1
|
Mannavola F, D’Oronzo S, Cives M, Stucci LS, Ranieri G, Silvestris F, Tucci M. Extracellular Vesicles and Epigenetic Modifications Are Hallmarks of Melanoma Progression. Int J Mol Sci 2019; 21:E52. [PMID: 31861757 PMCID: PMC6981648 DOI: 10.3390/ijms21010052] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/11/2019] [Accepted: 12/18/2019] [Indexed: 12/21/2022] Open
Abstract
Cutaneous melanoma shows a high metastatic potential based on its ability to overcome the immune system's control. The mechanisms activated for these functions vary extremely and are also represented by the production of a number of extracellular vesicles including exosomes. Other vesicles showing a potential role in the melanoma progression include oncosomes and melanosomes and the majority of them mediate tumor processes including angiogenesis, immune regulation, and modifications of the micro-environment. Moreover, a number of epigenetic modifications have been described in melanoma and abundant production of altered microRNAs (mi-RNAs), non-coding RNAs, histones, and abnormal DNA methylation have been associated with different phases of melanoma progression. In addition, exosomes, miRNAs, and other molecular factors have been used as potential biomarkers reflecting disease evolution while others have been suggested to be potential druggable molecules for therapeutic application.
Collapse
Affiliation(s)
- Francesco Mannavola
- Department of Biomedical Sciences and Clinical Oncology, University of Bari, ‘Aldo Moro’, 70121 Bari, Italy; (F.M.); (S.D.); (M.C.); (L.S.S.); (F.S.)
| | - Stella D’Oronzo
- Department of Biomedical Sciences and Clinical Oncology, University of Bari, ‘Aldo Moro’, 70121 Bari, Italy; (F.M.); (S.D.); (M.C.); (L.S.S.); (F.S.)
- National Cancer Research Center, Istituto Tumori ‘Giovanni Paolo II’, 70121 Bari, Italy;
| | - Mauro Cives
- Department of Biomedical Sciences and Clinical Oncology, University of Bari, ‘Aldo Moro’, 70121 Bari, Italy; (F.M.); (S.D.); (M.C.); (L.S.S.); (F.S.)
| | - Luigia Stefania Stucci
- Department of Biomedical Sciences and Clinical Oncology, University of Bari, ‘Aldo Moro’, 70121 Bari, Italy; (F.M.); (S.D.); (M.C.); (L.S.S.); (F.S.)
| | - Girolamo Ranieri
- National Cancer Research Center, Istituto Tumori ‘Giovanni Paolo II’, 70121 Bari, Italy;
| | - Franco Silvestris
- Department of Biomedical Sciences and Clinical Oncology, University of Bari, ‘Aldo Moro’, 70121 Bari, Italy; (F.M.); (S.D.); (M.C.); (L.S.S.); (F.S.)
| | - Marco Tucci
- Department of Biomedical Sciences and Clinical Oncology, University of Bari, ‘Aldo Moro’, 70121 Bari, Italy; (F.M.); (S.D.); (M.C.); (L.S.S.); (F.S.)
- National Cancer Research Center, Istituto Tumori ‘Giovanni Paolo II’, 70121 Bari, Italy;
| |
Collapse
|
2
|
León-Letelier RA, Bonifaz LC, Fuentes-Pananá EM. OMIC signatures to understand cancer immunosurveillance and immunoediting: Melanoma and immune cells interplay in immunotherapy. J Leukoc Biol 2019; 105:915-933. [PMID: 30698862 DOI: 10.1002/jlb.mr0618-241rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/24/2018] [Accepted: 12/29/2018] [Indexed: 12/15/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer. Cutaneous melanomas usually originate from exposure to the mutagenic effects of ultraviolet radiation, and as such they exhibit the highest rate of somatic mutations than any other human cancer, and an extensive expression of neoantigens concurrently with a dense infiltrate of immune cells. The coexistence of high immunogenicity and high immune cell infiltration may sound contradictory for cancers carrying a gloomy outcome. However, recent studies have unveiled a variety of immunosuppressive mechanisms that often permeate the tumor microenvironment and that are responsible for tumor escaping from immunosurveillance mechanisms. Nonetheless, this particular immune profile has opened a new window of treatments based on immunotherapy that have significantly improved the clinical outcome of melanoma patients. Still, positive and complete therapy responses have been limited, and this particular cancer continues to be a major clinical challenge. The transcriptomic signatures of those patients with clinical benefit and those with progressive disease have provided a more complete picture of the universe of interactions between the tumor and the immune system. In this review, we integrate the results of the immunotherapy clinical trials to discuss a novel understanding of the mechanisms guiding cancer immunosurveillance and immunoediting. A clear notion of the cellular and molecular processes shaping how the immune system and the tumor are continuously coevolving would result in the rational design of combinatory therapies aiming to counteract the signaling pathways and cellular processes responsible for immunoescape mechanisms and provide clinical benefit to immunotherapy nonresponsive patients.
Collapse
Affiliation(s)
- Ricardo A León-Letelier
- Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Inmunoquímica, Ciudad de México, México
- Universidad Nacional Autónoma de México (UNAM), México Ciudad de México, México
| | - Laura C Bonifaz
- Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Inmunoquímica, Ciudad de México, México
| | - Ezequiel M Fuentes-Pananá
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| |
Collapse
|
3
|
Marathe HG, Watkins-Chow DE, Weider M, Hoffmann A, Mehta G, Trivedi A, Aras S, Basuroy T, Mehrotra A, Bennett DC, Wegner M, Pavan WJ, de la Serna IL. BRG1 interacts with SOX10 to establish the melanocyte lineage and to promote differentiation. Nucleic Acids Res 2017; 45:6442-6458. [PMID: 28431046 PMCID: PMC5499657 DOI: 10.1093/nar/gkx259] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/04/2017] [Indexed: 12/30/2022] Open
Abstract
Mutations in SOX10 cause neurocristopathies which display varying degrees of hypopigmentation. Using a sensitized mutagenesis screen, we identified Smarca4 as a modifier gene that exacerbates the phenotypic severity of Sox10 haplo-insufficient mice. Conditional deletion of Smarca4 in SOX10 expressing cells resulted in reduced numbers of cranial and ventral trunk melanoblasts. To define the requirement for the Smarca4 -encoded BRG1 subunit of the SWI/SNF chromatin remodeling complex, we employed in vitro models of melanocyte differentiation in which induction of melanocyte-specific gene expression is closely linked to chromatin alterations. We found that BRG1 was required for expression of Dct, Tyrp1 and Tyr, genes that are regulated by SOX10 and MITF and for chromatin remodeling at distal and proximal regulatory sites. SOX10 was found to physically interact with BRG1 in differentiating melanocytes and binding of SOX10 to the Tyrp1 distal enhancer temporally coincided with recruitment of BRG1. Our data show that SOX10 cooperates with MITF to facilitate BRG1 binding to distal enhancers of melanocyte-specific genes. Thus, BRG1 is a SOX10 co-activator, required to establish the melanocyte lineage and promote expression of genes important for melanocyte function.
Collapse
Affiliation(s)
- Himangi G Marathe
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3035 Arlington Ave, Toledo, OH 43614, USA
| | - Dawn E Watkins-Chow
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-4472, USA
| | - Matthias Weider
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Alana Hoffmann
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Gaurav Mehta
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3035 Arlington Ave, Toledo, OH 43614, USA
| | - Archit Trivedi
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3035 Arlington Ave, Toledo, OH 43614, USA
| | - Shweta Aras
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3035 Arlington Ave, Toledo, OH 43614, USA
| | - Tupa Basuroy
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3035 Arlington Ave, Toledo, OH 43614, USA
| | - Aanchal Mehrotra
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3035 Arlington Ave, Toledo, OH 43614, USA
| | - Dorothy C Bennett
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, UK
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - William J Pavan
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-4472, USA
| | - Ivana L de la Serna
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3035 Arlington Ave, Toledo, OH 43614, USA
| |
Collapse
|
4
|
Sarkar D, Leung EY, Baguley BC, Finlay GJ, Askarian-Amiri ME. Epigenetic regulation in human melanoma: past and future. Epigenetics 2015; 10:103-21. [PMID: 25587943 PMCID: PMC4622872 DOI: 10.1080/15592294.2014.1003746] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The development and progression of melanoma have been attributed to independent or combined genetic and epigenetic events. There has been remarkable progress in understanding melanoma pathogenesis in terms of genetic alterations. However, recent studies have revealed a complex involvement of epigenetic mechanisms in the regulation of gene expression, including methylation, chromatin modification and remodeling, and the diverse activities of non-coding RNAs. The roles of gene methylation and miRNAs have been relatively well studied in melanoma, but other studies have shown that changes in chromatin status and in the differential expression of long non-coding RNAs can lead to altered regulation of key genes. Taken together, they affect the functioning of signaling pathways that influence each other, intersect, and form networks in which local perturbations disturb the activity of the whole system. Here, we focus on how epigenetic events intertwine with these pathways and contribute to the molecular pathogenesis of melanoma.
Collapse
Key Words
- 5hmC, 5-hydroxymethylcytosine
- 5mC, 5-methylcytosine
- ACE, angiotensin converting enzyme
- ANCR, anti-differentiation non-coding RNA
- ANRIL, antisense noncoding RNA in INK4 locus
- ASK1, apoptosis signal-regulating kinase 1
- ATRA, all-trans retinoic acid
- BANCR, BRAF-activated non-coding RNA
- BCL-2, B-cell lymphoma 2
- BRAF, B-Raf proto-oncogene, serine/threonine kinase
- BRG1, ATP-dependent helicase SMARCA4
- CAF-1, chromatin assembly factor-1
- CBX7, chromobox homolog 7
- CCND1, cyclin D1
- CD28, cluster of differentiation 28
- CDK, cyclin-dependent kinase
- CDKN2A/B, cyclin-dependent kinase inhibitor 2A/B
- CHD8, chromodomain-helicase DNA-binding protein 8
- CREB, cAMP response element-binding protein
- CUDR, cancer upregulated drug resistant
- Cdc6, cell division cycle 6
- DNA methylation/demethylation
- DNMT, DNA methyltransferase
- EMT, epithelial-mesenchymal transition
- ERK, extracellular signal-regulated kinase
- EZH2, enhancer of zeste homolog 2
- GPCRs, G-protein coupled receptors
- GSK3a, glycogen synthase kinase 3 α
- GWAS, genome-wide association study
- HDAC, histone deacetylase
- HOTAIR, HOX antisense intergenic RNA
- IAP, inhibitor of apoptosis
- IDH2, isocitrate dehydrogenase
- IFN, interferon, interleukin 23
- JNK, Jun N-terminal kinase
- Jak/STAT, Janus kinase/signal transducer and activator of transcription
- MAFG, v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog G
- MALAT1, metastasis-associated lung adenocarcinoma transcript 1
- MAPK, mitogen-activated protein kinase
- MC1R, melanocortin-1 receptor
- MGMT, O6-methylguanine-DNA methyltransferase
- MIF, macrophage migration inhibitory factor
- MITF, microphthalmia-associated transcription factor
- MRE, miRNA recognition element
- MeCP2, methyl CpG binding protein 2
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NOD, nucleotide-binding and oligomerization domain
- PBX, pre-B-cell leukemia homeobox
- PEDF, pigment epithelium derived factor
- PI3K, phosphatidylinositol-4, 5-bisphosphate 3-kinase
- PIB5PA, phosphatidylinositol-4, 5-biphosphate 5-phosphatase A
- PKA, protein kinase A
- PRC, polycomb repressor complex
- PSF, PTB associated splicing factor
- PTB, polypyrimidine tract-binding
- PTEN, phosphatase and tensin homolog
- RARB, retinoic acid receptor-β2
- RASSF1A, Ras association domain family 1A
- SETDB1, SET Domain, bifurcated 1
- SPRY4, Sprouty 4
- STAU1, Staufen1
- SWI/SNF, SWItch/Sucrose Non-Fermentable
- TCR, T-cell receptor
- TET, ten eleven translocase
- TGF β, transforming growth factor β
- TINCR, tissue differentiation-inducing non-protein coding RNA
- TOR, target of rapamycin
- TP53, tumor protein 53
- TRAF6, TNF receptor-associated factor 6
- UCA1, urothelial carcinoma-associated 1
- ceRNA, competitive endogenous RNAs
- chromatin modification
- chromatin remodeling
- epigenetics
- gene regulation
- lncRNA, long ncRNA
- melanoma
- miRNA, micro RNA
- ncRNA, non-coding RNA
- ncRNAs
- p14ARF, p14 alternative reading frame
- p16INK4a, p16 inhibitor of CDK4
- pRB, retinoblastoma protein
- snoRNA, small nucleolar RNA
- α-MSHm, α-melanocyte stimulating hormone
Collapse
Affiliation(s)
- Debina Sarkar
- a Auckland Cancer Society Research Center ; University of Auckland ; Auckland , New Zealand
| | | | | | | | | |
Collapse
|
5
|
Griewank KG, Scolyer RA, Thompson JF, Flaherty KT, Schadendorf D, Murali R. Genetic alterations and personalized medicine in melanoma: progress and future prospects. J Natl Cancer Inst 2014; 106:djt435. [PMID: 24511108 DOI: 10.1093/jnci/djt435] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
High-throughput sequencing technologies are providing new insights into the genetic alterations involved in melanomagenesis. It appears likely that most genetic events important in the pathogenesis of melanoma will be discovered over the next few years. Genetic analysis is also increasingly being used to direct patient care. In parallel with the discovery of new genes and the elucidation of molecular pathways important in the development of melanoma, therapies targeting these pathways are becoming available. In other words, the age of personalized medicine has arrived, characterized by molecular profiling of melanoma to identify the relevant genetic alterations and the abnormal signaling mechanisms involved, followed by selection of optimal, individualized therapies. In this review, we summarize the key genetic alterations in melanoma and the development of targeted agents against melanomas bearing specific mutations. These developments in melanoma serve as a model for the implementation of personalized medicine for patients with all cancers.
Collapse
Affiliation(s)
- Klaus G Griewank
- Affiliations of authors: Department of Dermatology, University Hospital, University Duisburg-Essen, Essen, Germany (KGG, DS); Royal Prince Alfred Hospital, Camperdown, NSW, Australia (RAS); University of Sydney, Camperdown, NSW, Australia (RAS, JFT); Melanoma Institute Australia, North Sydney, NSW, Australia (RAS, JFT); Center for Melanoma, Massachusetts General Hospital Cancer Center, Boston, MA (KTF); Department of Pathology, and Center for Molecular Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (RM)
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Therapy of malignant melanoma recently experienced remarkable advances with the introduction of two treatment regimens, gene mutation-based therapies with signaling pathway inhibitors (kinase inhibitors) and treatments with immune modulators. Both strategies prolong patients' survival but still have specific limitations, demanding the identification of additional genetic and immunological biomarkers as predictors of treatment response and prognosis. New developments in that field are summarized in this review. RECENT FINDINGS Activating oncogene mutations are important melanoma biomarkers. They predict responsiveness to kinase inhibitor therapies and have therapy independent prognostic relevance. Epigenetic alterations (DNA methylation, chromatin remodeling, and noncoding RNA) in melanoma are emerging as potentially valuable biomarkers. With the successful introduction of immunotherapies for melanoma, interest in immunological biomarkers has grown. Tumor-reactive cytotoxic T cells from patients' peripheral blood were recently proposed to predict prognosis and response to immunotherapy. A superior immune profile assessment could be achieved by combining a detailed characterization of a tumor's immune cell infiltrate with its (immune) gene signature. SUMMARY Genetic melanoma markers have already become clinically relevant. We expect both their role and that of immunological biomarkers to increase significantly in the next few years, enabling personalized therapy with optimal treatment selection for individual tumors.
Collapse
|
7
|
Ondrušová L, Vachtenheim J, Réda J, Žáková P, Benková K. MITF-independent pro-survival role of BRG1-containing SWI/SNF complex in melanoma cells. PLoS One 2013; 8:e54110. [PMID: 23349796 PMCID: PMC3547967 DOI: 10.1371/journal.pone.0054110] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 12/10/2012] [Indexed: 11/20/2022] Open
Abstract
Metastasized malignant melanoma has a poor prognosis because of its intrinsic resistance to chemotherapy and radiotherapy. The central role in the melanoma transcriptional network has the transcription factor MITF (microphthalmia-associated transcription factor). It has been shown recently that the expression of MITF and some of its target genes require the SWI/SNF chromatin remodeling complex. Here we demonstrate that survival of melanoma cells requires functional SWI/SNF complex not only by supporting expression of MITF and its targets and but also by activating expression of prosurvival proteins not directly regulated by MITF. Microarray analysis revealed that besides the MITF-driven genes, expression of proteins like osteopontin, IGF1, TGFß2 and survivin, the factors known to be generally associated with progression of tumors and the antiapoptotic properties, were reduced in acute BRG1-depleted 501mel cells. Western blots and RT-PCR confirmed the microarray findings. These proteins have been verified to be expressed independently of MITF, because MITF depletion did not impair their expression. Because these genes are not regulated by MITF, the data suggests that loss of BRG1-based SWI/SNF complexes negatively affects survival pathways beyond the MITF cascade. Immunohistochemistry showed high expression of both BRM and BRG1 in primary melanomas. Exogenous CDK2, osteopontin, or IGF1 each alone partly relieved the block of proliferation imposed by BRG1 depletion, implicating that more factors, besides the MITF target genes, are involved in melanoma cell survival. Together these results demonstrate an essential role of SWI/SNF for the expression of MITF-dependent and MITF-independent prosurvival factors in melanoma cells and suggest that SWI/SNF may be a potential and effective target in melanoma therapy.
Collapse
Affiliation(s)
- Lubica Ondrušová
- Laboratory of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Jiri Vachtenheim
- Laboratory of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- * E-mail:
| | - Jiri Réda
- Laboratory of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Petra Žáková
- Laboratory of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Kamila Benková
- Department of Pathology, Hospital Bulovka, Prague, Czech Republic
| |
Collapse
|
8
|
Perera RJ, Ray A. Epigenetic regulation of miRNA genes and their role in human melanomas. Epigenomics 2012; 4:81-90. [PMID: 22332660 DOI: 10.2217/epi.11.114] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Melanoma is a leading cause of death from cancers in the USA. While exposure to UV radiation has long been identified as a primary risk factor for melanoma, molecular mechanisms directly linking UV radiation to the development of melanoma, especially metastatic melanoma, are poorly understood. Besides abnormality in several signal transduction pathways important for normal melanocyte development, a number of ncRNAs, including miRNAs, are emerging as important causal factors to melanoma initiation and progression. The recent discovery of altered patterns of epigenetic regulation in ncRNA genes adds further complexity. Since miRNA precursor genes are usually nested within other protein-coding genes, the abnormal regulation of these protein-coding genes by epigenetic mechanisms is expected to cause aberrant regulation of the miRNA target genes. We discuss recent findings that link epigenetic regulation of ncRNA genes to melanoma, and speculate on a possible connection between UV irradiation and epigenetic regulation that might be important for this disease.
Collapse
|
9
|
Genetics and epigenetics of cutaneous malignant melanoma: a concert out of tune. Biochim Biophys Acta Rev Cancer 2012; 1826:89-102. [PMID: 22503822 DOI: 10.1016/j.bbcan.2012.03.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/09/2012] [Accepted: 03/10/2012] [Indexed: 01/05/2023]
Abstract
Cutaneous malignant melanoma (CMM) is the most life-threatening neoplasm of the skin and is considered a major health problem as both incidence and mortality rates continue to rise. Once CMM has metastasized it becomes therapy-resistant and is an inevitably deadly disease. Understanding the molecular mechanisms that are involved in the initiation and progression of CMM is crucial for overcoming the commonly observed drug resistance as well as developing novel targeted treatment strategies. This molecular knowledge may further lead to the identification of clinically relevant biomarkers for early CMM detection, risk stratification, or prediction of response to therapy, altogether improving the clinical management of this disease. In this review we summarize the currently identified genetic and epigenetic alterations in CMM development. Although the genetic components underlying CMM are clearly emerging, a complete picture of the epigenetic alterations on DNA (DNA methylation), RNA (non-coding RNAs), and protein level (histone modifications, Polycomb group proteins, and chromatin remodeling) and the combinatorial interactions between these events is lacking. More detailed knowledge, however, is accumulating for genetic and epigenetic interactions in the aberrant regulation of the INK4b-ARF-INK4a and microphthalmia-associated transcription factor (MITF) loci. Importantly, we point out that it is this interplay of genetics and epigenetics that effectively leads to distorted gene expression patterns in CMM.
Collapse
|