1
|
Force E, Suray C, Monsempes C, Fuentes A, Maria A, Debernard S. Modulation of sex pheromone detection by nutritional and hormonal signals in a male insect. J Exp Biol 2025; 228:JEB249807. [PMID: 39817435 DOI: 10.1242/jeb.249807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/14/2025] [Indexed: 01/18/2025]
Abstract
As in other animals, insects can modulate their odor-guided behaviors, especially sexual behavior, according to environmental and physiological factors such as the individual's nutritional state. This behavioral flexibility results from modifications of the olfactory pathways under the control of hormones. Most studies have focused on the central modulation of the olfactory system and less attention has been paid to the peripheral olfactory system. To understand how nutritional inputs influence the detection of sex pheromones in insects, we turned to the male moth Agrotis ipsilon, for which the behavioral responsiveness to sex pheromones is dependent on diet and reproductive hormones, juvenile hormone (JH) and 20-hydroxyecdysone (20E). We demonstrated that a sugar-rich diet with sodium increases the sensitivity of olfactory receptor neurons to (Z)-7-dodecen-1-yl acetate, the major sex pheromone compound, and the antennal expression of the pheromone binding protein (PBP2) and the pheromone receptor (OR3). Such a diet also induces overexpression of the methoprene-tolerant receptor to JH and underexpression of the ecdysone receptor to 20E in antennae. The diet-induced olfactory responses were maintained by treatment with cucurbitacin B, a 20E antagonist, but were suppressed by the topic application of precocene, a JH biosynthesis inhibitor. These findings reveal that a positive nutritional state enhances sex pheromone detection through JH actions on the peripheral actors of the pheromone system in male moths. More broadly, in insects, our study provides, for the first time, a neuronal and molecular basis of the dietary-dependent endocrine modulation of the peripheral olfactory system.
Collapse
Affiliation(s)
- Evan Force
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, 75005 Paris, France
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, 78026 Versailles, France
| | - Caroline Suray
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, 78026 Versailles, France
| | - Christelle Monsempes
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, 78026 Versailles, France
| | - Annabelle Fuentes
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, 75005 Paris, France
| | - Annick Maria
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, 75005 Paris, France
| | - Stéphane Debernard
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, 75005 Paris, France
| |
Collapse
|
2
|
Qian Q, Niwa R. Endocrine Regulation of Aging in the Fruit Fly Drosophila melanogaster. Zoolog Sci 2024; 41:4-13. [PMID: 38587512 DOI: 10.2108/zs230056] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/16/2023] [Indexed: 04/09/2024]
Abstract
The past few decades have witnessed increasing research clarifying the role of endocrine signaling in the regulation of aging in both vertebrates and invertebrates. Studies using the model organism fruit fly Drosophila melanogaster have largely advanced our understanding of evolutionarily conserved mechanisms in the endocrinology of aging and anti-aging. Mutations in single genes involved in endocrine signaling modify lifespan, as do alterations of endocrine signaling in a tissue- or cell-specific manner, highlighting a central role of endocrine signaling in coordinating the crosstalk between tissues and cells to determine the pace of aging. Here, we review the current landscape of research in D. melanogaster that offers valuable insights into the endocrine-governed mechanisms which influence lifespan and age-related physiology.
Collapse
Affiliation(s)
- Qingyin Qian
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan,
| |
Collapse
|
3
|
Allen MC, Ritchie MW, El-Saadi MI, MacMillan HA. Effects of a high cholesterol diet on chill tolerance are highly context-dependent in Drosophila. J Therm Biol 2024; 119:103789. [PMID: 38340464 DOI: 10.1016/j.jtherbio.2024.103789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/11/2023] [Accepted: 01/04/2024] [Indexed: 02/12/2024]
Abstract
Chill susceptible insects are thought to be injured through different mechanisms depending on the duration and severity of chilling. While chronic chilling causes "indirect" injury through disruption of metabolic and ion homeostasis, acute chilling is suspected to cause "direct" injury, in part through phase transitions of cell membrane lipids. Dietary supplementation of cholesterol can reduce acute chilling injury in Drosophila melanogaster (Shreve et al., 2007), but the generality of this effect and the mechanisms underlying it remain unclear. To better understand how and why cholesterol has this effect, we assessed how a high cholesterol diet and thermal acclimation independently and interactively impact several measures of chill tolerance. Cholesterol supplementation positively affected tolerance to acute chilling in warm-acclimated flies (as reported previously). Conversely, feeding on the high-cholesterol diet negatively affected tolerance to chronic chilling in both cold and warm acclimated flies, as well as tolerance to acute chilling in cold acclimated flies. Cholesterol had no effect on the ability of flies to remain active in the cold or recover movement after a cold stress. Our findings support the idea that dietary cholesterol reduces mechanical injury to membranes caused by direct chilling injury, and that acute and chronic chilling are associated with distinct mechanisms of injury. Feeding on a high-cholesterol diet may interfere with mechanisms involved in cold acclimation, leaving cholesterol augmented flies more susceptible to chilling injury under some conditions.
Collapse
Affiliation(s)
- Mitchell C Allen
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, Ontario, K1S 5B6, Canada
| | - Marshall W Ritchie
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, Ontario, K1S 5B6, Canada
| | - Mahmoud I El-Saadi
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, Ontario, K1S 5B6, Canada
| | - Heath A MacMillan
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, Ontario, K1S 5B6, Canada.
| |
Collapse
|
4
|
Li Y, Haynes P, Zhang SL, Yue Z, Sehgal A. Ecdysone acts through cortex glia to regulate sleep in Drosophila. eLife 2023; 12:e81723. [PMID: 36719183 PMCID: PMC9928426 DOI: 10.7554/elife.81723] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 01/30/2023] [Indexed: 02/01/2023] Open
Abstract
Steroid hormones are attractive candidates for transmitting long-range signals to affect behavior. These lipid-soluble molecules derived from dietary cholesterol easily penetrate the brain and act through nuclear hormone receptors (NHRs) that function as transcription factors. To determine the extent to which NHRs affect sleep:wake cycles, we knocked down each of the 18 highly conserved NHRs found in Drosophila adults and report that the ecdysone receptor (EcR) and its direct downstream NHR Eip75B (E75) act in glia to regulate the rhythm and amount of sleep. Given that ecdysone synthesis genes have little to no expression in the fly brain, ecdysone appears to act as a long-distance signal and our data suggest that it enters the brain more at night. Anti-EcR staining localizes to the cortex glia in the brain and functional screening of glial subtypes revealed that EcR functions in adult cortex glia to affect sleep. Cortex glia are implicated in lipid metabolism, which appears to be relevant for actions of ecdysone as ecdysone treatment mobilizes lipid droplets (LDs), and knockdown of glial EcR results in more LDs. In addition, sleep-promoting effects of exogenous ecdysone are diminished in lsd-2 mutant flies, which are lean and deficient in lipid accumulation. We propose that ecdysone is a systemic secreted factor that modulates sleep by stimulating lipid metabolism in cortex glia.
Collapse
Affiliation(s)
- Yongjun Li
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Paula Haynes
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Department of Pharmacology, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Shirley L Zhang
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Zhifeng Yue
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Amita Sehgal
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
5
|
Kamiyama T, Niwa R. Transcriptional Regulators of Ecdysteroid Biosynthetic Enzymes and Their Roles in Insect Development. Front Physiol 2022; 13:823418. [PMID: 35211033 PMCID: PMC8863297 DOI: 10.3389/fphys.2022.823418] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/12/2022] [Indexed: 12/23/2022] Open
Abstract
Steroid hormones are responsible for coordinating many aspects of biological processes in most multicellular organisms, including insects. Ecdysteroid, the principal insect steroid hormone, is biosynthesized from dietary cholesterol or plant sterols. In the last 20 years, a number of ecdysteroidogenic enzymes, including Noppera-bo, Neverland, Shroud, Spook/Spookier, Cyp6t3, Phantom, Disembodied, Shadow, and Shade, have been identified and characterized in molecular genetic studies using the fruit fly Drosophila melanogaster. These enzymes are encoded by genes collectively called the Halloween genes. The transcriptional regulatory network, governed by multiple regulators of transcription, chromatin remodeling, and endoreplication, has been shown to be essential for the spatiotemporal expression control of Halloween genes in D. melanogaster. In this review, we summarize the latest information on transcriptional regulators that are crucial for controlling the expression of ecdysteroid biosynthetic enzymes and their roles in insect development.
Collapse
Affiliation(s)
- Takumi Kamiyama
- College of Biological Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
6
|
Vieira CS, Figueiredo MB, Moraes CDS, Pereira SB, Dyson P, Mello CB, Castro DP, Azambuja P. Azadirachtin interferes with basal immunity and microbial homeostasis in the Rhodnius prolixus midgut. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103864. [PMID: 32918931 DOI: 10.1016/j.dci.2020.103864] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 05/08/2023]
Abstract
Rhodnius prolixus is an insect vector of two flagellate parasites, Trypanosoma rangeli and Trypanosoma cruzi, the latter being the causative agent of Chagas disease in Latin America. The R. prolixus neuroendocrine system regulates the synthesis of the steroid hormone ecdysone, which is essential for not only development and molting but also insect immunity. Knowledge for how this modulates R. prolixus midgut immune responses is essential for understanding interactions between the vector, its parasites and symbiotic microbes. In the present work, we evaluated the effects of ecdysone inhibition on R. prolixus humoral immunity and homeostasis with its microbiota, using the triterpenoid natural product, azadirachtin. Our results demonstrated that azadirachtin promoted a fast and lasting inhibitory effect on expression of both RpRelish, a nuclear factor kappa B transcription factor (NF-kB) component of the IMD pathway, and several antimicrobial peptide (AMP) genes. On the other hand, RpDorsal, encoding the equivalent NF-kB transcription factor in the Toll pathway, and the defC AMP gene were upregulated later in azadirachtin treated insects. The treatment also impacted on proliferation of Serratia marcescens, an abundant commensal bacterium. The simultaneous administration of ecdysone and azadirachtin in R. prolixus blood meals counteracted the azadirachtin effects on insect molting and also on expression of RpRelish and AMPs genes. These results support the direct involvement of ecdysone in regulation of the IMD pathway in the Rhodnius prolixus gut.
Collapse
Affiliation(s)
- Cecilia Stahl Vieira
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil
| | - Marcela Barbosa Figueiredo
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Caroline da Silva Moraes
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Suelen Bastos Pereira
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Paul Dyson
- School of Medicine, Swansea University, Swansea, UK
| | - Cícero Brasileiro Mello
- Laboratório de Biologia de Insetos, Universidade Federal Fluminense, Niteroi, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação Em Ciências e Biotecnologia, Universidade Federal Fluminense, Niteroi, RJ, Brazil
| | - Daniele Pereira Castro
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil
| | - Patrícia Azambuja
- Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação Em Ciências e Biotecnologia, Universidade Federal Fluminense, Niteroi, RJ, Brazil.
| |
Collapse
|
7
|
BmFoxO Gene Regulation of the Cell Cycle Induced by 20-Hydroxyecdysone in BmN-SWU1 Cells. INSECTS 2020; 11:insects11100700. [PMID: 33066376 PMCID: PMC7602224 DOI: 10.3390/insects11100700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Simple Summary Ecdysteroid titer determines the state of the cell cycle in silkworm (Bombyx mori) metamorphosis. However, the mechanism of this process is unclear. In this study, we reported that 20-Hydroxyecdysone (20E) can promote BmFoxO (Bombyx mori Forkhead box protein O) gene expression and induce BmFoxO nuclear translocation in BmN-SWU1 cells. Overexpression of the BmFoxO gene affects cell cycle progression, which results in cell cycle arrest in the G0/G1 phase as well as inhibition of DNA replication. Further investigations showed that the effect of 20E was attenuated after BmFoxO gene knockdown. The findings of this study confirmed that BmFoxO is a key mediator in the cell cycle regulation pathway induced by 20E. This suggests a novel pathway for ecdysteroid-induced cell cycle regulation in the process of silkworm metamorphosis, and it is likely to be conserved between Lepidoptera insects. Abstract Ecdysteroid titer determines the state of the cell cycle in silkworm (Bombyxmori) metamorphosis. However, the mechanism of this process is unclear. In this study, we demonstrated that the BmFoxO gene participates in the regulation of the cell cycle induced by 20-Hydroxyecdysone (20E) in BmN-SWU1 cells. The 20E blocks the cell cycle in the G2/M phase through the ecdysone receptor (EcR) and inhibits DNA replication. The 20E can promote BmFoxO gene expression. Immunofluorescence and Western blot results indicated that 20E can induce BmFoxO nuclear translocation in BmN-SWU1 cells. Overexpression of the BmFoxO gene affects cell cycle progression, which results in cell cycle arrest in the G0/G1 phase as well as inhibition of DNA replication. Knockdown of the BmFoxO gene led to cell accumulation at the G2/M phase. The effect of 20E was attenuated after BmFoxO gene knockdown. These findings increase our understanding of the function of 20E in the regulation of the cell cycle in B. mori.
Collapse
|
8
|
Peirce MJ, Mitchell SN, Kakani EG, Scarpelli P, South A, Shaw WR, Werling KL, Gabrieli P, Marcenac P, Bordoni M, Talesa V, Catteruccia F. JNK signaling regulates oviposition in the malaria vector Anopheles gambiae. Sci Rep 2020; 10:14344. [PMID: 32873857 PMCID: PMC7462981 DOI: 10.1038/s41598-020-71291-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/30/2020] [Indexed: 02/05/2023] Open
Abstract
The reproductive fitness of the Anopheles gambiae mosquito represents a promising target to prevent malaria transmission. The ecdysteroid hormone 20-hydroxyecdysone (20E), transferred from male to female during copulation, is key to An. gambiae reproductive success as it licenses females to oviposit eggs developed after blood feeding. Here we show that 20E-triggered oviposition in these mosquitoes is regulated by the stress- and immune-responsive c-Jun N-terminal kinase (JNK). The heads of mated females exhibit a transcriptional signature reminiscent of a JNK-dependent wounding response, while mating—or injection of virgins with exogenous 20E—selectively activates JNK in the same tissue. RNAi-mediated depletion of JNK pathway components inhibits oviposition in mated females, whereas JNK activation by silencing the JNK phosphatase puckered induces egg laying in virgins. Together, these data identify JNK as a potential conduit linking stress responses and reproductive success in the most important vector of malaria.
Collapse
Affiliation(s)
- Matthew J Peirce
- Dipartimento di Medicina Sperimentale, Università Degli Studi di Perugia, Sant' Andrea Delle Fratte, Piano 4, Edificio D, Piazzale Gambuli 1, 06132, Perugia, Italy.
| | - Sara N Mitchell
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 103, Boston, MA, 02115, USA.,Verily Life Sciences, South San Francisco, CA, 94080, USA
| | - Evdoxia G Kakani
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 103, Boston, MA, 02115, USA.,Verily Life Sciences, South San Francisco, CA, 94080, USA
| | - Paolo Scarpelli
- Dipartimento di Medicina Sperimentale, Università Degli Studi di Perugia, Sant' Andrea Delle Fratte, Piano 4, Edificio D, Piazzale Gambuli 1, 06132, Perugia, Italy
| | - Adam South
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 103, Boston, MA, 02115, USA
| | - W Robert Shaw
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 103, Boston, MA, 02115, USA
| | - Kristine L Werling
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 103, Boston, MA, 02115, USA
| | - Paolo Gabrieli
- Dipartimento di Medicina Sperimentale, Università Degli Studi di Perugia, Sant' Andrea Delle Fratte, Piano 4, Edificio D, Piazzale Gambuli 1, 06132, Perugia, Italy.,Dipartimento Bioscienze, University of Milan, 20133, Milan, Italy
| | - Perrine Marcenac
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 103, Boston, MA, 02115, USA
| | - Martina Bordoni
- Dipartimento di Medicina Sperimentale, Università Degli Studi di Perugia, Sant' Andrea Delle Fratte, Piano 4, Edificio D, Piazzale Gambuli 1, 06132, Perugia, Italy
| | - Vincenzo Talesa
- Dipartimento di Medicina Sperimentale, Università Degli Studi di Perugia, Sant' Andrea Delle Fratte, Piano 4, Edificio D, Piazzale Gambuli 1, 06132, Perugia, Italy
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 103, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Zhang SF, Mao XJ, Jiang WM, Fang ZY. Qian Yang Yu Yin Granule protects against hypertension-induced renal injury by epigenetic mechanism linked to Nicotinamide N-Methyltransferase (NNMT) expression. JOURNAL OF ETHNOPHARMACOLOGY 2020; 255:112738. [PMID: 32147479 DOI: 10.1016/j.jep.2020.112738] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/22/2020] [Accepted: 03/02/2020] [Indexed: 05/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qian Yang Yu Yin Granule (QYYY) is a Chinese herbal formulation. It is used to treat hypertensive nephropathy for decades in China, but it is unknown that the exact mechanism of QYYY on hypertensive nephropathy. AIMS OF STUDY The present study was to elucidate its epigenetic mechanism of QYYY on hypertensive nephropathy. MATERIALS AND METHODS In the current study, HEK293T cells' proliferation induced by Ang II was chosen to observe epigenetic mechanisms of QYYY on renal damage. The cell proliferation was examined by MTT assays and ethynyldeoxyuridine analysis. Cell cycle analysis was performed. After treatment with QYYY, expression of Nicotinamide N-methyltransferase (NNMT), sirtuin1(SIRT1), S-adenosylhomocysteine(SAH), histone H3K4 methylation, and cortactin acetylation(acetyl-cortactin,ac-cortactin) were further investigated by western-blotting and real time PCR. DNA methylation was detected by ELISA. The study also observed the changes of SIRT1, SAH, H3K4 methylation, acetyl-cortactin when NNMT over-expressed by lentivirus transfection. Angiotensin II(Ang II) induced renal damage in spontaneously hypertensive rats(SHR). After eight weeks treatment of QYYY, blood pressure, serum and urine creatinine, and urinary microalbumin(mAlb) were assessed. The concentration of N1 -methylnicotinamide were detected by liquid chromatography with tandem mass spectrometry. The protein of NNMT, ac-cortactin, H3K3me3 were also assessed in vivo. RESULTS QYYY inhibited HEK293T cells' proliferation, down-regulated the expression of NNMT, SAH, acetyl-cortactin and DNA methylation, up-regulated the expression of SIRT1, histone H3K4 trimethylation(H3K4me3). Over-expression of NNMT increased the expression of SAH and acetyl-cortactin, and reduced the expression of SIRT1 and H3K4me3. The study also demonstrated that QYYY promoted urinary creatinine excretion and reduced serum creatinine and urinary mAlb in SHR. QYYY decreased the concentration of N1 -methylnicotinamide in Ang II group. QYYY decreased the protein of NNMT, ac-cortactin and increased H3K4me3 in vivo. CONCLUSION The results showed that QYYY alleviated renal impairment of SHR and inhibited HEK293T cells' proliferation induced by Ang II through the pathway of epigenetic mechanism linked to Nicotinamide N-Methyltransferase (NNMT) expression, including histone methylation, DNA methylation and acetyl-cortactin. This study unveiled a novel molecular mechanism by which QYYY controlled the progression of hypertensive nephropathy.
Collapse
Affiliation(s)
| | | | - Wei-Min Jiang
- Jiangsu Province Hospital of TCM, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Zhu-Yuan Fang
- Jiangsu Province Hospital of TCM, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
10
|
Cinel SD, Hahn DA, Kawahara AY. Predator-induced stress responses in insects: A review. JOURNAL OF INSECT PHYSIOLOGY 2020; 122:104039. [PMID: 32113954 DOI: 10.1016/j.jinsphys.2020.104039] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 04/26/2018] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Predators can induce extreme stress and profound physiological responses in prey. Insects are the most dominant animal group on Earth and serve as prey for many different predators. Although insects have an extraordinary diversity of anti-predator behavioral and physiological responses, predator-induced stress has not been studied extensively in insects, especially at the molecular level. Here, we review the existing literature on physiological predator-induced stress responses in insects and compare what is known about insect stress to vertebrate stress systems. We conclude that many unrelated insects share a baseline pathway of predator-induced stress responses that we refer to as the octopamine-adipokinetic hormone (OAH) axis. We also present best practices for studying predator-induced stress responses in prey insects. We encourage investigators to compare neurophysiological responses to predator-related stress at the organismal, neurohormonal, tissue, and cellular levels within and across taxonomic groups. Studying stress-response variation between ecological contexts and across taxonomic levels will enable the field to build a holistic understanding of, and distinction between, taxon- and stimulus-specific responses relative to universal stress responses.
Collapse
Affiliation(s)
- Scott D Cinel
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA.
| | - Daniel A Hahn
- Department of Entomology & Nematology, University of Florida, Gainesville, FL 32611, USA
| | - Akito Y Kawahara
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
11
|
Petruccelli E, Lark A, Mrkvicka JA, Kitamoto T. Significance of DopEcR, a G-protein coupled dopamine/ecdysteroid receptor, in physiological and behavioral response to stressors. J Neurogenet 2020; 34:55-68. [PMID: 31955616 PMCID: PMC7717672 DOI: 10.1080/01677063.2019.1710144] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/25/2019] [Indexed: 12/18/2022]
Abstract
Organisms respond to various environmental stressors by modulating physiology and behavior to maintain homeostasis. Steroids and catecholamines are involved in the highly conserved signaling pathways crucial for mounting molecular and cellular events that ensure immediate or long-term survival under stress conditions. The insect dopamine/ecdysteroid receptor (DopEcR) is a dual G-protein coupled receptor for the catecholamine dopamine and the steroid hormone ecdysone. DopEcR acts in a ligand-dependent manner, mediating dopaminergic signaling and unconventional "nongenomic" ecdysteroid actions through various intracellular signaling pathways. This unique feature of DopEcR raises the interesting possibility that DopEcR may serve as an integrative hub for complex molecular cascades activated under stress conditions. Here, we review previously published studies of Drosophila DopEcR in the context of stress response and also present newly discovered DopEcR loss-of-function phenotypes under different stress conditions. These findings provide corroborating evidence that DopEcR plays vital roles in responses to various stressors, including heat, starvation, alcohol, courtship rejection, and repeated neuronal stimulation in Drosophila. We further discuss what is known about DopEcR in other insects and DopEcR orthologs in mammals, implicating their roles in stress responses. Overall, this review highlights the importance of dual GPCRs for catecholamines and steroids in modulating physiology and behavior under stress conditions. Further multidisciplinary studies of Drosophila DopEcR will contribute to our basic understanding of the functional roles and underlying mechanisms of this class of GPCRs.
Collapse
Affiliation(s)
- Emily Petruccelli
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Arianna Lark
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - James A Mrkvicka
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA
| | - Toshihiro Kitamoto
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
12
|
Yoshinari Y, Kurogi Y, Ameku T, Niwa R. Endocrine regulation of female germline stem cells in the fruit fly Drosophila melanogaster. CURRENT OPINION IN INSECT SCIENCE 2019; 31:14-19. [PMID: 31109668 DOI: 10.1016/j.cois.2018.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/27/2018] [Accepted: 07/03/2018] [Indexed: 06/09/2023]
Abstract
Germline stem cells (GSCs) are critical for the generation of sperms and eggs in most animals including the fruit fly Drosophila melanogaster. It is well known that self-renewal and differentiation of female D. melanogaster GSCs are regulated by local niche signals. However, little is known about whether and how the GSC number is regulated by paracrine signals. In the last decade, however, multiple humoral factors, including insulin and ecdysteroids, have been recognized as key regulators of female D. melanogaster GSCs. This review paper summarizes the role of humoral factors in female D. melanogaster GSC proliferation and maintenance in response to internal and external conditions, such as nutrients, mating stimuli, and aging.
Collapse
Affiliation(s)
- Yuto Yoshinari
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Yoshitomo Kurogi
- College of Biological Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Tomotsune Ameku
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Ryusuke Niwa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan; AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.
| |
Collapse
|
13
|
Zheng W, Rus F, Hernandez A, Kang P, Goldman W, Silverman N, Tatar M. Dehydration triggers ecdysone-mediated recognition-protein priming and elevated anti-bacterial immune responses in Drosophila Malpighian tubule renal cells. BMC Biol 2018; 16:60. [PMID: 29855367 PMCID: PMC5984326 DOI: 10.1186/s12915-018-0532-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 05/15/2018] [Indexed: 12/03/2022] Open
Abstract
Background Drosophila is a powerful model for the study of factors modulating innate immunity. This study examines the effect of water-loss dehydration on innate immune responsiveness in the Drosophila renal system (Malpighian tubules; MTs), and how this leads to elevated host defense and contributes to immunosenescence. Results A short period of desiccation-elevated peptidoglycan recognition protein-LC (PGRP-LC) expression in MTs, increased antimicrobial peptide (AMP) gene induction, and protected animals from bacterial infection. We show that desiccation increased ecdysone synthesis in MTs, while inhibition of ecdysone synthesis or ecdysone receptor expression, specifically within MTs, prevented induction of PGRP-LC and reduced protection from bacterial infection. Additionally, aged flies are constitutively water-stressed and have elevated levels of ecdysone and PGRP-LC. Conversely, adults aged at high relative humidity show less water loss and have reduced expression of PGRP-LC and AMPs. Conclusions The Drosophila renal system is an important contributor to host defense and can modulate immune responses in an organ autonomous manner, responding to environmental changes such as desiccation. Desiccation primes immune responsiveness by elevating PGRP-LC expression specifically in MTs. In response to desiccation, ecdysone is produced in MTs and acts in a paracrine fashion to increase PGRP-LC expression, immune responsiveness, and improve host defense. This activity of the renal system may contribute to the immunosenescence observed in Drosophila. Electronic supplementary material The online version of this article (10.1186/s12915-018-0532-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenjing Zheng
- Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Florentina Rus
- Department of Medicine, Division of Infectious Diseases, University of Massachusetts, Medical School, Worcester, MA, USA
| | - Ana Hernandez
- Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Ping Kang
- Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - William Goldman
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Neal Silverman
- Department of Medicine, Division of Infectious Diseases, University of Massachusetts, Medical School, Worcester, MA, USA.
| | - Marc Tatar
- Division of Biology and Medicine, Brown University, Providence, RI, USA.
| |
Collapse
|
14
|
Gruntenko NE, Rauschenbach IY. The role of insulin signalling in the endocrine stress response in Drosophila melanogaster: A mini-review. Gen Comp Endocrinol 2018; 258:134-139. [PMID: 28554733 DOI: 10.1016/j.ygcen.2017.05.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/15/2017] [Accepted: 05/24/2017] [Indexed: 12/22/2022]
Abstract
The endocrine stress response in Drosophila includes catecholamines, juvenile hormone (JH), 20-hydroxyecdysone (20E) and the insulin/insulin-like growth factor signalling pathway (IIS). Several changes in the IIS and hormonal status that occur under unfavourable conditions are universal and do not depend on the nature of stress exposure. The reviewed studies on the impact of different element of the Drosophila IIS, such as insulin-like receptor, the homologue of its substrate, CHICO, the transcription factor dFOXO and insulin like peptide 6, on the hormonal status suggest that the IIS controls catecholamine metabolism indirectly via JH, and there is a feedback loop in the interaction of JH and IIS. Moreover, at least one of the ways in which the IIS is involved in the control of stress resistance is mediated through JH/dopamine signalling.
Collapse
Affiliation(s)
- N E Gruntenko
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia.
| | - I Yu Rauschenbach
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| |
Collapse
|
15
|
Stress-induced reproductive arrest in Drosophila occurs through ETH deficiency-mediated suppression of oogenesis and ovulation. BMC Biol 2018; 16:18. [PMID: 29382341 PMCID: PMC5791332 DOI: 10.1186/s12915-018-0484-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/08/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Environmental stressors induce changes in endocrine state, leading to energy re-allocation from reproduction to survival. Female Drosophila melanogaster respond to thermal and nutrient stressors by arresting egg production through elevation of the steroid hormone ecdysone. However, the mechanisms through which this reproductive arrest occurs are not well understood. RESULTS Here we report that stress-induced elevation of ecdysone is accompanied by decreased levels of ecdysis triggering hormone (ETH). Depressed levels of circulating ETH lead to attenuated activity of its targets, including juvenile hormone-producing corpus allatum and, as we describe here for the first time, octopaminergic neurons of the oviduct. Elevation of steroid thereby results in arrested oogenesis, reduced octopaminergic input to the reproductive tract, and consequent suppression of ovulation. ETH mitigates heat or nutritional stress-induced attenuation of fecundity, which suggests that its deficiency is critical to reproductive adaptability. CONCLUSIONS Our findings indicate that, as a dual regulator of octopamine and juvenile hormone release, ETH provides a link between stress-induced elevation of ecdysone levels and consequent reduction in fecundity.
Collapse
|
16
|
Niwa R, Nishimura T. Assembly of insect hormone enthusiasts at Nasu Highland, Japan: Report of the 3rd International Insect Hormone (21st Ecdysone) Workshop. Genes Cells 2017; 23:16-21. [PMID: 29193521 DOI: 10.1111/gtc.12543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/31/2017] [Indexed: 11/27/2022]
Abstract
The 3rd International Insect Hormone (21st Ecdysone) Workshop (IIHW2017) was held in July 2017 at Nasu Highland, Japan. In the 40 years of the workshop's history, this was the first to be held in an Asian country. A total of 109 insect hormone researchers from 18 countries (62 overseas and 47 domestic participants) attended IIHW2017. During the workshop, all participants stayed on-site at the venue's hotel; this was ideal for fostering communication between participants, in particular, interactions between principal investigators and young scientists. The workshop featured one keynote, 64 oral, and 35 poster presentations spanning molecular biology, cell biology, developmental biology, neurobiology, chemical biology, physiology, and ecology of insect hormones, including ecdysteroids, juvenile hormones, and a variety of neuropeptides. The workshop provided an ideal platform for discussing insect hormone biology using not only the typical genetic model insect, the fruit fly Drosophila, but also a diversity of interesting insects, such as the silkworm, the red flour beetle, the cricket, the dragonfly, the social ant, the bloodsucking tick, and so on. The participants succeeded in sharing the latest knowledge in a wide range of insect hormone research fields and in joining active and constructive scientific discussions.
Collapse
Affiliation(s)
- Ryusuke Niwa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takashi Nishimura
- Laboratory for Growth Control Signaling, RIKEN Center for Developmental Biology (CDB), Kobe, Hyogo, Japan
| |
Collapse
|
17
|
Cooperative Control of Ecdysone Biosynthesis in Drosophila by Transcription Factors Séance, Ouija Board, and Molting Defective. Genetics 2017; 208:605-622. [PMID: 29187506 PMCID: PMC5788525 DOI: 10.1534/genetics.117.300268] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022] Open
Abstract
Ecdysteroids are steroid hormones that control many aspects of development and physiology. During larval development, ecdysone is synthesized in an endocrine organ called the prothoracic gland through a series of ecdysteroidogenic enzymes encoded by the Halloween genes. The expression of the Halloween genes is highly restricted and dynamic, indicating that their spatiotemporal regulation is mediated by their tight transcriptional control. In this study, we report that three zinc finger-associated domain (ZAD)-C2H2 zinc finger transcription factors—Séance (Séan), Ouija board (Ouib), and Molting defective (Mld)—cooperatively control ecdysone biosynthesis in the fruit fly Drosophila melanogaster. Séan and Ouib act in cooperation with Mld to positively regulate the transcription of neverland and spookier, respectively, two Halloween genes. Remarkably, loss-of-function mutations in séan, ouib, or mld can be rescued by the expression of neverland, spookier, or both, respectively. These results suggest that the three transcription factors have distinct roles in coordinating the expression of just two genes in Drosophila. Given that neverland and spookier are located in constitutive heterochromatin, Séan, Ouib, and Mld represent the first example of a transcription factor subset that regulates genes located in constitutive heterochromatin.
Collapse
|
18
|
Imura E, Yoshinari Y, Shimada-Niwa Y, Niwa R. Protocols for Visualizing Steroidogenic Organs and Their Interactive Organs with Immunostaining in the Fruit Fly Drosophila melanogaster. J Vis Exp 2017. [PMID: 28448012 DOI: 10.3791/55519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In multicellular organisms, a small group of cells is endowed with a specialized function in their biogenic activity, inducing a systemic response to growth and reproduction. In insects, the larval prothoracic gland (PG) and the adult female ovary play essential roles in biosynthesizing the principal steroid hormones called ecdysteroids. These ecdysteroidogenic organs are innervated from the nervous system, through which the timing of biosynthesis is affected by environmental cues. Here we describe a protocol for visualizing ecdysteroidogenic organs and their interactive organs in larvae and adults of the fruit fly Drosophila melanogaster, which provides a suitable model system for studying steroid hormone biosynthesis and its regulatory mechanism. Skillful dissection allows us to maintain the positions of ecdysteroidogenic organs and their interactive organs including the brain, the ventral nerve cord, and other tissues. Immunostaining with antibodies against ecdysteroidogenic enzymes, along with transgenic fluorescence proteins driven by tissue-specific promoters, are available to label ecdysteroidogenic cells. Moreover, the innervations of the ecdysteroidogenic organs can also be labeled by specific antibodies or a collection of GAL4 drivers in various types of neurons. Therefore, the ecdysteroidogenic organs and their neuronal connections can be visualized simultaneously by immunostaining and transgenic techniques. Finally, we describe how to visualize germline stem cells, whose proliferation and maintenance are controlled by ecdysteroids. This method contributes to comprehensive understanding of steroid hormone biosynthesis and its neuronal regulatory mechanism.
Collapse
Affiliation(s)
- Eisuke Imura
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Yuto Yoshinari
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Yuko Shimada-Niwa
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba;
| | - Ryusuke Niwa
- Faculty of Life and Environmental Sciences, University of Tsukuba;
| |
Collapse
|
19
|
Ng FS, Sengupta S, Huang Y, Yu AM, You S, Roberts MA, Iyer LK, Yang Y, Jackson FR. TRAP-seq Profiling and RNAi-Based Genetic Screens Identify Conserved Glial Genes Required for Adult Drosophila Behavior. Front Mol Neurosci 2016; 9:146. [PMID: 28066175 PMCID: PMC5177635 DOI: 10.3389/fnmol.2016.00146] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/30/2016] [Indexed: 01/06/2023] Open
Abstract
Although, glial cells have well characterized functions in the developing and mature brain, it is only in the past decade that roles for these cells in behavior and plasticity have been delineated. Glial astrocytes and glia-neuron signaling, for example, are now known to have important modulatory functions in sleep, circadian behavior, memory and plasticity. To better understand mechanisms of glia-neuron signaling in the context of behavior, we have conducted cell-specific, genome-wide expression profiling of adult Drosophila astrocyte-like brain cells and performed RNA interference (RNAi)-based genetic screens to identify glial factors that regulate behavior. Importantly, our studies demonstrate that adult fly astrocyte-like cells and mouse astrocytes have similar molecular signatures; in contrast, fly astrocytes and surface glia-different classes of glial cells-have distinct expression profiles. Glial-specific expression of 653 RNAi constructs targeting 318 genes identified multiple factors associated with altered locomotor activity, circadian rhythmicity and/or responses to mechanical stress (bang sensitivity). Of interest, 1 of the relevant genes encodes a vesicle recycling factor, 4 encode secreted proteins and 3 encode membrane transporters. These results strongly support the idea that glia-neuron communication is vital for adult behavior.
Collapse
Affiliation(s)
- Fanny S Ng
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine Boston, MA, USA
| | - Sukanya Sengupta
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine Boston, MA, USA
| | - Yanmei Huang
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine Boston, MA, USA
| | - Amy M Yu
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine Boston, MA, USA
| | - Samantha You
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine Boston, MA, USA
| | - Mary A Roberts
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine Boston, MA, USA
| | - Lakshmanan K Iyer
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine Boston, MA, USA
| | - Yongjie Yang
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine Boston, MA, USA
| | - F Rob Jackson
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine Boston, MA, USA
| |
Collapse
|
20
|
The Ecdysone and Notch Pathways Synergistically Regulate Cut at the Dorsal-Ventral Boundary in Drosophila Wing Discs. J Genet Genomics 2016; 43:179-86. [PMID: 27117286 DOI: 10.1016/j.jgg.2016.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/05/2016] [Accepted: 03/04/2016] [Indexed: 11/23/2022]
Abstract
Metazoan development requires coordination of signaling pathways to regulate patterns of gene expression. In Drosophila, the wing imaginal disc provides an excellent model for the study of how signaling pathways interact to regulate pattern formation. The determination of the dorsal-ventral (DV) boundary of the wing disc depends on the Notch pathway, which is activated along the DV boundary and induces the expression of the homeobox transcription factor, Cut. Here, we show that Broad (Br), a zinc-finger transcription factor, is also involved in regulating Cut expression in the DV boundary region. However, Br expression is not regulated by Notch signaling in wing discs, while ecdysone signaling is the upstream signal that induces Br for Cut upregulation. Also, we find that the ecdysone-Br cascade upregulates cut-lacZ expression, a reporter containing a 2.7 kb cut enhancer region, implying that ecdysone signaling, similar to Notch, regulates cut at the transcriptional level. Collectively, our findings reveal that the Notch and ecdysone signaling pathways synergistically regulate Cut expression for proper DV boundary formation in the wing disc. Additionally, we show br promotes Delta, a Notch ligand, near the DV boundary to suppress aberrant high Notch activity, indicating further interaction between the two pathways for DV patterning of the wing disc.
Collapse
|
21
|
Uryu O, Ameku T, Niwa R. Recent progress in understanding the role of ecdysteroids in adult insects: Germline development and circadian clock in the fruit fly Drosophila melanogaster. ZOOLOGICAL LETTERS 2015; 1:32. [PMID: 26605077 PMCID: PMC4657291 DOI: 10.1186/s40851-015-0031-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/27/2015] [Indexed: 05/26/2023]
Abstract
Steroid hormones are one of the major bioactive molecules responsible for the coordinated regulation of biological processes in multicellular organisms. In insects, the principal steroid hormones are ecdysteroids, including 20-hydroxyecdysone. A great deal of research has investigated the roles played by ecdysteroids during insect development, especially the regulatory role in inducing molting and metamorphosis. However, little attention has been paid to the roles of these hormones in post-developmental processes, despite their undisputed presence in the adult insect body. Recently, molecular genetics of the fruit fly Drosophila melanogaster has revealed that ecdysteroid biosynthesis and signaling are indeed active in adult insects, and involved in diverse processes, including oogenesis, stress resistance, longevity, and neuronal activity. In this review, we focus on very recent progress in the understanding of two adult biological events that require ecdysteroid biosynthesis and/or signaling in Drosophila at the molecular level: germline development and the circadian clock.
Collapse
Affiliation(s)
- Outa Uryu
- />Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572 Japan
| | - Tomotsune Ameku
- />Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572 Japan
| | - Ryusuke Niwa
- />Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572 Japan
- />Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572 Japan
- />PRESTO, Japan Science and Technology Agency, Honcho 4-1-8, Kawaguchi, Saitama 332-0012 Japan
| |
Collapse
|
22
|
Bozzolan F, Duportets L, Limousin D, Wycke MA, Demondion E, François A, Abrieux A, Debernard S. Synaptotagmin I, a molecular target for steroid hormone signaling controlling the maturation of sexual behavior in an insect. FEBS J 2015; 282:1432-44. [DOI: 10.1111/febs.13231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/19/2014] [Accepted: 02/10/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Françoise Bozzolan
- Département d'Ecologie Sensorielle; UMR 1392; Institut d'Ecologie et des Sciences de l'Environnement de Paris; Université Paris VI; France
| | - Line Duportets
- Département d'Ecologie Sensorielle; UMR 1392; Institut d'Ecologie et des Sciences de l'Environnement de Paris; Université Paris VI; France
- Service d'Enseignement de Biologie Animale; Université Paris-Sud; Orsay France
| | - Denis Limousin
- Département d'Ecologie Sensorielle; UMR 1392; Institut d'Ecologie et des Sciences de l'Environnement de Paris; INRA; Versailles France
| | - Marie-Anne Wycke
- Département d'Ecologie Sensorielle; UMR 1392; Institut d'Ecologie et des Sciences de l'Environnement de Paris; INRA; Versailles France
| | - Elodie Demondion
- Département d'Ecologie Sensorielle; UMR 1392; Institut d'Ecologie et des Sciences de l'Environnement de Paris; INRA; Versailles France
| | - Adrien François
- INRA; UR1197; Jouy-en-Josas France
- Université de Versailles; France
| | - Antoine Abrieux
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM); Université d'Angers; UPRES-EA 2647 USC INRA 1330; France
| | - Stéphane Debernard
- Département d'Ecologie Sensorielle; UMR 1392; Institut d'Ecologie et des Sciences de l'Environnement de Paris; Université Paris VI; France
| |
Collapse
|
23
|
Okabe F, Nakagiri Y, Yamada T, Kose H. Laser induced injury caused hyperglycemia-like effect in Drosophila larva: a possible insect model for posttraumatic diabetes. J Vet Med Sci 2015; 77:601-4. [PMID: 25649060 PMCID: PMC4478742 DOI: 10.1292/jvms.14-0631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Diabetic patients need particular care in case of infection, digestive disorder or
external injury, because external stress often exasperates the glucose metabolism, which
is known as “sick day management”. In addition, severe trauma can be a cause of
hyperglycemia with insulin resistance. In spite of critical component of the treatment,
the precise mechanisms of how trauma develops posttraumatic diabetes remain unknown. Here,
we ablated body wall muscles in Drosophila larvae by laser beam and found
that the level of trehalose, the principal sugar circulating in the hemolymph or in the
tissues of most insects, was increased. The model may provide a helpful tool to understand
the relationship between trauma and sugar metabolism.
Collapse
Affiliation(s)
- Fumio Okabe
- Department of Life Science, Division of Natural Sciences, International Christian University, Mitaka, Tokyo 181-8585, Japan
| | | | | | | |
Collapse
|
24
|
Sexual transfer of the steroid hormone 20E induces the postmating switch in Anopheles gambiae. Proc Natl Acad Sci U S A 2014; 111:16353-8. [PMID: 25368171 DOI: 10.1073/pnas.1410488111] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Female insects generally mate multiple times during their lives. A notable exception is the female malaria mosquito Anopheles gambiae, which after sex loses her susceptibility to further copulation. Sex in this species also renders females competent to lay eggs developed after blood feeding. Despite intense research efforts, the identity of the molecular triggers that cause the postmating switch in females, inducing a permanent refractoriness to further mating and triggering egg-laying, remains elusive. Here we show that the male-transferred steroid hormone 20-hydroxyecdysone (20E) is a key regulator of monandry and oviposition in An. gambiae. When sexual transfer of 20E is impaired by partial inactivation of the hormone and inhibition of its biosynthesis in males, oviposition and refractoriness to further mating in the female are strongly reduced. Conversely, mimicking sexual delivery by injecting 20E into virgin females switches them to an artificial mated status, triggering egg-laying and reducing susceptibility to copulation. Sexual transfer of 20E appears to incapacitate females physically from receiving seminal fluids by a second male. Comparative analysis of microarray data from females after mating and after 20E treatment indicates that 20E-regulated molecular pathways likely are implicated in the postmating switch, including cytoskeleton and musculature-associated genes that may render the atrium impenetrable to additional mates. By revealing signals and pathways shaping key processes in the An. gambiae reproductive biology, our data offer new opportunities for the control of natural populations of malaria vectors.
Collapse
|
25
|
Evans PD, Bayliss A, Reale V. GPCR-mediated rapid, non-genomic actions of steroids: comparisons between DmDopEcR and GPER1 (GPR30). Gen Comp Endocrinol 2014; 195:157-63. [PMID: 24188886 DOI: 10.1016/j.ygcen.2013.10.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
Abstract
Steroid hormones classically mediate their actions by binding to intracellular receptor proteins that migrate to the nucleus and act as transcription factors to change gene expression. However, evidence is now accumulating for rapid, non-genomic effects of steroids. There is considerable controversy over the mechanisms underlying such effects. In a number of cases evidence has been presented for the direct activation of G-protein coupled receptors (GPCRs) by steroids, either at the plasma membrane, or at intracellular locations. Here, we will focus on the non-genomic actions of ecdysteroids on a Drosophila GPCR, DopEcR (CG18314), which can be activated by both ecdysone and the catecholamine, dopamine. We will also point out parallels between this system and the activation of the vertebrate GPCR, GPER1 (GPR30), which is thought to be activated by 17β-estradiol. We propose that the cellular localization and signalling properties of both DopEcR and GPER1 may be cell specific and depend upon their interactions with both accessory molecules and signalling pathways.
Collapse
Affiliation(s)
- Peter D Evans
- The Inositide Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| | - Asha Bayliss
- The Inositide Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| | - Vincenzina Reale
- The Inositide Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
26
|
Duportets L, Maria A, Vitecek S, Gadenne C, Debernard S. Steroid hormone signaling is involved in the age-dependent behavioral response to sex pheromone in the adult male moth Agrotis ipsilon. Gen Comp Endocrinol 2013; 186:58-66. [PMID: 23474331 DOI: 10.1016/j.ygcen.2013.02.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 10/27/2022]
Abstract
In most animals, including insects, male reproduction depends on the detection and processing of female-produced sex pheromones. In the male moth, Agrotis ipsilon, both behavioral response and neuronal sensitivity in the primary olfactory center, the antennal lobe (AL), to female sex pheromone are age- and hormone-dependent. In many animal species, steroids are known to act at the brain level to modulate the responsiveness to sexually relevant chemical cues. We aimed to address the hypothesis that the steroidal system and in particular 20-hydroxyecdysone (20E), the main insect steroid hormone, might also be involved in this olfactory plasticity. Therefore, we first cloned the nuclear ecdysteroid receptor EcR (AipsEcR) and its partner Ultraspiracle (AipsUSP) of A. ipsilon, the expression of which increased concomitantly with age in ALs. Injection of 20E into young sexually immature males led to an increase in both responsiveness to sex pheromone and amount of AipsEcR and AipsUSP in their ALs. Conversely, the behavioral response decreased in older, sexually mature males after injection of cucurbitacin B (CurB), an antagonist of the 20E/EcR/USP complex. Also, the amount of AipsEcR and AipsUSP significantly declined after treatment with CurB. These results suggest that 20E is involved in the expression of sexual behavior via the EcR/USP signaling pathway, probably acting on central pheromone processing in A. ipsilon.
Collapse
Affiliation(s)
- Line Duportets
- UMR 1272, UPMC-INRA, Physiologie de l'Insecte: Signalisation et Communication, Université Paris VI, Bâtiment A, 7 quai Saint Bernard, 75005 Paris, France
| | | | | | | | | |
Collapse
|
27
|
Rus F, Flatt T, Tong M, Aggarwal K, Okuda K, Kleino A, Yates E, Tatar M, Silverman N. Ecdysone triggered PGRP-LC expression controls Drosophila innate immunity. EMBO J 2013; 32:1626-38. [PMID: 23652443 DOI: 10.1038/emboj.2013.100] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 04/04/2013] [Indexed: 01/09/2023] Open
Abstract
Throughout the animal kingdom, steroid hormones have been implicated in the defense against microbial infection, but how these systemic signals control immunity is unclear. Here, we show that the steroid hormone ecdysone controls the expression of the pattern recognition receptor PGRP-LC in Drosophila, thereby tightly regulating innate immune recognition and defense against bacterial infection. We identify a group of steroid-regulated transcription factors as well as two GATA transcription factors that act as repressors and activators of the immune response and are required for the proper hormonal control of PGRP-LC expression. Together, our results demonstrate that Drosophila use complex mechanisms to modulate innate immune responses, and identify a transcriptional hierarchy that integrates steroid signalling and immunity in animals.
Collapse
Affiliation(s)
- Florentina Rus
- Department of Medicine, Division of Infectious Disease, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Vitecek S, Maria A, Blais C, Duportets L, Gaertner C, Dufour MC, Siaussat D, Debernard S, Gadenne C. Is the rapid post-mating inhibition of pheromone response triggered by ecdysteroids or other factors from the sex accessory glands in the male moth Agrotis ipsilon? Horm Behav 2013; 63:700-8. [PMID: 23562716 DOI: 10.1016/j.yhbeh.2013.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 03/16/2013] [Accepted: 03/20/2013] [Indexed: 01/30/2023]
Abstract
In many animals, male copulation is dependent on the detection and processing of female-produced sex pheromones, which is generally followed by a sexual refractory post-ejaculatory interval (PEI). In the male moth, Agrotis ipsilon, this PEI is characterized by a transient post-mating inhibition of behavioral and central nervous responses to sex pheromone, which prevents males from re-mating until they have refilled their reproductive tracts for a potential new ejaculate. However, the timing and possible factors inducing this rapid olfactory switch-off are still unknown. Here, we determined the initial time delay and duration of the PEI. Moreover, we tested the hypothesis that the brain, the testis and/or the sex accessory glands (SAGs) could produce a factor inducing the PEI. Lastly, we investigated the possible involvement of ecdysteroids, hormones essential for development and reproduction in insects, in this olfactory plasticity. Using brain and SAG cross-injections in virgin and newly-mated males, surgical treatments, wind tunnel behavioral experiments and EIA quantifications of ecdysteroids, we show that the PEI starts very shortly after the onset of copulation, and that SAGs contain a factor, which is produced/accumulated after copulation to induce the PEI. Moreover, SAGs were found to be the main source of ecdysteroids, whose concentration decreased after mating, whereas it increased in the haemolymph. 20-Hydroxyecdysone (20E) was identified as the major ecdysteroid in SAGs of A. ipsilon males. Finally, 20E injections did not reduce the behavioral pheromone response of virgin males. Altogether our data indicate that 20E is probably not involved in the PEI.
Collapse
Affiliation(s)
- Simon Vitecek
- UMR 1272, UPMC-INRA, Physiologie de l'Insecte, Signalisation et Communication, INRA Route de Saint-Cyr, F-78000, Versailles, France
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Negri I. Wolbachia as an "infectious" extrinsic factor manipulating host signaling pathways. Front Endocrinol (Lausanne) 2011; 2:115. [PMID: 22654845 PMCID: PMC3356060 DOI: 10.3389/fendo.2011.00115] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 12/21/2011] [Indexed: 11/13/2022] Open
Abstract
Wolbachia pipientis is a widespread endosymbiont of filarial nematodes and arthropods. While in worms the symbiosis is obligate, in arthropods Wolbachia induces several reproductive manipulations (i.e., cytoplasmic incompatibility, parthenogenesis, feminization of genetic males, and male-killing) in order to increase the number of infected females. These various phenotypic effects may be linked to differences in host physiology, and in particular to endocrine-related processes governing growth, development, and reproduction. Indeed, a number of evidences links Wolbachia symbiosis to insulin and ecdysteroid signaling, two multilayered pathways known to work antagonistically, jointly or even independently for the regulation of different molecular networks. At present it is not clear whether Wolbachia manipulates one pathway, thus affecting other related metabolic networks, or if it targets both pathways, even interacting at several points in each of them. Interestingly, in view of the interplay between hormone signaling and epigenetic machinery, a direct influence of the "infection" on hormonal signaling involving ecdysteroids might be achievable through the manipulation of the host's epigenetic pathways.
Collapse
Affiliation(s)
- Ilaria Negri
- Department of Exploitation and Protection of the Agricultural and Forestry Resources, Università di TorinoGrugliasco, Italy
- Koiné – Environmental ConsultingParma, Italy
- *Correspondence: Ilaria Negri, Department of Exploitation and Protection of the Agricultural and Forestry Resources, Università di Torino, Via L. da Vinci, 44, 10095 Grugliasco, Italy. e-mail:
| |
Collapse
|