ene L, Iancu I, Temereanca A, Achim CL, Ruta SM. Immunoassay and molecular methods to investigate DNA methylation changes in peripheral blood mononuclear cells in HIV infected patients on cART. J Immunoassay Immunochem 2016; 38:299-307. [PMID: 27854146 PMCID: PMC5679203 DOI: 10.1080/15321819.2016.1260587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This study aimed to investigate the influence of antiretroviral therapy on methylation markers, in a group of HIV infected, heavily treated patients. Immune and molecular methods were used to investigate potential changes in methylation profile in DNA isolated from peripheral blood mononuclear cells collected from antiretroviral-experienced HIV infected patients and healthy controls. The percentage of 5-methylcytosine was inversely correlated with proviral DNA and active replication while DNMT1 (p = 0.01) and DNMT3A (p = 0.004) independently correlated with active viral replication. DNMT3A expression increased with total treatment duration (p = 0.03), number of antiretroviral drugs ever used (p = 0.003), and cumulative exposure to protease inhibitors (p = 0.02) even in currently HIV undetectable patients.
Collapse
Affiliation(s)
- Adelina Rosca
- a Department of Virology , Carol Davila University of Medicine and Pharmacy , Bucharest , Romania
- b Emerging Viral Diseases Department , Stefan S. Nicolau Virology Institute , Bucharest , Romania
| | - Gabriela Anton
- b Emerging Viral Diseases Department , Stefan S. Nicolau Virology Institute , Bucharest , Romania
| | - Luminita Ene
- c Infectious Diseases Department , Victor Babes Hospital for Infectious and Tropical Diseases , Bucharest , Romania
| | - Iulia Iancu
- b Emerging Viral Diseases Department , Stefan S. Nicolau Virology Institute , Bucharest , Romania
| | - Aura Temereanca
- a Department of Virology , Carol Davila University of Medicine and Pharmacy , Bucharest , Romania
- b Emerging Viral Diseases Department , Stefan S. Nicolau Virology Institute , Bucharest , Romania
| | - Cristian L Achim
- d Department of Psychiatry , University of California , San Diego , California
| | - Simona M Ruta
- a Department of Virology , Carol Davila University of Medicine and Pharmacy , Bucharest , Romania
- b Emerging Viral Diseases Department , Stefan S. Nicolau Virology Institute , Bucharest , Romania
| |
Collapse
|
11
|
Pandiyan P, Younes SA, Ribeiro SP, Talla A, McDonald D, Bhaskaran N, Levine AD, Weinberg A, Sekaly RP. Mucosal Regulatory T Cells and T Helper 17 Cells in HIV-Associated Immune Activation. Front Immunol 2016; 7:228. [PMID: 27379092 PMCID: PMC4913236 DOI: 10.3389/fimmu.2016.00228] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/26/2016] [Indexed: 12/12/2022] Open
Abstract
Residual mucosal inflammation along with chronic systemic immune activation is an important feature in individuals infected with human immunodeficiency virus (HIV), and has been linked to a wide range of co-morbidities, including malignancy, opportunistic infections, immunopathology, and cardiovascular complications. Although combined antiretroviral therapy (cART) can reduce plasma viral loads to undetectable levels, reservoirs of virus persist, and increased mortality is associated with immune dysbiosis in mucosal lymphoid tissues. Immune-based therapies are pursued with the goal of improving CD4(+) T-cell restoration, as well as reducing chronic immune activation in cART-treated patients. However, the majority of research on immune activation has been derived from analysis of circulating T cells. How immune cell alterations in mucosal tissues contribute to HIV immune dysregulation and the associated risk of non-infectious chronic complications is less studied. Given the significant differences between mucosal T cells and circulating T cells, and the immediate interactions of mucosal T cells with the microbiome, more attention should be devoted to mucosal immune cells and their contribution to systemic immune activation in HIV-infected individuals. Here, we will focus on mucosal immune cells with a specific emphasis on CD4(+) T lymphocytes, such as T helper 17 cells and CD4(+)Foxp3(+) regulatory T cells (Tregs), which play crucial roles in maintaining mucosal barrier integrity and preventing inflammation, respectively. We hypothesize that pro-inflammatory milieu in cART-treated patients with immune activation significantly contributes to enhanced loss of Th17 cells and increased frequency of dysregulated Tregs in the mucosa, which in turn may exacerbate immune dysfunction in HIV-infected patients. We also present initial evidence to support this hypothesis. A better comprehension of how pro-inflammatory milieu impacts these two types of cells in the mucosa will shed light on mucosal immune dysfunction and HIV reservoirs, and lead to novel ways to restore immune functions in HIV(+) patients.
Collapse
Affiliation(s)
- Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Souheil-Antoine Younes
- Department of Medicine, Division of Infectious Diseases, University Hospitals, Case Western Reserve University, Cleveland, OH, USA
| | | | - Aarthi Talla
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - David McDonald
- Department of Microbiology and Molecular Biology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Natarajan Bhaskaran
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Alan D. Levine
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Aaron Weinberg
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Rafick P. Sekaly
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
12
|
Vernon LT, Jayashantha P, Chidzonga MM, Komesu MC, Nair RG, Johnson NW. Comorbidities associated with HIV and antiretroviral therapy (clinical sciences): a workshop report. Oral Dis 2016; 22 Suppl 1:135-48. [PMID: 27109282 PMCID: PMC5986297 DOI: 10.1111/odi.12412] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 10/23/2015] [Accepted: 10/24/2015] [Indexed: 12/23/2022]
Abstract
In the era of combination antiretroviral therapy (ART), parsing out the effects of HIV vs ART on health outcomes is challenging. Nadir CD4 count, a marker of the extent of immunosuppression, has significant long-term impact on an array of disease states in HIV+ persons; however, in the dental literature, reporting of pre-ART exposure to immunosuppression has largely been ignored and this limits the validity of previous studies. In Workshop A1, we explain fully the importance of nadir CD4, pre-ART immunosuppression, and identify a need to include specific variables in future research. The questions posed herein are challenging, typically not neatly addressed by any one study and require integration of the latest evidence from the wider medical literature. We consider topics beyond the confines of the oral cavity and examine oral health in the complex context of ART era HIV immunopathophysiology. We depict how variability in geographic setting and time period (pre- and post-ART era) can impact oral conditions - influencing when HIV infection was detected (at what CD4 count), the type and timing of ART as well as social determinants such as strong stigma and limited access to care. We hope our Workshop will stir debate and energize a rigorous focus on relevant areas of future research in HIV/AIDS.
Collapse
Affiliation(s)
- L T Vernon
- Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, OH, USA
| | - Plp Jayashantha
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Qld, Australia and Dental Hospital, and Sri Lanka Air Force Station Colombo, Sri Lanka, Australia
| | - M M Chidzonga
- College of Health Sciences, University of Zimbabwe, Avondale, Harare, Zimbabwe
| | - M C Komesu
- Department of Morphology, Stomatology Physiology, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - R G Nair
- Oral Medicine, School of Dentistry and Oral Health, Griffith University, Gold Coast, Qld, Australia and Cancer Services, Gold Coast University Hospital, Queensland Health, Qld, Autralia, Australia
| | - N W Johnson
- Menzies Health Institute, Griffith University, Gold Coast, Qld, Australia
| |
Collapse
|
13
|
Singh NN, Peer A, Nair S, Chaturvedi RK. Epigenetics: A possible answer to the undeciphered etiopathogenesis and behavior of oral lesions. J Oral Maxillofac Pathol 2016; 20:122-8. [PMID: 27194874 PMCID: PMC4860913 DOI: 10.4103/0973-029x.180967] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 03/10/2016] [Indexed: 01/07/2023] Open
Abstract
Much controversy has existed over the etiopathogenesis and management of oral lesions, especially oral malignancies. The knowledge of genetic basis is proving to be inadequate in the light of emerging new mechanisms termed epigenetic phenomena. The present review article aims to understand the role of epigenetic mechanisms in oral lesions. Epigenetics is the study of acquired changes in chromatin structure that arise independently of a change in the underlying deoxyribonucleic acid (DNA) nucleotide sequence. Key components involved in epigenetic regulation are DNA methylation, histone modifications and modifications in micro ribonucleic acids (miRNA). Epigenetics is a reversible system that can be affected by various environmental factors such as diet, drugs, mental stress, physical activity and addictive substances such as tobacco, nicotine and alcohol. Epigenetics may also play a role in explaining the etiopathogenesis of developmental anomalies, genetic defects, cancer as well as substance addiction (tobacco, cigarette and alcohol). Epigenetic modifications may contribute to aberrant epigenetic mechanisms seen in oral precancers and cancers. In the near future, epigenetic variations found in oral dysplastic cells can act as a molecular fingerprint for malignancies. The literature in English language was searched and a structured scientific review and meta-analysis of scientific publications from the year 2000 to year 2015 was carried out from various journals. It was observed that epigenetic marks can prove to be novel markers for early diagnosis, prognosis and treatment of oral cancers as well as other oral diseases.
Collapse
Affiliation(s)
- Narendra Nath Singh
- Department of Oral Pathology and Microbiology, Kothiwal Dental College and Research Center, Moradabad, Uttar Pradesh, India
| | - Aakanksha Peer
- Department of Oral Pathology and Microbiology, Kothiwal Dental College and Research Center, Moradabad, Uttar Pradesh, India
| | - Sherin Nair
- Department of Oral Pathology and Microbiology, Kothiwal Dental College and Research Center, Moradabad, Uttar Pradesh, India
| | - Rupesh K Chaturvedi
- Department of Oral Pathology and Microbiology, Kothiwal Dental College and Research Center, Moradabad, Uttar Pradesh, India
| |
Collapse
|
14
|
Russo LM, Abdeltawab NF, O’Brien AD, Kotb M, Melton-Celsa AR. Mapping of genetic loci that modulate differential colonization by Escherichia coli O157:H7 TUV86-2 in advanced recombinant inbred BXD mice. BMC Genomics 2015; 16:947. [PMID: 26573818 PMCID: PMC4647490 DOI: 10.1186/s12864-015-2127-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/22/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Shiga toxin (Stx)-producing E. coli (STEC) are responsible for foodborne outbreaks that can result in severe human disease. During an outbreak, differential disease outcomes are observed after infection with the same STEC strain. One question of particular interest is why some infected people resolve infection after hemorrhagic colitis whereas others progress to the hemolytic uremic syndrome (HUS). Host age and infection dose have been implicated; however, these parameters do not appear to fully account for all of the observed variation in disease severity. Therefore, we hypothesized that additional host genetic factors may play a role in progression to HUS. METHODS AND RESULTS To mimic the genetic diversity in the human response to infection by STEC, we measured the capacity of an O157:H7 outbreak isolate to colonize mouse strains from the advanced recombinant inbred (ARI) BXD panel. We first infected the BXD parental strains C57BL/6 J (B6) and DBA/2 J (D2) with either 86-24 (Stx2a+) or TUV86-2, an Stx2a-negative isogenic mutant. Colonization levels were determined in an intact commensal flora (ICF) infection model. We found a significant difference in colonization levels between the parental B6 and D2 strains after infection with TUV86-2 but not with 86-24. This observation suggested that a host factor that may be masked by Stx2a affects O157:H7 colonization in some genetic backgrounds. We then determined the TUV86-2 colonization levels of 24 BXD strains in the ICF model. We identified several quantitative trait loci (QTL) associated with variation in colonization by correlation analyses. We found a highly significant QTL on proximal chromosome 9 (12.5-26.7 Mb) that strongly predicts variation in colonization levels and accounts for 15-20 % of variance. Linkage, polymorphism and co-citation analyses of the mapped region revealed 36 candidate genes within the QTL, and we identified five genes that are most likely responsible for the differential colonization. CONCLUSIONS The identification of the QTL on chromosome 9 supports our hypothesis that individual genetic makeup affects the level of colonization after infection with STEC O157:H7.
Collapse
Affiliation(s)
- Lisa M. Russo
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD USA
| | - Nourtan F. Abdeltawab
- University of Cincinnati College of Medicine & Cincinnati VA Medical Center, Cincinnati, OH USA ,Department Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Alison D. O’Brien
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD USA
| | - Malak Kotb
- University of Cincinnati College of Medicine & Cincinnati VA Medical Center, Cincinnati, OH USA ,Department of Basic Biomedical Sciences, University of North Dakota, Grand Forks, ND USA
| | - Angela R. Melton-Celsa
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD USA
| |
Collapse
|
15
|
Luzzi A, Morettini F, Gazaneo S, Mundo L, Onnis A, Mannucci S, Rogena EA, Bellan C, Leoncini L, De Falco G. HIV-1 Tat induces DNMT over-expression through microRNA dysregulation in HIV-related non Hodgkin lymphomas. Infect Agent Cancer 2014; 9:41. [PMID: 25705251 PMCID: PMC4334912 DOI: 10.1186/1750-9378-9-41] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/14/2014] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND A close association between HIV infection and the development of cancer exists. Although the advent of highly active antiretroviral therapy has changed the epidemiology of AIDS-associated malignancies, a better understanding on how HIV can induce malignant transformation will help the development of novel therapeutic agents. METHODS HIV has been reported to induce the expression of DNMT1 in vitro, but still no information is available about the mechanisms regulating DNMT expression in HIV-related B-cell lymphomas. In this paper, we investigated the expression of DNMT family members (DNMT1, DNMT3a/b) in primary cases of aggressive B-cell lymphomas of HIV-positive subjects. RESULTS Our results confirmed the activation of DNMT1 by HIV in vivo, and reported for the first time a marked up-regulation of DNMT3a and DNMT3b in HIV-positive aggressive B-cell lymphomas. DNMT up-regulation in HIV-positive tumors correlated with down-regulation of specific microRNAs, as the miR29 family, the miR148-152 cluster, known to regulate their expression. Literature reports the activation of DNMTs by the human polyomavirus BKV large T-antigen and adenovirus E1a, through the pRb/E2F pathway. We have previously demonstrated that the HIV Tat protein is able to bind to the pocket proteins and to inactivate their oncosuppressive properties, resulting in uncontrolled cell proliferation. Therefore, we focused on the role of Tat, due to its capability to be released from infected cells and to dysregulate uninfected ones, using an in vitro model in which Tat was ectopically expressed in B-cells. CONCLUSIONS Our findings demonstrated that the ectopic expression of Tat was per se sufficient to determine DNMT up-regulation, based on microRNA down-regulation, and that this results in aberrant hypermethylation of target genes and microRNAs. These results point at a direct role for Tat in participating in uninfected B-cell lymphomagenesis, through dysregulation of the epigenetical control of gene expression.
Collapse
Affiliation(s)
- Anna Luzzi
- />Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Federica Morettini
- />Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Sara Gazaneo
- />Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Lucia Mundo
- />Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Anna Onnis
- />Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Susanna Mannucci
- />Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Emily A Rogena
- />Department of Medical Biotechnologies, University of Siena, Siena, Italy
- />Department of Pathology, University of Nairobi, Nairobi, Kenya
| | - Cristiana Bellan
- />Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Lorenzo Leoncini
- />Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Giulia De Falco
- />Department of Medical Biotechnologies, University of Siena, Siena, Italy
- />School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
16
|
Abstract
The success of combination antiretroviral therapy (cART) in transforming the lives of HIV-infected individuals with access to these drugs is tempered by the increasing threat of HIV-associated neurocognitive disorders (HAND) to their overall health and quality of life. Intensive investigations over the past two decades have underscored the role of host immune responses, inflammation, and monocyte-derived macrophages in HAND, but the precise pathogenic mechanisms underlying HAND remain only partially delineated. Complicating research efforts and therapeutic drug development are the sheer complexity of HAND phenotypes, diagnostic imprecision, and the growing intersection of chronic immune activation with aging-related comorbidities. Yet, genetic studies still offer a powerful means of advancing individualized care for HIV-infected individuals at risk. There is an urgent need for 1) longitudinal studies using consistent phenotypic definitions of HAND in HIV-infected subpopulations at very high risk of being adversely impacted, such as children, 2) tissue studies that correlate neuropathological changes in multiple brain regions with genomic markers in affected individuals and with changes at the RNA, epigenomic, and/or protein levels, and 3) genetic association studies using more sensitive subphenotypes of HAND. The NIH Brain Initiative and Human Connectome Project, coupled with rapidly evolving systems biology and machine learning approaches for analyzing high-throughput genetic, transcriptomic and epigenetic data, hold promise for identifying actionable biological processes and gene networks that underlie HAND. This review summarizes the current state of understanding of host genetic factors predisposing to HAND in light of past challenges and suggests some priorities for future research to advance the understanding and clinical management of HAND in the cART era.
Collapse
Affiliation(s)
- Asha R Kallianpur
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue/Mail Code NE50, Cleveland, OH, 44195, USA,
| | | |
Collapse
|