1
|
Beatriz Cristina Biz T, Carolina de Sousa CS, Frank John S, Miriam Galvonas J. LncRNAs in melanoma phenotypic plasticity: emerging targets for promising therapies. RNA Biol 2024; 21:81-93. [PMID: 39498940 PMCID: PMC11540095 DOI: 10.1080/15476286.2024.2421672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/07/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have received growing attention due to their diverse regulatory roles in cancer, including in melanoma, an aggressive type of skin cancer. The plasticity and phenotypic adaptability of melanoma cells are crucial factors contributing to therapeutic resistance. The identification of molecules playing key roles in melanoma cell plasticity could unravel novel and more effective therapeutic targets. This review presents current concepts of melanoma cell plasticity, illustrating its fluidity and dismissing the outdated notion of epithelial-mesenchymal-like transition as a simplistic binary process. Emphasis is placed on the pivotal role of lncRNAs in orchestrating cell plasticity, employing various mechanisms recently elucidated and unveiling their potential as promising targets for novel therapeutic strategies. Insights into the molecular mechanisms coordinated by lncRNAs in melanoma pave the way for the development of RNA-based therapies, holding great promise for enhancing treatment outcomes and offering a glimpse into a more effective approach to melanoma treatment.
Collapse
Affiliation(s)
- Tonin Beatriz Cristina Biz
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Slack Frank John
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Jasiulionis Miriam Galvonas
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Rius FE, Papaiz DD, Azevedo HFZ, Ayub ALP, Pessoa DO, Oliveira TF, Loureiro APM, Andrade F, Fujita A, Reis EM, Mason CE, Jasiulionis MG. Genome-wide promoter methylation profiling in a cellular model of melanoma progression reveals markers of malignancy and metastasis that predict melanoma survival. Clin Epigenetics 2022; 14:68. [PMID: 35606887 PMCID: PMC9128240 DOI: 10.1186/s13148-022-01291-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
The epigenetic changes associated with melanoma progression to advanced and metastatic stages are still poorly understood. To shed light on the CpG methylation dynamics during melanoma development, we analyzed the methylome profiles of a four-stage cell line model of melanoma progression: non-tumorigenic melanocytes (melan-a), premalignant melanocytes (4C), non-metastatic melanoma cells (4C11−), and metastatic melanoma cells (4C11+). We identified 540 hypo- and 37 hypermethylated gene promoters that together characterized a malignancy signature, and 646 hypo- and 520 hypermethylated promoters that distinguished a metastasis signature. Differentially methylated genes from these signatures were correlated with overall survival using TCGA-SKCM methylation data. Moreover, multivariate Cox analyses with LASSO regularization identified panels of 33 and 31 CpGs, respectively, from the malignancy and metastasis signatures that predicted poor survival. We found a concordant relationship between DNA methylation and transcriptional levels for genes from the malignancy (Pyroxd2 and Ptgfrn) and metastasis (Arnt2, Igfbp4 and Ptprf) signatures, which were both also correlated with melanoma prognosis. Altogether, this study reveals novel CpGs methylation markers associated with malignancy and metastasis that collectively could improve the survival prediction of melanoma patients.
Collapse
Affiliation(s)
- Flávia E Rius
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Debora D Papaiz
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Hatylas F Z Azevedo
- Divisão de Urologia, Departamento de Cirurgia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Luísa P Ayub
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Diogo O Pessoa
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Tiago F Oliveira
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, São Paulo, Brazil.,Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Paula M Loureiro
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Fernando Andrade
- Bioinformatics Graduate Program, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil.,Department of Biology, Loyola University Chicago, Chicago, USA
| | - André Fujita
- Departamento de Ciências da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Eduardo M Reis
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, USA
| | - Miriam G Jasiulionis
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, 04039-032, Brazil.
| |
Collapse
|
3
|
Papaiz DD, Rius FE, Ayub ALP, Origassa CS, Gujar H, Pessoa DDO, Reis EM, Nsengimana J, Newton‐Bishop J, Mason CE, Weisenberger DJ, Liang G, Jasiulionis MG. Genes regulated by DNA methylation are involved in distinct phenotypes during melanoma progression and are prognostic factors for patients. Mol Oncol 2022; 16:1913-1930. [PMID: 35075772 PMCID: PMC9067153 DOI: 10.1002/1878-0261.13185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 01/03/2022] [Accepted: 01/21/2022] [Indexed: 11/09/2022] Open
Abstract
In addition to mutations, epigenetic alterations are important contributors to malignant transformation and tumor progression. The aim of this work was to identify epigenetic events in which promoter or gene body DNA methylation induces gene expression changes that drive melanocyte malignant transformation and metastasis. We previously developed a linear mouse model of melanoma progression consisting of spontaneously immortalized melanocytes, premalignant melanocytes, a nonmetastatic tumorigenic, and a metastatic cell line. Here, through the integrative analysis of methylome and transcriptome data, we identified the relationship between promoter and/or gene body DNA methylation alterations and gene expression in early, intermediate, and late stages of melanoma progression. We identified adenylate cyclase type 3 (Adcy3) and inositol polyphosphate 4-phosphatase type II (Inpp4b), which affect tumor growth and metastatic potential, respectively. Importantly, the gene expression and DNA methylation profiles found in this murine model of melanoma progression were correlated with available clinical data from large population-based primary melanoma cohorts, revealing potential prognostic markers.
Collapse
Affiliation(s)
- Debora D’Angelo Papaiz
- Pharmacology DepartmentEscola Paulista de MedicinaUniversidade Federal de São PauloBrazil
| | | | - Ana Luísa Pedroso Ayub
- Pharmacology DepartmentEscola Paulista de MedicinaUniversidade Federal de São PauloBrazil
| | - Clarice S. Origassa
- Pharmacology DepartmentEscola Paulista de MedicinaUniversidade Federal de São PauloBrazil
| | - Hemant Gujar
- Department of UrologyUniversity of Southern CaliforniaLos AngelesCAUSA
| | | | | | - Jérémie Nsengimana
- Biostatistics Research GroupFaculty of Medical SciencesPopulation Health Sciences InstituteNewcastle UniversityUK
- University of Leeds School of MedicineUK
| | | | | | - Daniel J. Weisenberger
- Department of Biochemistry and Molecular MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Gangning Liang
- Department of UrologyUniversity of Southern CaliforniaLos AngelesCAUSA
| | | |
Collapse
|
4
|
Vuković LD, Chen P, Mishra S, White KH, Gigley JP, Levy DL. Nuclear Transport Factor 2 (NTF2) suppresses WM983B metastatic melanoma by modifying cell migration, metastasis, and gene expression. Sci Rep 2021; 11:23586. [PMID: 34880267 PMCID: PMC8654834 DOI: 10.1038/s41598-021-02803-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/23/2021] [Indexed: 12/19/2022] Open
Abstract
While changes in nuclear structure and organization are frequently observed in cancer cells, relatively little is known about how nuclear architecture impacts cancer progression and pathology. To begin to address this question, we studied Nuclear Transport Factor 2 (NTF2) because its levels decrease during melanoma progression. We show that increasing NTF2 expression in WM983B metastatic melanoma cells reduces cell proliferation and motility while increasing apoptosis. We also demonstrate that increasing NTF2 expression in these cells significantly inhibits metastasis and prolongs survival of mice. NTF2 levels affect the expression and nuclear positioning of a number of genes associated with cell proliferation and migration, and increasing NTF2 expression leads to changes in nuclear size, nuclear lamin A levels, and chromatin organization. Thus, ectopic expression of NTF2 in WM983B metastatic melanoma abrogates phenotypes associated with advanced stage cancer both in vitro and in vivo, concomitantly altering nuclear and chromatin structure and generating a gene expression profile with characteristics of primary melanoma. We propose that NTF2 is a melanoma tumor suppressor and could be a novel therapeutic target to improve health outcomes of melanoma patients.
Collapse
Affiliation(s)
- Lidija D Vuković
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA
| | - Pan Chen
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA
| | - Sampada Mishra
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA
| | - Karen H White
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA
| | - Jason P Gigley
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY, 82071, USA.
| |
Collapse
|
5
|
miR-138-5p induces aggressive traits by targeting Trp53 expression in murine melanoma cells, and correlates with poor prognosis of melanoma patients. Neoplasia 2021; 23:823-834. [PMID: 34246986 PMCID: PMC8274245 DOI: 10.1016/j.neo.2021.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/10/2021] [Accepted: 05/31/2021] [Indexed: 11/20/2022] Open
Abstract
Deregulation of miRNAs contributes to the development of distinct cancer types, including melanoma, an aggressive form of skin cancer characterized by high metastatic potential and poor prognosis. The expression of a set of 580 miRNAs was investigated in a model of murine melanoma progression, comprising non-metastatic (4C11-) and metastatic melanoma (4C11+) cells. A significant increase in miR-138-5p expression was found in the metastatic 4C11+ melanoma cells compared to 4C11-, which prompted us to investigate its role in melanoma aggressiveness. Functional assays, including anoikis resistance, colony formation, collective migration, serum-deprived growth capacity, as well as in vivo tumor growth and experimental metastasis were performed in 4C11- cells stably overexpressing miR-138-5p. miR-138-5p induced an aggressive phenotype in mouse melanoma cell lines leading to increased proliferation, migration and cell viability under stress conditions. Moreover, by overexpressing miR-138-5p, low-growing and non-metastatic 4C11- cells became highly proliferative and metastatic in vivo, similar to the metastatic 4C11+ cells. Luciferase reporter analysis identified the tumor suppressor Trp53 as a direct target of miR-138-5p. Using data sets from independent melanoma cohorts, miR-138-5p and P53 expression were also found deregulated in human melanoma samples, with their levels negatively and positively correlated with prognosis, respectively. Our data shows that the overexpression of miR-138-5p contributes to melanoma metastasis through the direct suppression of Trp53.
Collapse
|
6
|
Yadav P, Bandyopadhayaya S, Ford BM, Mandal C. Interplay between DNA Methyltransferase 1 and microRNAs During Tumorigenesis. Curr Drug Targets 2021; 22:1129-1148. [PMID: 33494674 DOI: 10.2174/1389450122666210120141546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/16/2020] [Accepted: 10/18/2020] [Indexed: 01/18/2023]
Abstract
Cancer is a genetic disease resulting from genomic changes; however, epigenetic alterations act synergistically with these changes during tumorigenesis and cancer progression. Epigenetic variations are gaining more attention as an important regulator in tumor progression, metastasis and therapy resistance. Aberrant DNA methylation at CpG islands is a central event in epigeneticmediated gene silencing of various tumor suppressor genes. DNA methyltransferase 1 (DNMT1) predominately methylates at CpG islands on hemimethylated DNA substrates in proliferation of cells. DNMT1 has been shown to be overexpressed in various cancer types and exhibits tumor-promoting potential. The major drawbacks to DNMT1-targeted cancer therapy are the adverse effects arising from nucleoside and non-nucleoside based DNMT1 inhibitors. This paper focuses on the regulation of DNMT1 by various microRNAs (miRNAs), which may be assigned as future DNMT1 modulators, and highlights how DNMT1 regulates various miRNAs involved in tumor suppression. Importantly, the role of reciprocal inhibition between DNMT1 and certain miRNAs in tumorigenic potential is approached in this review. Hence, this review seeks to project an efficient and strategic approach using certain miRNAs in conjunction with conventional DNMT1 inhibitors as a novel cancer therapy. It has also been pinpointed to select miRNA candidates associated with DNMT1 regulation that may not only serve as potential biomarkers for cancer diagnosis and prognosis, but may also predict the existence of aberrant methylation activity in cancer cells.
Collapse
Affiliation(s)
- Pooja Yadav
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh- 305817, Ajmer, Rajasthan, India
| | - Shreetama Bandyopadhayaya
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh- 305817, Ajmer, Rajasthan, India
| | - Bridget M Ford
- Department of Biology, University of the Incarnate Word, San Antonio, TX 78209, United States
| | - Chandi Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh- 305817, Ajmer, Rajasthan, India
| |
Collapse
|
7
|
Transcriptional signatures underlying dynamic phenotypic switching and novel disease biomarkers in a linear cellular model of melanoma progression. Neoplasia 2021; 23:439-455. [PMID: 33845354 PMCID: PMC8042650 DOI: 10.1016/j.neo.2021.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/21/2021] [Accepted: 03/12/2021] [Indexed: 11/23/2022] Open
Abstract
Despite advances in therapeutics, the progression of melanoma to metastasis still confers a poor outcome to patients. Nevertheless, there is a scarcity of biological models to understand cellular and molecular changes taking place along disease progression. Here, we characterized the transcriptome profiles of a multi-stage murine model of melanoma progression comprising a nontumorigenic melanocyte lineage (melan-a), premalignant melanocytes (4C), nonmetastatic (4C11-) and metastasis-prone (4C11+) melanoma cells. Clustering analyses have grouped the 4 cell lines according to their differentiated (melan-a and 4C11+) or undifferentiated/"mesenchymal-like" (4C and 4C11-) morphologies, suggesting dynamic gene expression patterns associated with the transition between these phenotypes. The cell plasticity observed in the murine melanoma progression model was corroborated by molecular markers described during stepwise human melanoma differentiation, as the differentiated cell lines in our model exhibit upregulation of transitory and melanocytic markers, whereas "mesenchymal-like" cells show increased expression of undifferentiated and neural crest-like markers. Sets of differentially expressed genes (DEGs) were detected at each transition step of tumor progression, and transcriptional signatures related to malignancy, metastasis and epithelial-to-mesenchymal transition were identified. Finally, DEGs were mapped to their human orthologs and evaluated in uni- and multivariate survival analyses using gene expression and clinical data of 703 drug-naïve primary melanoma patients, revealing several independent candidate prognostic markers. Altogether, these results provide novel insights into the molecular mechanisms underlying the phenotypic switch taking place during melanoma progression, reveal potential drug targets and prognostic biomarkers, and corroborate the translational relevance of this unique sequential model of melanoma progression.
Collapse
|
8
|
Azevedo H, Pessoa GC, de Luna Vitorino FN, Nsengimana J, Newton-Bishop J, Reis EM, da Cunha JPC, Jasiulionis MG. Gene co-expression and histone modification signatures are associated with melanoma progression, epithelial-to-mesenchymal transition, and metastasis. Clin Epigenetics 2020; 12:127. [PMID: 32831131 PMCID: PMC7444266 DOI: 10.1186/s13148-020-00910-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND We have previously developed a murine cellular system that models the transformation from melanocytes to metastatic melanoma cells. This model was established by cycles of anchorage impediment of melanocytes and consists of four cell lines: differentiated melanocytes (melan-a), pre-malignant melanocytes (4C), malignant (4C11-), and metastasis-prone (4C11+) melanoma cells. Here, we searched for transcriptional and epigenetic signatures associated with melanoma progression and metastasis by performing a gene co-expression analysis of transcriptome data and a mass-spectrometry-based profiling of histone modifications in this model. RESULTS Eighteen modules of co-expressed genes were identified, and some of them were associated with melanoma progression, epithelial-to-mesenchymal transition (EMT), and metastasis. The genes in these modules participate in biological processes like focal adhesion, cell migration, extracellular matrix organization, endocytosis, cell cycle, DNA repair, protein ubiquitination, and autophagy. Modules and hub signatures related to EMT and metastasis (turquoise, green yellow, and yellow) were significantly enriched in genes associated to patient survival in two independent melanoma cohorts (TCGA and Leeds), suggesting they could be sources of novel prognostic biomarkers. Clusters of histone modifications were also linked to melanoma progression, EMT, and metastasis. Reduced levels of H4K5ac and H4K8ac marks were seen in the pre-malignant and tumorigenic cell lines, whereas the methylation patterns of H3K4, H3K56, and H4K20 were related to EMT. Moreover, the metastatic 4C11+ cell line showed higher H3K9me2 and H3K36me3 methylation, lower H3K18me1, H3K23me1, H3K79me2, and H3K36me2 marks and, in agreement, downregulation of the H3K36me2 methyltransferase Nsd1. CONCLUSIONS We uncovered transcriptional and histone modification signatures that may be molecular events driving melanoma progression and metastasis, which can aid in the identification of novel prognostic genes and drug targets for treating the disease.
Collapse
Affiliation(s)
- Hátylas Azevedo
- Division of Urology, Department of Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Guilherme Cavalcante Pessoa
- Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo 669 5 andar, Vila Clementino, São Paulo, SP, 04039032, Brazil
| | | | - Jérémie Nsengimana
- Institute of Medical Research at St James's, University of Leeds School of Medicine, Leeds, UK
- Biostatistics Research Group, Population Health Sciences Institute, Newcastle University, Newcastle, United Kingdom
| | - Julia Newton-Bishop
- Institute of Medical Research at St James's, University of Leeds School of Medicine, Leeds, UK
| | - Eduardo Moraes Reis
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Júlia Pinheiro Chagas da Cunha
- Laboratório de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling - CeTICS, Instituto Butantan, São Paulo, Brazil
| | - Miriam Galvonas Jasiulionis
- Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo 669 5 andar, Vila Clementino, São Paulo, SP, 04039032, Brazil.
| |
Collapse
|
9
|
CD133 Is Associated with Increased Melanoma Cell Survival after Multikinase Inhibition. JOURNAL OF ONCOLOGY 2019; 2019:6486173. [PMID: 31379943 PMCID: PMC6662463 DOI: 10.1155/2019/6486173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/12/2019] [Accepted: 05/14/2019] [Indexed: 01/09/2023]
Abstract
FDA-approved kinase inhibitors are now used for melanoma, including combinations of the MEK inhibitor trametinib, and BRAF inhibitor dabrafenib for BRAFV600 mutations. NRAS-mutated cell lines are also sensitive to MEK inhibition in vitro, and NRAS-mutated tumors have also shown partial response to MEK inhibitors. However, melanoma still has high recurrence rates due to subpopulations, sometimes described as “melanoma initiating cells,” resistant to treatment. Since CD133 is a putative cancer stem cell marker for different cancers, associated with decreased survival, we examined resistance of patient-derived CD133(+) and CD133(-) melanoma cells to MAPK inhibitors. Human melanoma cells were exposed to increasing concentrations of trametinib and/or dabrafenib, either before or after separation into CD133(+) and CD133(-) subpopulations. In parental CD133-mixed lines, the percentages of CD133(+) cells increased significantly (p<0.05) after high-dose drug treatment. Presorted CD133(+) cells also exhibited significantly greater (p<0.05) IC50s for single and combination MAPKI treatment. siRNA knockdown revealed a causal relationship between CD133 and drug resistance. Microarray and qRT-PCR analyses revealed that ten of 18 ABC transporter genes were significantly (P<0.05) upregulated in the CD133(+) subpopulation, while inhibition of ABC activity increased sensitivity, suggesting a mechanism for increased drug resistance of CD133(+) cells.
Collapse
|
10
|
Bonvin E, Radaelli E, Bizet M, Luciani F, Calonne E, Putmans P, Nittner D, Singh NK, Santagostino SF, Petit V, Larue L, Marine JC, Fuks F. TET2-Dependent Hydroxymethylome Plasticity Reduces Melanoma Initiation and Progression. Cancer Res 2018; 79:482-494. [PMID: 30538121 DOI: 10.1158/0008-5472.can-18-1214] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 10/03/2018] [Accepted: 12/06/2018] [Indexed: 11/16/2022]
Abstract
Although numerous epigenetic aberrancies accumulate in melanoma, their contribution to initiation and progression remain unclear. The epigenetic mark 5-hydroxymethylcytosine (5hmC), generated through TET-mediated DNA modification, is now referred to as the sixth base of DNA and has recently been reported as a potential biomarker for multiple types of cancer. Loss of 5hmC is an epigenetic hallmark of melanoma, but whether a decrease in 5hmc levels contributes directly to pathogenesis or whether it merely results from disease progression-associated epigenetic remodeling remains to be established. Here, we show that NRAS-driven melanomagenesis in mice is accompanied by an overall decrease in 5hmC and specific 5hmC gains in selected gene bodies. Strikingly, genetic ablation of Tet2 in mice cooperated with oncogenic NRASQ61K to promote melanoma initiation while suppressing specific gains in 5hmC. We conclude that TET2 acts as a barrier to melanoma initiation and progression, partly by promoting 5hmC gains in specific gene bodies. SIGNIFICANCE: This work emphasizes the importance of epigenome plasticity in cancer development and highlights the involvement of druggable epigenetic factors in cancer.
Collapse
Affiliation(s)
- Elise Bonvin
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Enrico Radaelli
- Mouse Histopathology Core Facility, VIB Center for Brain & Disease Research, Leuven, Belgium.,Comparative Pathology Core, University of Pennsylvania, School of Veterinary Medicine, Department of Pathobiology, Philadelphia, Pennsylvania
| | - Martin Bizet
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Flavie Luciani
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Emilie Calonne
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Pascale Putmans
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - David Nittner
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium.,Histopathology Expertise Center, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Nitesh Kumar Singh
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Sara Francesca Santagostino
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, Weill Cornell Medicine, New York, New York.,Department of Safety Assessment, Genentech, Inc., South San Francisco, California
| | - Valérie Petit
- Normal and Pathological Development of Melanocytes, CNRS UMR3347, INSERM U1021, Institut Curie, Orsay, France
| | - Lionel Larue
- Normal and Pathological Development of Melanocytes, CNRS UMR3347, INSERM U1021, Institut Curie, Orsay, France
| | - Jean Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium. .,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - François Fuks
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
11
|
Remor AP, da Silva RA, de Matos FJ, Glaser V, de Paula Martins R, Ghisoni K, da Luz Scheffer D, Andia DC, Portinho D, de Souza AP, de Oliveira PA, Prediger RD, Torres AI, Linhares RMM, Walz R, Ronsoni MF, Hohl A, Rafacho A, Aguiar AS, De Paul AL, Latini A. Chronic Metabolic Derangement-Induced Cognitive Deficits and Neurotoxicity Are Associated with REST Inactivation. Mol Neurobiol 2018; 56:1539-1557. [DOI: 10.1007/s12035-018-1175-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/01/2018] [Indexed: 01/14/2023]
|
12
|
Sabatino ME, Grondona E, Sosa LDV, Mongi Bragato B, Carreño L, Juarez V, da Silva RA, Remor A, de Bortoli L, de Paula Martins R, Pérez PA, Petiti JP, Gutiérrez S, Torres AI, Latini A, De Paul AL. Oxidative stress and mitochondrial adaptive shift during pituitary tumoral growth. Free Radic Biol Med 2018; 120:41-55. [PMID: 29548793 DOI: 10.1016/j.freeradbiomed.2018.03.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
Abstract
The cellular transformation of normal functional cells to neoplastic ones implies alterations in the cellular metabolism and mitochondrial function in order to provide the bioenergetics and growth requirements for tumour growth progression. Currently, the mitochondrial physiology and dynamic shift during pituitary tumour development are not well understood. Pituitary tumours present endocrine neoplastic benign growth which, in previous reports, we had shown that in addition to increased proliferation, these tumours were also characterized by cellular senescence signs with no indication of apoptosis. Here, we show clear evidence of oxidative stress in pituitary cells, accompanied by bigger and round mitochondria during tumour development, associated with augmented biogenesis and an increased fusion process. An activation of the Nrf2 stress response pathway together with the attenuation of the oxidative damage signs occurring during tumour development were also observed which will probably provide survival advantages to the pituitary cells. These neoplasms also presented a progressive increase in lactate production, suggesting a metabolic shift towards glycolysis metabolism. These findings might imply an oxidative stress state that could impact on the pathogenesis of pituitary tumours. These data may also reflect that pituitary cells can modulate their metabolism to adapt to different energy requirements and signalling events in a pathophysiological situation to obtain protection from damage and enhance their survival chances. Thus, we suggest that mitochondria function, oxidative stress or damage might play a critical role in pituitary tumour progression.
Collapse
Affiliation(s)
- Maria Eugenia Sabatino
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Ezequiel Grondona
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Liliana D V Sosa
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Bethania Mongi Bragato
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Lucia Carreño
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Virginia Juarez
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Rodrigo A da Silva
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Aline Remor
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Lucila de Bortoli
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Roberta de Paula Martins
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Pablo A Pérez
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Juan Pablo Petiti
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Silvina Gutiérrez
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Alicia I Torres
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Ana L De Paul
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina.
| |
Collapse
|
13
|
Jasiulionis MG. Abnormal Epigenetic Regulation of Immune System during Aging. Front Immunol 2018; 9:197. [PMID: 29483913 PMCID: PMC5816044 DOI: 10.3389/fimmu.2018.00197] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/23/2018] [Indexed: 12/15/2022] Open
Abstract
Epigenetics refers to the study of mechanisms controlling the chromatin structure, which has fundamental role in the regulation of gene expression and genome stability. Epigenetic marks, such as DNA methylation and histone modifications, are established during embryonic development and epigenetic profiles are stably inherited during mitosis, ensuring cell differentiation and fate. Under the effect of intrinsic and extrinsic factors, such as metabolic profile, hormones, nutrition, drugs, smoke, and stress, epigenetic marks are actively modulated. In this sense, the lifestyle may affect significantly the epigenome, and as a result, the gene expression profile and cell function. Epigenetic alterations are a hallmark of aging and diseases, such as cancer. Among biological systems compromised with aging is the decline of immune response. Different regulators of immune response have their promoters and enhancers susceptible to the modulation by epigenetic marks, which is fundamental to the differentiation and function of immune cells. Consistent evidence has showed the regulation of innate immune cells, and T and B lymphocytes by epigenetic mechanisms. Therefore, age-dependent alterations in epigenetic marks may result in the decline of immune function and this might contribute to the increased incidence of diseases in old people. In order to maintain health, we need to better understand how to avoid epigenetic alterations related to immune aging. In this review, the contribution of epigenetic mechanisms to the loss of immune function during aging will be discussed, and the promise of new means of disease prevention and management will be pointed.
Collapse
Affiliation(s)
- Miriam G Jasiulionis
- Laboratory of Ontogeny and Epigenetics, Pharmacology Department, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
SIRT1 regulates Mxd1 during malignant melanoma progression. Oncotarget 2017; 8:114540-114553. [PMID: 29383100 PMCID: PMC5777712 DOI: 10.18632/oncotarget.21457] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/13/2017] [Indexed: 12/25/2022] Open
Abstract
In a murine melanoma model, malignant transformation promoted by a sustained stress condition was causally related to increased levels of reactive oxygen species resulting in DNA damage and massive epigenetic alterations. Since the chromatin modifier Sirtuin-1 (SIRT1) is a protein attracted to double-stranded DNA break (DSB) sites and can recruit other components of the epigenetic machinery, we aimed to define the role of SIRT1 in melanomagenesis through our melanoma model. The DNA damage marker, γH2AX was found increased in melanocytes after 24 hours of deadhesion, accompanied by increased SIRT1 expression and decreased levels of its target, H4K16ac. Moreover, SIRT1 started to be associated to DNMT3B during the stress condition, and this complex was maintained along malignant progression. Mxd1 was identified by ChIP-seq among the DNA sequences differentially associated with SIRT1 during deadhesion and was shown to be a common target of both, SIRT1 and DNMT3B. In addition, Mxd1 was found downregulated from pre-malignant melanocytes to metastatic melanoma cells. Treatment with DNMT inhibitor 5AzaCdR reversed the Mxd1 expression. Sirt1 stable silencing increased Mxd1 mRNA expression and led to down-regulation of MYC targets, such as Cdkn1a, Bcl2 and Psen2, whose upregulation is associated with human melanoma aggressiveness and poor prognosis. We demonstrated a novel role of the stress responsive protein SIRT1 in malignant transformation of melanocytes associated with deadhesion. Mxd1 was identified as a new SIRT1 target gene. SIRT1 promoted Mxd1 silencing, which led to increased activity of MYC oncogene contributing to melanoma progression.
Collapse
|
15
|
Santos GC, da Silva APA, Feldman L, Ventura GM, Vassetzky Y, de Moura Gallo CV. Epigenetic modifications, chromatin distribution and TP53 transcription in a model of breast cancer progression. J Cell Biochem 2016; 116:533-41. [PMID: 25358520 DOI: 10.1002/jcb.25003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 10/24/2014] [Indexed: 02/06/2023]
Abstract
In the present paper we aimed to characterize epigenetic aspects and analyze TP53 transcription in the 21 T series, composed of breast cell lines: non-cancerous H16N2; Atypical Ductal Hyperplasia 21PT; Ductal Carcinoma in situ 21NT and Invasive Metastatic Carcinoma 21MT1. We detected a global genomic hypomethylation in 21NT and 21MT1. The histone modification markers analysis showed an important global decrease of the active chromatin mark H4Ac in 21MT1 relative to the other cell lines while the repressive mark H3K9Me3 were not significantly altered. The mRNA levels of DNA methylation and histone modification key enzymes are consistent with the observed genomic hypomethylation and histone hypoacetylation. The expression of DNMT3A/B increased at the initial stages of oncogenesis and the expression of DNMT1 and HAT1 decreased at the advanced stages of breast cancer. Using a confocal immunofluorescent assay, we observed that H4Ac was mostly located at the periphery and the repressive mark H3K9Me3, at the center of 21NT and 21MT1 cells nuclei. TP53 P1 promoter was found to be in an open chromatin state, with a relatively high enrichment of H4Ac and similar TP53 transcription levels in all 21 T cell lines. In conclusion, we observed epigenetic alterations (global genome hypomethylation, global hypoacetylation and accumulation of pericentric heterochromatin) in metastatic breast cancer cells of the 21 T series. These alterations may act at later stages of breast cancer progression and may not affect TP53 transcription at the P1 promoter.
Collapse
Affiliation(s)
- Gilson C Santos
- Departamento de Genética, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 20550-013, Brazil; Université Paris-Sud 11 CNRS UMR 8126 «Signalisation, Noyaux et Innovations en Cancérologie», Institut de Cancérologie Gustave-Roussy, Université Paris-Sud 11, F-94805, Villejuif Cedex, France
| | | | | | | | | | | |
Collapse
|
16
|
Gigli R, Pereira GJ, Antunes F, Bechara A, Garcia DM, Spindola DG, Jasiulionis MG, Caires AC, Smaili SS, Bincoletto C. The biphosphinic paladacycle complex induces melanoma cell death through lysosomal–mitochondrial axis modulation and impaired autophagy. Eur J Med Chem 2016; 107:245-54. [DOI: 10.1016/j.ejmech.2015.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 10/13/2015] [Accepted: 11/05/2015] [Indexed: 11/28/2022]
|
17
|
The Roles of miR-26, miR-29, and miR-203 in the Silencing of the Epigenetic Machinery during Melanocyte Transformation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:634749. [PMID: 26618174 PMCID: PMC4649077 DOI: 10.1155/2015/634749] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/12/2015] [Indexed: 12/31/2022]
Abstract
The epigenetic marks located throughout the genome exhibit great variation between normal and transformed cancer cells. While normal cells contain hypomethylated CpG islands near gene promoters and hypermethylated repetitive DNA, the opposite pattern is observed in cancer cells. Recently, it has been reported that alteration in the microenvironment of melanocyte cells, such as substrate adhesion blockade, results in the selection of anoikis-resistant cells, which have tumorigenic characteristics. Melanoma cells obtained through this model show an altered epigenetic pattern, which represents one of the first events during the melanocytes malignant transformation. Because microRNAs are involved in controlling components of the epigenetic machinery, the aim of this work was to evaluate the potential association between the expression of miR-203, miR-26, and miR-29 family members and the genes Dnmt3a, Dnmt3b, Mecp2, and Ezh2 during cells transformation. Our results show that microRNAs and their validated or predicted targets are inversely expressed, indicating that these molecules are involved in epigenetic reprogramming. We also show that miR-203 downregulates Dnmt3b in mouse melanocyte cells. In addition, treatment with 5-aza-CdR promotes the expression of miR-26 and miR-29 in a nonmetastatic melanoma cell line. Considering the occurrence of CpG islands near the miR-26 and miR-29 promoters, these data suggest that they might be epigenetically regulated in cancer.
Collapse
|
18
|
da Silva RA, Sammartino Mariano F, Planello AC, Line SRP, de Souza AP. HaCaT anchorage blockade leads to oxidative stress, DNA damage and DNA methylation changes. Biochem Biophys Rep 2015; 2:94-102. [PMID: 29124149 PMCID: PMC5668640 DOI: 10.1016/j.bbrep.2015.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/14/2015] [Accepted: 05/19/2015] [Indexed: 11/24/2022] Open
Abstract
Cell adhesion plays an important role in neoplastic transformation. Thus, anchorage-independent growth and epithelial-mesenchymal transition, which are features associated to anoikis-resistance, are vital steps in cancer progression and metastatic colonization. Cell attachment loss may induce intracellular oxidative stress, which triggers DNA damage as methylation changes. HaCaT lineage cells were submitted to periods of 1, 3, 5 and 24 h of anchorage blockage with the purpose of study of oxidative stress effect on changes in the DNA methylation pattern, derived from attachment blockade. Through this study, HaCaT anchorage blockage-induced oxidative stress was reported to mediate alterations in global DNA methylation changes and into TP53 gene promoter pattern during anoikis-resistance acquisition. Furthermore, at the first experimental time-periods (1, 3 and 5 h), genome hypermethylation was found; however, genome hypomethylation was observed in later time-periods (24 h) of attachment impediment. The TP 53 methylation analyses were performed after 24 h of replated anoikis-resistance cells and same methylation pattern was observed, occurring an early (1 and 3 h) hypermethylation that was followed by late (5 and 24 h) hypomethylation. However, LINE-1, a marker of genomic instability, was perceived in time-dependent hypomethylation. The mRNA levels of the DNMTs enzymes were influenced by cell attachment blockage, but non-conclusive results were obtained in order to match DNMTs transcription to pattern methylation results. In conclusion, DNA damage was found, leaded by oxidative stress that has come up from HaCaT anchorage blockade, which rises a global genome hypomethylation tendency as consequence, which might denote genomic instability.
Collapse
Affiliation(s)
- Rodrigo A da Silva
- Department of Morphology, School of Dentistry of Piracicaba, University of Campinas - UNICAMP, Av. Limeira, 901, 13414-018 Piracicaba, SP, Brazil
| | - Flavia Sammartino Mariano
- Department of Morphology, School of Dentistry of Piracicaba, University of Campinas - UNICAMP, Av. Limeira, 901, 13414-018 Piracicaba, SP, Brazil
| | - Aline C Planello
- Department of Morphology, School of Dentistry of Piracicaba, University of Campinas - UNICAMP, Av. Limeira, 901, 13414-018 Piracicaba, SP, Brazil
| | - Sergio R P Line
- Department of Morphology, School of Dentistry of Piracicaba, University of Campinas - UNICAMP, Av. Limeira, 901, 13414-018 Piracicaba, SP, Brazil
| | - Ana Paula de Souza
- Department of Morphology, School of Dentistry of Piracicaba, University of Campinas - UNICAMP, Av. Limeira, 901, 13414-018 Piracicaba, SP, Brazil
| |
Collapse
|
19
|
Maricato JT, Furtado MN, Takenaka MC, Nunes ERM, Fincatti P, Meliso FM, da Silva IDCG, Jasiulionis MG, Cecília de Araripe Sucupira M, Diaz RS, Janini LMR. Epigenetic modulations in activated cells early after HIV-1 infection and their possible functional consequences. PLoS One 2015; 10:e0119234. [PMID: 25875202 PMCID: PMC4395311 DOI: 10.1371/journal.pone.0119234] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 01/15/2015] [Indexed: 11/30/2022] Open
Abstract
Epigenetic modifications refer to a number of biological processes which alter the structure of chromatin and its transcriptional activity such as DNA methylation and histone post-translational processing. Studies have tried to elucidate how the viral genome and its products are affected by epigenetic modifications imposed by cell machinery and how it affects the ability of the virus to either, replicate and produce a viable progeny or be driven to latency. The purpose of this study was to evaluate epigenetic modifications in PBMCs and CD4+ cells after HIV-1 infection analyzing three approaches: (i) global DNA- methylation; (ii) qPCR array and (iii) western blot. HIV-1 infection led to methylation increases in the cellular DNA regardless the activation status of PBMCs. The analysis of H3K9me3 and H3K27me3 suggested a trend towards transcriptional repression in activated cells after HIV-1 infection. Using a qPCR array, we detected genes related to epigenetic processes highly modulated in activated HIV-1 infected cells. SETDB2 and RSK2 transcripts showed highest up-regulation levels. SETDB2 signaling is related to transcriptional silencing while RSK2 is related to either silencing or activation of gene expression depending on the signaling pathway triggered down-stream. In addition, activated cells infected by HIV-1 showed lower CD69 expression and a decrease of IL-2, IFN-γ and metabolism-related factors transcripts indicating a possible functional consequence towards global transcriptional repression found in HIV-1 infected cells. Conversely, based on epigenetic markers studied here, non-stimulated cells infected by HIV-1, showed signs of global transcriptional activation. Our results suggest that HIV-1 infection exerts epigenetic modulations in activated cells that may lead these cells to transcriptional repression with important functional consequences. Moreover, non-stimulated cells seem to increase gene transcription after HIV-1 infection. Based on these observations, it is possible to speculate that the outcome of viral infections may be influenced by the cellular activation status at the moment of infection.
Collapse
Affiliation(s)
- Juliana T. Maricato
- Department of Microbiology, Immunology and Parasitology, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil
| | - Maria N. Furtado
- Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Maisa C. Takenaka
- Department of Microbiology, Immunology and Parasitology, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil
| | - Edsel R. M. Nunes
- Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Patricia Fincatti
- Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Fabiana M. Meliso
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | | | - Luiz M. R. Janini
- Department of Microbiology, Immunology and Parasitology, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil
- Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
Methylation-dependent SOX9 expression mediates invasion in human melanoma cells and is a negative prognostic factor in advanced melanoma. Genome Biol 2015; 16:42. [PMID: 25885555 PMCID: PMC4378455 DOI: 10.1186/s13059-015-0594-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/23/2015] [Indexed: 12/18/2022] Open
Abstract
Background Melanoma is the most fatal skin cancer displaying a high degree of molecular heterogeneity. Phenotype switching is a mechanism that contributes to melanoma heterogeneity by altering transcription profiles for the transition between states of proliferation/differentiation and invasion/stemness. As phenotype switching is reversible, epigenetic mechanisms, like DNA methylation, could contribute to the changes in gene expression. Results Integrative analysis of methylation and gene expression datasets of five proliferative and five invasion melanoma cell cultures reveal two distinct clusters. SOX9 is methylated and lowly expressed in the highly proliferative group. SOX9 overexpression results in decreased proliferation but increased invasion in vitro. In a B16 mouse model, sox9 overexpression increases the number of lung metastases. Transcriptional analysis of SOX9-overexpressing melanoma cells reveals enrichment in epithelial to mesenchymal transition (EMT) pathways. Survival analysis of The Cancer Genome Atlas melanoma dataset shows that metastatic patients with high expression levels of SOX9 have significantly worse survival rates. Additional survival analysis on the targets of SOX9 reveals that most SOX9 downregulated genes have survival benefit for metastatic patients. Conclusions Our genome-wide DNA methylation and gene expression study of 10 early passage melanoma cell cultures reveals two phenotypically distinct groups. One of the genes regulated by DNA methylation between the two groups is SOX9. SOX9 induces melanoma cell invasion and metastasis and decreases patient survival. A number of genes downregulated by SOX9 have a negative impact on patient survival. In conclusion, SOX9 is an important gene involved in melanoma invasion and negatively impacts melanoma patient survival. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0594-4) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Kostaki M, Manona AD, Stavraka I, Korkolopoulou P, Levidou G, Trigka EA, Christofidou E, Champsas G, Stratigos AJ, Katsambas A, Papadopoulos O, Piperi C, Papavassiliou AG. High-frequency p16(INK) (4A) promoter methylation is associated with histone methyltransferase SETDB1 expression in sporadic cutaneous melanoma. Exp Dermatol 2014; 23:332-8. [PMID: 24673285 DOI: 10.1111/exd.12398] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2014] [Indexed: 12/20/2022]
Abstract
Epigenetic mechanisms participate in melanoma development and progression. The effect of histone modifications and their catalysing enzymes over euchromatic promoter DNA methylation in melanoma remains unclear. This study investigated the potential association of p16(INK) (4A) promoter methylation with histone methyltransferase SETDB1 expression in Greek patients with sporadic melanoma and their correlation with clinicopathological characteristics. Promoter methylation was detected by methylation-specific PCR in 100 peripheral blood samples and 58 melanoma tissues from the same patients. Cell proliferation (Ki-67 index), p16(INK) (4A) and SETDB1 expression were evaluated by immunohistochemistry. High-frequency promoter methylation (25.86%) was observed in tissue samples and correlated with increased cell proliferation (P = 0.0514). p16(INK) (4A) promoter methylation was higher in vertical growth-phase (60%) melanomas than in radial (40%, P = 0.063) and those displaying epidermal involvement (P = 0.046). Importantly, p16(INK) (4A) methylation correlated with increased melanoma thickness according to Breslow index (P = 0.0495) and marginally with increased Clark level (I/II vs III/IV/V, P = 0.070). Low (1-30%) p16(INK) (4A) expression was detected at the majority (19 of 54) of melanoma cases (35.19%), being marginally correlated with tumor lymphocytic infiltration (P = 0.078). SETDB1 nuclear immunoreactivity was observed in 47 of 57 (82.46%) cases, whereas 27 of 57 (47.37%) showed cytoplasmic immunoexpression. Cytoplasmic SETDB1 expression correlated with higher frequency of p16(INK) (4A) methylation and p16(INK) (4A) expression (P = 0.033, P = 0.011, respectively). Increased nuclear SETDB1 levels were associated with higher mitotic count (0-5/mm(2) vs >5/mm(2) , P = 0.0869), advanced Clark level (III-V, P = 0.0380), epidermal involvement (P = 0.0331) and the non-chronic sun exposure-associated melanoma type (P = 0.0664). Our data demonstrate for the first time the association of histone methyltransferase SETDB1 with frequent methylation of the euchromatic p16(INK) (4A) promoter and several prognostic parameters in melanomas.
Collapse
Affiliation(s)
- Maria Kostaki
- Department of Biological Chemistry, University of Athens Medical School, Athens, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Besaratinia A, Tommasi S. Epigenetics of human melanoma: promises and challenges. J Mol Cell Biol 2014; 6:356-67. [PMID: 24895357 DOI: 10.1093/jmcb/mju027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer with rising incidence and mortality rates. Although early-stage melanoma is highly curable, advanced-stage melanoma is refractory to treatment. This underscores the importance of prevention and early detection as well as the need to improve treatment and prognostication of human melanoma. Elucidating the underlying mechanisms of the initiation and progression of human melanoma can help identify potential targets of intervention for prevention, diagnosis, therapy, and prognosis of this disease. Aberrant DNA methylation and histone modifications are the best-established epigenetic mechanisms of carcinogenesis. The occurrence of epigenetic changes prior to clinical diagnosis of cancer and their reversibility through pharmacologic/genetic approaches offer a promising avenue for basic and translational research on human melanoma. Candidate gene(s) or genome-wide aberrant DNA methylation and histone modifications have been observed in human melanoma tumor tissues and cell lines, and correlated to cellular and functional characteristics and/or clinicopathological features of this malignancy. The present review summarizes the published researches on aberrant DNA methylation and histone modifications in connection with human melanoma. Representative studies are highlighted to set forth the current state of knowledge, gaps in the knowledgebase, and future directions in these epigenetic fields of research. Examples of epigenetic therapy applied for human melanoma in vitro, and the challenges of its in vivo application for clinical treatment of solid tumors are discussed.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| | - Stella Tommasi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| |
Collapse
|
23
|
Machado CML, Andrade LNS, Teixeira VR, Costa FF, Melo CM, dos Santos SN, Nonogaki S, Liu FT, Bernardes ES, Camargo AA, Chammas R. Galectin-3 disruption impaired tumoral angiogenesis by reducing VEGF secretion from TGFβ1-induced macrophages. Cancer Med 2014; 3:201-14. [PMID: 24421272 PMCID: PMC3987071 DOI: 10.1002/cam4.173] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/11/2013] [Accepted: 11/12/2013] [Indexed: 12/16/2022] Open
Abstract
In order to study the role of galectin-3 in tumor angiogenesis associated with tumor-associated macrophages (TAM) and tumor parenchyma, the galectin-3 expression was reconstituted in Tm1 melanoma cell line that lacks this protein. Galectin-3-expressing cells (Tm1G3) and mock-vector transfected cells (Tm1N3) were injected into wild-type (WT) and galectin-3 knockout (KO) C57Bl/6 mice. Tumors originated from Tm1G3 were larger in tumor volume with enlarged functional vessels, decreased necrotic areas, and increased vascular endothelial growth factor (VEGF) protein levels. Galectin-3-nonexpressing-cells injected into WT and KO showed increased levels of transforming growth factor beta 1 (TGFβ1) and, in WT animals this feature was also accompanied by increased VEGFR2 expression and its phosphorylation. In KO animals, tumors derived from galectin-3-expressing cells were infiltrated by CD68(+)-cells, whereas in tumors derived from galectin-3-nonexpressing-cells, CD68(+) cells failed to infiltrate tumors and accumulated in the periphery of the tumor mass. In vitro studies showed that Tm1G3 secreted more VEGF than Tm1N3 cells. In the latter case, TGFβ1 induced VEGF production. Basal secretion of VEGF was higher in WT-bone marrow-derived macrophages (BMDM) than in KO-BMDM. TGFβ1 induced secretion of VEGF only in WT-BMDM. Tm1G3-induced tumors had the Arginase I mRNA increased, which upregulated alternative macrophage (M2)/TAM induction. M2 stimuli, such as interleukin-4 (IL4) and TGFβ1, increased Arginase I protein levels and galectin-3 expression in WT- BMDM, but not in cells from KO mice. Hence, we report that galectin-3 disruption in tumor stroma and parenchyma decreases angiogenesis through interfering with the responses of macrophages to the interdependent VEGF and TGFβ1 signaling pathways.
Collapse
Affiliation(s)
- Camila Maria Longo Machado
- Laboratório de Oncologia Experimental-LIM24, Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil; Depto. de Radiologia e Oncologia, Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil; Laboratório de Investigação Médica Radioisotopos-LIM/43, Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Molognoni F, de Melo FHM, da Silva CT, Jasiulionis MG. Ras and Rac1, frequently mutated in melanomas, are activated by superoxide anion, modulate Dnmt1 level and are causally related to melanocyte malignant transformation. PLoS One 2013; 8:e81937. [PMID: 24358134 PMCID: PMC3864863 DOI: 10.1371/journal.pone.0081937] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/25/2013] [Indexed: 12/22/2022] Open
Abstract
A melanocyte malignant transformation model was developed in our laboratory, in which different melanoma cell lines were obtained after submitting the non-tumorigenic melanocyte lineage melan-a to sequential cycles of anchorage impediment. Our group has already showed that increased superoxide level leads to global DNA hypermemethylation as well increased Dnmt1 expression few hours after melanocyte anchorage blockade. Here, we showed that Ras/Rac1/ERK signaling pathway is activated in melanocytes submitted to anchorage impediment, regulating superoxide levels, global DNA methylation, and Dnmt1 expression. Interestingly, Ras and Rac1 activation is not related to codon mutations, but instead regulated by superoxide. Moreover, the malignant transformation was drastically compromised when melan-a melanocytes were submitted to sequential cycles of anchorage blockage in the presence of a superoxide scavenger. This aberrant signaling pathway associated with a sustained stressful condition, which might be similar to conditions such as UV radiation and inflammation, seems to be an early step in malignant transformation and to contribute to an epigenetic reprogramming and the melanoma development.
Collapse
Affiliation(s)
- Fernanda Molognoni
- Departamento de Farmacologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Fabiana Henriques Machado de Melo
- Departamento de Farmacologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Camila Tainah da Silva
- Departamento de Farmacologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | | |
Collapse
|
25
|
Fratta E, Sigalotti L, Covre A, Parisi G, Coral S, Maio M. Epigenetics of melanoma: implications for immune-based therapies. Immunotherapy 2013; 5:1103-16. [DOI: 10.2217/imt.13.108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Malignant melanoma is a complex disease that arises and evolves due to a myriad of genetic and epigenetic events. Among these, the interaction between epigenetic alterations (i.e., histone modifications, DNA methylation, mRNA silencing by miRNAs and nucleosome repositioning) has been recently identified as playing an important role in melanoma development and progression by affecting key cellular pathways such as cell cycle regulation, DNA repair, apoptosis, invasion and immune recognition. Differently to genetic lesions, epigenetic changes are potentially pharmacologically reversible by using epigenetic drugs. Along this line, preclinical and clinical findings indicate that these drugs, given alone or in combination therapies, can efficiently modulate the immunophenotype of melanoma cells. The aim of this review is to provide a comprehensive summary of melanoma epigenetics and the current use of epigenetic drugs in the clinical setting.
Collapse
Affiliation(s)
- Elisabetta Fratta
- Cancer Bioimmunotherapy Unit, Department of Medical Oncology, Centro di Riferimento Oncologico, Istituto di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | - Luca Sigalotti
- Cancer Bioimmunotherapy Unit, Department of Medical Oncology, Centro di Riferimento Oncologico, Istituto di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | - Alessia Covre
- Division of Medical Oncology & Immunotherapy, Department of Oncology, University Hospital of Siena, Istituto Toscano Tumori, Strada delle Scotte 14, 53100 Siena, Italy
| | - Giulia Parisi
- Division of Medical Oncology & Immunotherapy, Department of Oncology, University Hospital of Siena, Istituto Toscano Tumori, Strada delle Scotte 14, 53100 Siena, Italy
| | - Sandra Coral
- Division of Medical Oncology & Immunotherapy, Department of Oncology, University Hospital of Siena, Istituto Toscano Tumori, Strada delle Scotte 14, 53100 Siena, Italy
| | - Michele Maio
- Division of Medical Oncology & Immunotherapy, Department of Oncology, University Hospital of Siena, Istituto Toscano Tumori, Strada delle Scotte 14, 53100 Siena, Italy
| |
Collapse
|
26
|
de Souza CF, Xander P, Monteiro AC, Silva AGDS, da Silva DCP, Mai S, Bernardo V, Lopes JD, Jasiulionis MG. Mining gene expression signature for the detection of pre-malignant melanocytes and early melanomas with risk for metastasis. PLoS One 2012; 7:e44800. [PMID: 22984562 PMCID: PMC3439384 DOI: 10.1371/journal.pone.0044800] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 08/14/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Metastatic melanoma is a highly aggressive skin cancer and currently resistant to systemic therapy. Melanomas may involve genetic, epigenetic and metabolic abnormalities. Evidence is emerging that epigenetic changes might play a significant role in tumor cell plasticity and metastatic phenotype of melanoma cells. PRINCIPAL FINDINGS In this study, we developed a systematic approach to identify genes implicated in melanoma progression. To do this, we used the Affymetrix GeneChip Arrays to screen 34,000 mouse transcripts in melan-a melanocytes, 4C pre-malignant melanocytes, 4C11- non-metastatic and 4C11+ metastatic melanoma cell lines. The genome-wide association studies revealed pathways commonly over-represented in the transition from immortalized to pre-malignant stage, and under-represented in the transition from non-metastatic to metastatic stage. Additionally, the treatment of cells with 10 µM 5-aza-2'-deoxycytidine (5AzaCdR) for 48 hours allowed us to identify genes differentially re-expressed at specific stages of melan-a malignant transformation. Treatment of human primary melanocytes with the demethylating agent 5AzaCdR in combination to the histone deacetylase inhibitor Trichostatin A (TSA) revealed changes on melanocyte morphology and gene expression which could be an indicator of epigenetic flexibility in normal melanocytes. Moreover, changes on gene expression recognized by affecting the melanocyte biology (NDRG2 and VDR), phenotype of metastatic melanoma cells (HSPB1 and SERPINE1) and response to cancer therapy (CTCF, NSD1 and SRC) were found when Mel-2 and/or Mel-3-derived patient metastases were exposed to 5AzaCdR plus TSA treatment. Hierarchical clustering and network analyses in a panel of five patient-derived metastatic melanoma cells showed gene interactions that have never been described in melanomas. SIGNIFICANCE Despite the heterogeneity observed in melanomas, this study demonstrates the utility of our murine melanoma progression model to identify molecular markers commonly perturbed in metastasis. Additionally, the novel gene expression signature identified here may be useful in the future into a model more closely related to translational research.
Collapse
|
27
|
Deobagkar DD, Panikar C, Rajpathak SN, Shaiwale NS, Mukherjee S. An immunochemical method for detection and analysis of changes in methylome. Methods 2012; 56:260-7. [DOI: 10.1016/j.ymeth.2011.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/23/2011] [Accepted: 10/07/2011] [Indexed: 10/16/2022] Open
|
28
|
Biomarkers as key contributors in treating malignant melanoma metastases. Dermatol Res Pract 2011; 2012:156068. [PMID: 22110486 PMCID: PMC3216378 DOI: 10.1155/2012/156068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 08/17/2011] [Indexed: 11/18/2022] Open
Abstract
Melanoma is a human neurocristopathy associated with developmental defects in the neural crest-derived epidermal melanocytes. At the present time, at least three hypotheses were identified that may explain melanoma aetiology, as follows: (1) a model of linear progression from differentiated melanocytes to metastatic cancer cells (2) a model involving the appearance of melanoma stem-like cells, and (3) an epigenetic progenitor model of cancer. Treating metastatic melanoma is one of the most serious challenges in the 21st century. This is justified because of a subpopulation of cells presenting a remarkable molecular heterogeneity, which is able to explain the drug resistance and the growing mortality rates worldwide. Fortunately, there are now evidences sustaining the importance of genetic, epigenetic, and metabolomic alterations as biomarkers for classification, staging, and better management of melanoma patients. To illustrate some fascinating insights in this field, the genes BRAFV600E and CTLA4 have been recognized as bona fide targets to benefit melanoma patients. Our research attempts to carefully evaluate data from the literature in order to highlight the link between a molecular disease model and the key contribution of biomarkers in treating malignant melanoma metastases.
Collapse
|
29
|
miRNAs and Melanoma: How Are They Connected? Dermatol Res Pract 2011; 2012:528345. [PMID: 21860617 PMCID: PMC3154488 DOI: 10.1155/2012/528345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 06/15/2011] [Indexed: 12/15/2022] Open
Abstract
miRNAs are non-coding RNAs that bind to mRNA targets and disturb their stability and/or translation, thus acting in gene posttranscriptional regulation. It is predicted that over 30% of mRNAs are regulated by miRNAs. Therefore these molecules are considered essential in the processing of many biological responses, such as cell proliferation, apoptosis, and stress responsiveness. As miRNAs participate of virtually all cellular pathways, their deregulation is critical to cancer development. Consequently, loss or gain of miRNAs function may contribute to tumor progression. Little is known about the regulation of miRNAs and understanding the events that lead to changes in their expression may provide new perspectives for cancer treatment. Among distinct types of cancer, melanoma has special implications. It is characterized as a complex disease, originated from a malignant transformation of melanocytes. Despite being rare, its metastatic form is usually incurable, which makes melanoma the major death cause of all skin cancers. Some molecular pathways are frequently disrupted in melanoma, and miRNAs probably have a decisive role on these alterations. Therefore, this review aims to discuss new findings about miRNAs in melanoma fields, underlying epigenetic processes, and also to argue possibilities of using miRNAs in melanoma diagnosis and therapy.
Collapse
|