1
|
Ludlow K, Falck-Zepeda J, Smyth SJ. Risk-appropriate, science-based innovation regulations are important. Trends Biotechnol 2025; 43:502-510. [PMID: 40015247 DOI: 10.1016/j.tibtech.2024.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 03/01/2025]
Abstract
Inappropriate and often politicized regulations in many countries have limited the global benefits of agricultural biotechnology. The Cartagena Protocol on Biosafety (CPB) has proven to be one of the biggest barriers to biotechnological innovations, especially for food-insecure countries. The global movement of international agreements, such as the CPB, Convention on Biological Diversity, and Global Biodiversity Framework, contribute to the erosion of evidence-based regulation, enabling the development and spread of precaution-based regulatory frameworks. Despite 50 years of accumulated knowledge about the safety of genetic modification technology application since the Asilomar Conference, regulatory requirements are increasing, slowing innovation rates. This article discusses the importance of risk-appropriate regulation for innovation efficiency to avoid precaution-based regulation stifling innovation.
Collapse
Affiliation(s)
- Karinne Ludlow
- Faculty of Law, Monash University, Clayton, Victoria, Australia
| | - Jose Falck-Zepeda
- Innovation Policy and Scaling Unit, International Food Policy Research Institute (IFPRI), Washington, DC, USA
| | - Stuart J Smyth
- Department of Agricultural and Resource Economics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
2
|
R S, Nyika J, Yadav S, Mackolil J, G RP, Workie E, Ragupathy R, Ramasundaram P. Genetically modified foods: bibliometric analysis on consumer perception and preference. GM CROPS & FOOD 2022; 13:65-85. [PMID: 35400312 PMCID: PMC9009926 DOI: 10.1080/21645698.2022.2038525] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 01/05/2023]
Abstract
In this study, we present the bibliometric trends emerging from research outputs on consumer perception and preference for genetically modified (GM) foods and policy prescriptions for enabling the consumption using VOSviewer visualization software. Consumers' positive response is largely influenced by the decision of the governments to ban or approve the GM crops cultivation. Similarly, the public support increases when the potential benefits of the technology are well articulated, consumption increases with a price discount, people's trust on the government and belief in science increases with a positive influence by the media. Europe and the USA are the first region and country, respectively, in terms of the number of active institutions per research output, per-capita GDP publication and citations. We suggest research-, agri-food industries-, and society-oriented policies to be implemented by the stakeholders to ensure the safety of GM foods, encourage consumer-based studies, and increase public awareness toward these food products.
Collapse
Affiliation(s)
- Sendhil R
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Joan Nyika
- Technical University of Kenya, Nairobi, Kenya
| | - Sheel Yadav
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | - Rama Prashat G
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Endashaw Workie
- School of Environmental science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Raja Ragupathy
- Lethbridge Research and Development Centre, Agriculture & Agri Food Canada, Alberta, Canada
| | - P. Ramasundaram
- National Agricultural Higher Education Project, Indian Council of Agricultural Research, New Delhi, India
| |
Collapse
|
3
|
Raybould A. New Frontiers in Biosafety and Biosecurity. Front Bioeng Biotechnol 2021; 9:727386. [PMID: 34368110 PMCID: PMC8334000 DOI: 10.3389/fbioe.2021.727386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/02/2021] [Indexed: 12/27/2022] Open
Affiliation(s)
- Alan Raybould
- Global Academy of Agriculture and Food Security and the Innogen Institute, Old Surgeons’ Hall, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Herman RA, Storer NP, Anderson JA, Amijee F, Cnudde F, Raybould A. Transparency in risk-disproportionate regulation of modern crop-breeding techniques. GM CROPS & FOOD 2021; 12:376-381. [PMID: 34107854 PMCID: PMC8204963 DOI: 10.1080/21645698.2021.1934353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Despite over 25 years of safe deployment of genetically engineered crops, the number, complexity, and scope of regulatory studies required for global approvals continue to increase devoid of adequate scientific justification. Recently, there have been calls to further expand the scope of study and data requirements to improve public acceptance. However, increased regulation can actually generate consumer distrust due to the misperception that risks are high. We believe risk-disproportionate regulation as a means to advocate for acceptance of technology is counterproductive, even though some regulatory authorities believe it part of their mandate. To help avoid public distrust, the concept of regulatory transparency to demystify regulatory decision-making should be extended to clearly justifying specific regulatory requirements as: 1) risk-driven (i.e., proportionately addressing increased risk compared with traditional breeding), or 2) advocacy-driven (i.e., primarily addressing consumer concerns and acceptance). Such transparency in the motivation for requiring risk-disproportionate studies would: 1) lessen over-prescriptive regulation, 2) save public and private resources, 3) make beneficial products and technologies available to society sooner, 4) reduce needless animal sacrifice, 5) improve regulatory decision-making regarding safety, and 6) lessen public distrust that is generated by risk-disproportionate regulation.
Collapse
Affiliation(s)
- Rod A Herman
- Regulatory and Stewardship, Corteva Agriscience, Indianapolis, Indiana, USA
| | - Nicholas P Storer
- Regulatory and Stewardship, Corteva Agriscience, Indianapolis, Indiana, USA
| | | | - Firoz Amijee
- Regulatory and Stewardship, Corteva Agriscience, Brussels, Belgium
| | - Filip Cnudde
- Regulatory and Stewardship, Corteva Agriscience, Brussels, Belgium
| | - Alan Raybould
- Global Academy of Agriculture and Food Security, the University of Edinburgh, Midlothian, UK.,Science, Technology and Innovation Studies, the University of Edinburgh EH1 1LZ, UK
| |
Collapse
|
5
|
Baghbani-Arani A, Poureisa M, Alekajbaf H, Borz-Abad RK, Khodadadi-Dashtaki K. Investigating the status of transgenic crops in Iran in terms of cultivation, consumption, laws and rights in comparison with the world. Sci Rep 2021; 11:9204. [PMID: 33911171 PMCID: PMC8080789 DOI: 10.1038/s41598-021-88713-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/14/2021] [Indexed: 12/02/2022] Open
Abstract
Recently, there has been a development in transgenic technologies in many countries to meet nutritional needs of increasing worlds҆ population. However, there are some concerns about possible risks in the field of growing genetically modified (GM) food, such as threats of biodiversity and food allergies making their use a challenge. Therefore, the present study was conducted to investigate the economic effects and political scopes of GM foods in production sector and policies made by different countries in the world and Iran. Moreover, essential (practical and legal) solutions and guidelines were provided for production and consumption of GM foods, which are useful for governmental entities, Iranian politicians, and consumers' rights. The latest situation of transgenic crops in the countries with which Iran has the highest exchange of agricultural products (including Turkey, Pakistan, and the European Union (EU)) was also studied. Although, Iran has been one of leading Asian countries not only in the field of transfer of technical knowledge of genetic engineering, but also in development of the specialized knowledge of biosafety, and despite production of several transgenic plant lines by Iranian researchers, unfortunately no GM crop has obtained release and cultivation license except for GM rice that its growing process was banned after change of government. According to findings of this study, in Iran, growing and production process of GM crops does not follow the global trend owing to scientific and legal infrastructures.
Collapse
Affiliation(s)
| | - Mona Poureisa
- Department of Agriculture Science, Payame Noor University, Tehran, Iran
| | | | | | | |
Collapse
|
6
|
Raybould A. Hypothesis-Led Ecological Risk Assessment of GM Crops to Support Decision-Making About Product Use. GMOS 2020. [DOI: 10.1007/978-3-030-53183-6_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
Mastroeni M, Mittra J, Tait J. Political influences on biotechnology-based innovation for European agriculture: risk-assessment and risk management. TECHNOLOGY ANALYSIS & STRATEGIC MANAGEMENT 2019. [DOI: 10.1080/09537325.2019.1573983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Michele Mastroeni
- Strategic Foresight and Innovation, OCAD University, Toronto, Canada
| | - James Mittra
- Innogen Institute, The University of Edinburgh, Edinburgh, UK
| | - Joyce Tait
- Innogen Institute, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
Ecological networks reveal resilience of agro-ecosystems to changes in farming management. Nat Ecol Evol 2018; 3:260-264. [PMID: 30598528 DOI: 10.1038/s41559-018-0757-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/19/2018] [Indexed: 11/08/2022]
Abstract
Sustainable management of ecosystems and growth in agricultural productivity is at the heart of the United Nations' Sustainable Development Goals for 2030. New management regimes could revolutionize agricultural production, but require an evaluation of the risks and opportunities. Replacing existing conventional weed management with genetically modified, herbicide-tolerant (GMHT) crops, for example, might reduce herbicide applications and increase crop yields, but remains controversial owing to concerns about potential impacts on biodiversity. Until now, such new regimes have been assessed at the species or assemblage level, whereas higher-level ecological network effects remain largely unconsidered. Here, we conduct a large-scale network analysis of invertebrate communities across 502 UK farm sites to GMHT management in different crop types. We find that network-level properties were overwhelmingly shaped by crop type, whereas network structure and robustness were apparently unaltered by GMHT management. This suggests that taxon-specific effects reported previously did not escalate into higher-level systemic structural change in the wider agricultural ecosystem. Our study highlights current limitations of autecological assessments of effect in agriculture in which species interactions and potential compensatory effects are overlooked. We advocate adopting the more holistic system-level evaluations that we explore here, which complement existing assessments for meeting our future agricultural needs.
Collapse
|
9
|
Chatterjee S, Deb U, Datta S, Walther C, Gupta DK. Common explosives (TNT, RDX, HMX) and their fate in the environment: Emphasizing bioremediation. CHEMOSPHERE 2017; 184:438-451. [PMID: 28618276 DOI: 10.1016/j.chemosphere.2017.06.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/10/2017] [Accepted: 06/03/2017] [Indexed: 06/07/2023]
Abstract
Explosive materials are energetic substances, when released into the environment, contaminate by posing toxic hazards to environment and biota. Throughout the world, soils are contaminated by such contaminants either due to manufacturing operations, military activities, conflicts of different levels, open burning/open detonation (OB/OD), dumping of munitions etc. Among different forms of chemical explosives, 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro- 1,3,5,7-tetrazocine (HMX) are most common. These explosives are highly toxic as USEPA has recommended restrictions for lifetime contact through drinking water. Although, there are several utilitarian aspects in anthropogenic activities, however, effective remediation of explosives is very important. This review article emphasizes the details of appropriate practices to ameliorate the contamination. Critical evaluation has also been made to encompass the recent knowledge and advancement about bioremediation and phytoremediation of explosives (especially TNT, RDX and HMX) along with the molecular mechanisms of biodegradation.
Collapse
Affiliation(s)
- Soumya Chatterjee
- Defence Research Laboratory, DRDO, Post Bag No. 02, Tezpur, 784001, Assam, India
| | - Utsab Deb
- Defence Research Laboratory, DRDO, Post Bag No. 02, Tezpur, 784001, Assam, India
| | - Sibnarayan Datta
- Defence Research Laboratory, DRDO, Post Bag No. 02, Tezpur, 784001, Assam, India
| | - Clemens Walther
- Gottfried Wilhelm Leibniz Universität Hannover, Institut für Radioökologie und Strahlenschutz (IRS), Herrenhäuser Str. 2, Gebäude 4113, 30419, Hannover, Germany
| | - Dharmendra K Gupta
- Gottfried Wilhelm Leibniz Universität Hannover, Institut für Radioökologie und Strahlenschutz (IRS), Herrenhäuser Str. 2, Gebäude 4113, 30419, Hannover, Germany.
| |
Collapse
|
10
|
Abstract
Genome editing of crop plants is a rapidly advancing technology whereby targeted mutations can be introduced into a plant genome in a highly specific manner and with great precision. For the most part, the technology does not incorporate transgenic modifications and is far superior to conventional chemical mutagenesis. In this study we bring into focus some of the underlying differences between the 3 existing technologies: classical plant breeding, genetic modification and genome editing. We discuss some of the main achievements from each area and highlight their common characteristics and individual limitations, while emphasizing the unique capabilities of genome editing. We subsequently examine the possible regulatory mechanisms which governments may be inclined to use in assessing the status of genome edited products. If assessed on the basis of their phenotype rather than the process by which they are obtained, these products will be categorized as equivalent to those produced by classical mutagenesis. This would mean that genome edited products will not be subject to the restrictions imposed on genetically modified products, except in some cases where the mutation involves a large sequence insertion into the genome. We conclude by examining the potential of societal acceptance of genome editing technology, reinforced by a scientific perspective on promoting such acceptance.
Collapse
Affiliation(s)
| | - Heather Ray
- a Jene Quests Corporation , Saskatoon , SK , Canada
| |
Collapse
|
11
|
Devos Y, Gaugitsch H, Gray AJ, Maltby L, Martin J, Pettis JS, Romeis J, Rortais A, Schoonjans R, Smith J, Streissl F, Suter GW. Advancing environmental risk assessment of regulated products under EFSA's remit. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.s0508] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
| | | | | | | | | | | | - Jörg Romeis
- Institute for Sustainability Sciences, Agroscope
| | | | | | - Joe Smith
- Advisor in Regulation, Science and Government (formerly Office of the Gene Technology Regulator)
| | | | | |
Collapse
|
12
|
Lamichhane JR, Devos Y, Beckie HJ, Owen MDK, Tillie P, Messéan A, Kudsk P. Integrated weed management systems with herbicide-tolerant crops in the European Union: lessons learnt from home and abroad. Crit Rev Biotechnol 2016; 37:459-475. [PMID: 27173634 DOI: 10.1080/07388551.2016.1180588] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Conventionally bred (CHT) and genetically modified herbicide-tolerant (GMHT) crops have changed weed management practices and made an important contribution to the global production of some commodity crops. However, a concern is that farm management practices associated with the cultivation of herbicide-tolerant (HT) crops further deplete farmland biodiversity and accelerate the evolution of herbicide-resistant (HR) weeds. Diversification in crop systems and weed management practices can enhance farmland biodiversity, and reduce the risk of weeds evolving herbicide resistance. Therefore, HT crops are most effective and sustainable as a component of an integrated weed management (IWM) system. IWM advocates the use of multiple effective strategies or tactics to manage weed populations in a manner that is economically and environmentally sound. In practice, however, the potential benefits of IWM with HT crops are seldom realized because a wide range of technical and socio-economic factors hamper the transition to IWM. Here, we discuss the major factors that limit the integration of HT crops and their associated farm management practices in IWM systems. Based on the experience gained in countries where CHT or GMHT crops are widely grown and the increased familiarity with their management, we propose five actions to facilitate the integration of HT crops in IWM systems within the European Union.
Collapse
Affiliation(s)
| | - Yann Devos
- b GMO Unit, European Food Safety Authority (EFSA) , Parma , Italy
| | - Hugh J Beckie
- c Agriculture and Agri-Food Canada , Saskatoon , Saskatchewan , Canada
| | | | - Pascal Tillie
- e European Commission-Joint Research Centre (JRC), Institute for Prospective Technological Studies (IPTS) , Seville , Spain
| | - Antoine Messéan
- a Eco-Innov Research Unit, INRA , Thiverval-Grignon , France
| | - Per Kudsk
- f Department of Agroecology , Aarhus University , Slagelse , Denmark
| |
Collapse
|
13
|
Rylott EL, Johnston EJ, Bruce NC. Harnessing microbial gene pools to remediate persistent organic pollutants using genetically modified plants--a viable technology? JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6519-33. [PMID: 26283045 DOI: 10.1093/jxb/erv384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
It has been 14 years since the international community came together to legislate the Stockholm Convention on Persistent Organic Pollutants (POPs), restricting the production and use of specific chemicals that were found to be environmentally stable, often bioaccumulating, with long-term toxic effects. Efforts are continuing to remove these pollutants from the environment. While incineration and chemical treatment can be successful, these methods require the removal of tonnes of soil, at high cost, and are damaging to soil structure and microbial communities. The engineering of plants for in situ POP remediation has had highly promising results, and could be a more environmentally-friendly alternative. This review discusses the characterization of POP-degrading bacterial pathways, and how the genes responsible have been harnessed using genetic modification (GM) to introduce these same abilities into plants. Recent advances in multi-gene cloning, genome editing technologies and expression in monocot species are accelerating progress with remediation-applicable species. Examples include plants developed to degrade 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), trichloroethylene (TCE), and polychlorinated biphenyls (PCBs). However, the costs and timescales needed to gain regulatory approval, along with continued public opposition, are considerable. The benefits and challenges in this rapidly developing and promising field are discussed.
Collapse
Affiliation(s)
- Elizabeth L Rylott
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Emily J Johnston
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Neil C Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| |
Collapse
|
14
|
Lucht JM. Public Acceptance of Plant Biotechnology and GM Crops. Viruses 2015; 7:4254-81. [PMID: 26264020 PMCID: PMC4576180 DOI: 10.3390/v7082819] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 01/16/2023] Open
Abstract
A wide gap exists between the rapid acceptance of genetically modified (GM) crops for cultivation by farmers in many countries and in the global markets for food and feed, and the often-limited acceptance by consumers. This review contrasts the advances of practical applications of agricultural biotechnology with the divergent paths-also affecting the development of virus resistant transgenic crops-of political and regulatory frameworks for GM crops and food in different parts of the world. These have also shaped the different opinions of consumers. Important factors influencing consumer's attitudes are the perception of risks and benefits, knowledge and trust, and personal values. Recent political and societal developments show a hardening of the negative environment for agricultural biotechnology in Europe, a growing discussion-including calls for labeling of GM food-in the USA, and a careful development in China towards a possible authorization of GM rice that takes the societal discussions into account. New breeding techniques address some consumers' concerns with transgenic crops, but it is not clear yet how consumers' attitudes towards them will develop. Discussions about agriculture would be more productive, if they would focus less on technologies, but on common aims and underlying values.
Collapse
Affiliation(s)
- Jan M Lucht
- Scienceindustries, Swiss Business Association Chemistry Pharma Biotech, P.O. Box 1826, Zurich CH-8021, Switzerland.
| |
Collapse
|
15
|
Nelissen H, Moloney M, Inzé D. Translational research: from pot to plot. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:277-85. [PMID: 24646295 DOI: 10.1111/pbi.12176] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/02/2014] [Accepted: 01/27/2014] [Indexed: 05/08/2023]
Abstract
Plant molecular biology has been the key driver to elucidate molecular pathways underlying plant growth, development and stress responses during the past decades. Although this has led to a plethora of available data, the translation to crop improvement is lagging behind. Here, we argue that plant scientists should become more involved in converting basic knowledge into applications in crops to sustainably support food security and agriculture. As the translatability from model species to crops is rather poor, this kind of translational research requires diligence and a thorough knowledge of the investigated trait in the crop. In addition, the robustness of a trait depends on the genotype and environmental conditions, demanding a holistic approach, which cannot always be evaluated under growth chamber and greenhouse conditions. To date, the improved resolution of many genome-wide technologies and the emerging expertise in canopy imaging, plant phenotyping and field monitoring make it very timely to move from the pathway specifics to important agronomical realizations, thus from pot to plot. Despite the availability of scientific know-how and expertise, the translation of new traits to applications using a transgene approach is in some regions of the world, such as Europe, seriously hampered by heavy and nontranslucent legislation for biotech crops. Nevertheless, progress in crop improvement will remain highly dependent on our ability to evaluate improved varieties in field conditions. Here, we plead for a network of protected sites for field trials across the different European climates to test improved biotech traits directly in crops.
Collapse
Affiliation(s)
- Hilde Nelissen
- Department of Plant Systems Biology, VIB, Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | | | | |
Collapse
|
16
|
Masip G, Sabalza M, Pérez-Massot E, Banakar R, Cebrian D, Twyman RM, Capell T, Albajes R, Christou P. Paradoxical EU agricultural policies on genetically engineered crops. TRENDS IN PLANT SCIENCE 2013; 18:312-324. [PMID: 23623240 DOI: 10.1016/j.tplants.2013.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 03/04/2013] [Accepted: 03/26/2013] [Indexed: 06/02/2023]
Abstract
European Union (EU) agricultural policy has been developed in the pursuit of laudable goals such as a competitive economy and regulatory harmony across the union. However, what has emerged is a fragmented, contradictory, and unworkable legislative framework that threatens economic disaster. In this review, we present case studies highlighting differences in the regulations applied to foods grown in EU countries and identical imported products, which show that the EU is undermining its own competitiveness in the agricultural sector, damaging both the EU and its humanitarian activities in the developing world. We recommend the adoption of rational, science-based principles for the harmonization of agricultural policies to prevent economic decline and lower standards of living across the continent.
Collapse
Affiliation(s)
- Gemma Masip
- Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Transgenic or not? No simple answer! New biotechnology-based plant breeding techniques and the regulatory landscape. EMBO Rep 2012; 13:1057-61. [PMID: 23154464 PMCID: PMC3512411 DOI: 10.1038/embor.2012.168] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
18
|
Raybould A. Can science justify regulatory decisions about the cultivation of transgenic crops? Transgenic Res 2012; 21:691-8. [PMID: 22476694 DOI: 10.1007/s11248-012-9613-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 03/16/2012] [Indexed: 11/29/2022]
Abstract
Results of scientific studies are sometimes claimed to provide scientific justification for regulatory decisions about the cultivation of certain transgenic crops. A decision may be scientifically justified if objective analysis shows that the decision is more likely than alternatives to lead to the achievement of specific policy objectives. If policy objectives are not defined operationally, as is often the case, scientific justification for decisions is not possible. The search for scientific justification for decisions leads to concentration on reducing scientific uncertainty about the behaviour of transgenic crops instead of reducing uncertainty about the objectives of policies that regulate their use. Focusing on reducing scientific uncertainty at the expense of clarifying policy objectives may have detrimental effects on scientists, science and society.
Collapse
Affiliation(s)
- Alan Raybould
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK.
| |
Collapse
|