1
|
Bashir T, Husaini AM. Non-coding RNAs and their role in plants: prospective omics-tools for improving growth, development and stress tolerance in field crops. Mol Biol Rep 2025; 52:249. [PMID: 39976851 DOI: 10.1007/s11033-025-10305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/24/2025] [Indexed: 05/10/2025]
Abstract
Plants, as sessile organisms, must adapt to dynamic environmental changes through a range of response strategies that confer phenotypic flexibility. Breakthroughs in next-generation sequencing technologies have led to significant improvements in our understanding of the genomic and molecular mechanisms underlying plant growth, development and stress responses. Non-coding RNAs (ncRNAs), have emerged as pivotal regulators in these processes. This article reviews the roles of regulatory ncRNAs in plant stress responses and development, highlighting their intricate molecular interactions. It presents a comprehensive atlas of differentially regulated ncRNAs across key crop genomes, enhancing our understanding of their roles in stress responses, growth, and development. The atlas presented herein offers a foundation for further research in agronomically important crops, paving the way for crop improvement through genetic engineering and sustainable agricultural practices. Additionally, we discuss the role of ncRNAs that have already been functionally characterized in growth, development and stress tolerance, providing insights into their potential for developing stress-resistant and high-yielding crops.
Collapse
Affiliation(s)
- Tanzeel Bashir
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Amjad M Husaini
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India.
| |
Collapse
|
2
|
Husaini AM, Sohail M. Agrochemical-free genetically modified and genome-edited crops: Towards achieving the United Nations sustainable development goals and a 'greener' green revolution. J Biotechnol 2024; 389:68-77. [PMID: 38663518 DOI: 10.1016/j.jbiotec.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/28/2024]
Abstract
Sustainable farming on ever-shrinking agricultural land and declining water resources for the growing human population is one of the greatest environmental and food security challenges of the 21st century. Conventional, age-old organic farming practices alone, and foods based on costly cellular agriculture, do not have the potential to be upscaled to meet the food supply challenges for feeding large populations. Additionally, agricultural practices relying on chemical inputs have a well-documented detrimental impact on human health and the environment. As the available farming methods have reached their productivity limits, new approaches to agriculture, combining friendly, age-old farming practices with modern technologies that exclude chemical interventions, are necessary to address the food production challenges. Growing genetically modified (GM) crops without chemical inputs can allow agricultural intensification with reduced adverse health and environmental impacts. Additionally, integrating high-value pleiotropic genes in their genetic improvement coupled with the use of modern agricultural technologies, like robotics and artificial intelligence (AI), will further improve productivity. Such 'organic-GM' crops will offer consumers healthy, agrochemical-free GM produce. We believe these agricultural practices will lead to the beginning of a potentially new chemical-free GM agricultural revolution in the era of Agriculture 4.0 and help meet the targets of the United Nations Sustainable Development Goals (SDGs). Furthermore, given the advancement in the genome editing (GE) toolbox, we ought to develop a new category of 'trait-reversible GM crops' to avert the fears of those who believe in ecological damage by GM crops. Thus, in this article, we advocate farming with no or minimal chemical use by combining chemical-free organic farming with the existing biofortified and multiple stress tolerant GM crops, while focusing on the development of novel 'biofertilizer-responsive GE crops' and 'trait-reversible GE crops' for the future.
Collapse
Affiliation(s)
- Amjad M Husaini
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India.
| | - Muhammad Sohail
- Wolfson College, Lintodn Road, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Bashir T, Ul Haq SA, Masoom S, Ibdah M, Husaini AM. Quality trait improvement in horticultural crops: OMICS and modern biotechnological approaches. Mol Biol Rep 2023; 50:8729-8742. [PMID: 37642759 DOI: 10.1007/s11033-023-08728-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023]
Abstract
Horticultural crops are an essential part of food and nutritional security. Moreover, these form an integral part of the agricultural economy and have enormous economic potential. They are a rich source of nutrients that are beneficial to human health. Plant breeding of horticultural crops has focussed primarily on increasing the productivity and related traits of these crops. However, fruit and vegetable quality is paramount to their perishability, marketability, and consumer acceptance. The improved nutritional value is beneficial to underprivileged and undernourished communities. Due to a declining genetic base, conventional plant breeding does not contribute much to quality improvement as the existing natural allelic variations and crossing barriers between cultivated and wild species limit it. Over the past two decades, 'omics' and modern biotechnological approaches have made it possible to decode the complex genomes of crop plants, assign functions to the otherwise many unknown genes, and develop genome-wide DNA markers. Genetic engineering has enabled the validation of these genes and the introduction of crucial agronomic traits influencing various quality parameters directly or indirectly. This review discusses the significant advances in the quality improvement of horticultural crops, including shelf life, aroma, browning, nutritional value, colour, and many other related traits.
Collapse
Affiliation(s)
- Tanzeel Bashir
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, India
| | - Syed Anam Ul Haq
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, India
| | - Salsabeel Masoom
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, India
| | - Mwafaq Ibdah
- Newe Yaar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel
| | - Amjad M Husaini
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
4
|
Husaini AM, Sohail M. Robotics-assisted, organic agricultural-biotechnology based environment-friendly healthy food option: Beyond the binary of GM versus Organic crops. J Biotechnol 2023; 361:41-48. [PMID: 36470315 DOI: 10.1016/j.jbiotec.2022.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Human society cannot afford the luxury of the business-as-usual approach when dealing with the emerging challenges of the 21st century. The challenges of food production to meet the pace of population growth in an environmentally-sustainable manner have increased considerably, emphasizing the need to explore newer approaches to agriculture. Agrochemical-based agricultural practices are known to have serious environmental and health implications. Even conventional organic farming is not sustainable in the long run. Although some "age-old" practices are useful, these will not help feed more people on the same or less land more sustainably. Sustainable intensification is the way forward. There is a need to incorporate a customer-centric outlook and make the organic system sustainable. Here, we bring forth the necessity to enhance the efficiency of organic agriculture by the inclusion of robotics and agrochemical-free GM seeds. Such an organic-GM hybrid agriculture system integrated with the use of artificial intelligence (AI) based technologies will have better energy efficiency. The produce from such a system will offer consumers a 'third' choice and create a new food label, 'organically-grown GM produce'.
Collapse
Affiliation(s)
- Amjad M Husaini
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India.
| | - Muhammad Sohail
- Department of Biochemistry, St Hilda College, Cowley Place, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
High-value pleiotropic genes for developing multiple stress-tolerant biofortified crops for 21st-century challenges. Heredity (Edinb) 2022; 128:460-472. [PMID: 35173311 PMCID: PMC8852949 DOI: 10.1038/s41437-022-00500-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/08/2022] Open
Abstract
The agriculture-based livelihood systems that are already vulnerable due to multiple challenges face immediate risk of increased crop failures due to weather vagaries. As breeders and biotechnologists, our strategy is to advance and innovate breeding for weather-proofing crops. Plant stress tolerance is a genetically complex trait. Additionally, crops rarely face a single type of stress in isolation, and it is difficult for plants to deal with multiple stresses simultaneously. One of the most helpful approaches to creating stress-resilient crops is genome editing and trans- or cis-genesis. Out of hundreds of stress-responsive genes, many have been used to impart tolerance against a particular stress factor, while a few used in combination for gene pyramiding against multiple stresses. However, a better approach would be to use multi-role pleiotropic genes that enable plants to adapt to numerous environmental stresses simultaneously. Herein we attempt to integrate and present the scattered information published in the past three decades about these pleiotropic genes for crop improvement and remodeling future cropping systems. Research articles validating functional roles of genes in transgenic plants were used to create groups of multi-role pleiotropic genes that could be candidate genes for developing weather-proof crop varieties. These biotech crop varieties will help create 'high-value farms' to meet the goal of a sustainable increase in global food productivity and stabilize food prices by ensuring a fluctuation-free assured food supply. It could also help create a gene repository through artificial gene synthesis for 'resilient high-value food production' for the 21st century.
Collapse
|
6
|
Husaini AM, Sohail M. Time to Redefine Organic Agriculture: Can't GM Crops Be Certified as Organics? FRONTIERS IN PLANT SCIENCE 2018; 9:423. [PMID: 29692789 PMCID: PMC5903153 DOI: 10.3389/fpls.2018.00423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
The challenges of sustainable food production without damaging the environment for a growing human population have increased considerably. The current agricultural practices involving chemical fertilizers and even organic farming are not sustainable in the long run and can have deleterious effects on the environment. Thus, new, innovative solutions need to be identified and propagated for tackling this. Among such innovations, that can complement conventional as well as organic farming methods, are genetic modification (GM) and aquaculture. Yet, GM technologies often face resistance from civil groups owing to an 'unknown' fear, akin to Frankenstein's monster. How real is this fear? Our discussion rests on basic questions like, why can't 'organics' include GM crops that do not require chemical inputs for cultivation, and can GM crops like Golden rice qualify to be 'organic' if cultivated through organic practices? Do we need to rethink organic agriculture in the context of the present and future challenges of 21st century?
Collapse
Affiliation(s)
- Amjad M. Husaini
- Genome Engineering Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, India
| | - Muhammad Sohail
- Department of Biochemistry, St Hilda’s College, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Ligaba-Osena A, Hankoua B, DiMarco K, Pace R, Crocker M, McAtee J, Nagachar N, Tien M, Richard TL. Reducing biomass recalcitrance by heterologous expression of a bacterial peroxidase in tobacco (Nicotiana benthamiana). Sci Rep 2017; 7:17104. [PMID: 29213132 PMCID: PMC5719049 DOI: 10.1038/s41598-017-16909-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 10/25/2017] [Indexed: 11/13/2022] Open
Abstract
Commercial scale production of biofuels from lignocellulosic feed stocks has been hampered by the resistance of plant cell walls to enzymatic conversion, primarily owing to lignin. This study investigated whether DypB, the lignin-degrading peroxidase from Rodococcus jostii, depolymerizes lignin and reduces recalcitrance in transgenic tobacco (Nicotiana benthamiana). The protein was targeted to the cytosol or the ER using ER-targeting and retention signal peptides. For each construct, five independent transgenic lines were characterized phenotypically and genotypically. Our findings reveal that expression of DypB in the cytosol and ER does not affect plant development. ER-targeting increased protein accumulation, and extracts from transgenic leaves showed higher activity on classic peroxidase substrates than the control. Intriguingly, in situ DypB activation and subsequent saccharification released nearly 200% more fermentable sugars from transgenic lines than controls, which were not explained by variation in initial structural and non-structural carbohydrates and lignin content. Pyrolysis-GC-MS analysis showed more reduction in the level of lignin associated pyrolysates in the transgenic lines than the control primarily when the enzyme is activated prior to pyrolysis, consistent with increased lignin degradation and improved saccharification. The findings reveal for the first time that accumulation and in situ activation of a peroxidase improves biomass digestibility.
Collapse
Affiliation(s)
- Ayalew Ligaba-Osena
- College of Agriculture and Related Sciences, Delaware State University, 1200 N DuPont Highway, Dover, DE, 19901, USA
| | - Bertrand Hankoua
- College of Agriculture and Related Sciences, Delaware State University, 1200 N DuPont Highway, Dover, DE, 19901, USA.
| | - Kay DiMarco
- Agricultural and Biological Engineering, Pennsylvania State University, 111 Research Unit A, University Park, Pennsylvania, PA, 16802, USA
| | - Robert Pace
- Center for Applied Energy Research, University of Kentucky, 2540 Research Park Drive, Lexington, KY, 40511, USA
| | - Mark Crocker
- Center for Applied Energy Research, University of Kentucky, 2540 Research Park Drive, Lexington, KY, 40511, USA
| | - Jesse McAtee
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Nivedita Nagachar
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, 305 South Frear Laboratory, University Park, Pennsylvania, PA, 16802, USA
| | - Ming Tien
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, 305 South Frear Laboratory, University Park, Pennsylvania, PA, 16802, USA
| | - Tom L Richard
- Agricultural and Biological Engineering, Pennsylvania State University, 111 Research Unit A, University Park, Pennsylvania, PA, 16802, USA
| |
Collapse
|
8
|
Cantos C, Francisco P, Trijatmiko KR, Slamet-Loedin I, Chadha-Mohanty PK. Identification of "safe harbor" loci in indica rice genome by harnessing the property of zinc-finger nucleases to induce DNA damage and repair. FRONTIERS IN PLANT SCIENCE 2014; 5:302. [PMID: 25018764 PMCID: PMC4071976 DOI: 10.3389/fpls.2014.00302] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/09/2014] [Indexed: 05/03/2023]
Abstract
Zinc-finger nucleases (ZFNs) have proved to be successful tools for targeted genome manipulation in several organisms. Their main property is the induction of double-strand breaks (DSBs) at specific sites, which are further repaired through homologous recombination (HR) or non-homologous end joining (NHEJ). However, for the appropriate integration of genes at specific chromosomal locations, proper sites for gene integration need to be identified. These regions, hereby named safe harbor loci, must be localized in non-coding regions and possess high gene expression. In the present study, three different ZFN constructs (pZFN1, pZFN2, pZFN3), harboring β-glucuronidase (GUS) as a reporter gene, were used to identify safe harbor loci on rice chromosomes. The constructs were delivered into IR64 rice by using an improved Agrobacterium-mediated transformation protocol, based on the use of immature embryos. Gene expression was measured by histochemical GUS activity and the flanking regions were determined through thermal-asymmetric interlaced polymerase chain reaction (TAIL PCR). Following sequencing, 28 regions were identified as putative sites for safe integration, but only one was localized in a non-coding region and also possessed high GUS expression. These findings have significant applicability to create crops with new and valuable traits, since the site can be subsequently used to stably introduce one or more genes in a targeted manner.
Collapse
Affiliation(s)
- Christian Cantos
- Gene Transformation Lab, Plant Breeding, Genetics, and Biotechnology Division, International Rice Research InstituteMetro Manila, Philippines
| | - Perigio Francisco
- Gene Transformation Lab, Plant Breeding, Genetics, and Biotechnology Division, International Rice Research InstituteMetro Manila, Philippines
| | - Kurniawan R. Trijatmiko
- Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and DevelopmentBogor, Indonesia
| | - Inez Slamet-Loedin
- Gene Transformation Lab, Plant Breeding, Genetics, and Biotechnology Division, International Rice Research InstituteMetro Manila, Philippines
| | - Prabhjit K. Chadha-Mohanty
- Gene Transformation Lab, Plant Breeding, Genetics, and Biotechnology Division, International Rice Research InstituteMetro Manila, Philippines
| |
Collapse
|
9
|
Husaini AM. Challenges of climate change: omics-based biology of saffron plants and organic agricultural biotechnology for sustainable saffron production. GM CROPS & FOOD 2014; 5:97-105. [PMID: 25072266 PMCID: PMC5033185 DOI: 10.4161/gmcr.29436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 06/02/2014] [Accepted: 06/02/2014] [Indexed: 11/19/2022]
Abstract
Kashmir Valley is a major saffron (Crocus sativus Kashmirianus) growing area of the world, second only to Iran in terms of production. In Kashmir, saffron is grown on uplands (termed in the local language as "Karewas"), which are lacustrine deposits located at an altitude of 1585 to 1677 m above mean sea level (amsl), under temperate climatic conditions. Kashmir, despite being one of the oldest historical saffron-producing areas, faces a rapid decline of saffron industry. Among many other factors responsible for decline of saffron industry the preponderance of erratic rainfalls and drought-like situation have become major challenges imposed by climate change. Saffron has a limited coverage area as it is grown as a 'niche crop' and is a recognized "geographical indication," growing under a narrow microclimatic condition. As such it has become a victim of climate change effects, which has the potential of jeopardizing the livelihood of thousands of farmers and traders associated with it. The paper discusses the potential and actual impact of climate change process on saffron cultivation in Kashmir; and the biotechnological measures to address these issues.
Collapse
Affiliation(s)
- Amjad M Husaini
- Centre for Plant Biotechnology; Division of Biotechnology; Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir; Srinagar, Jammu and Kashmir, India
| |
Collapse
|
10
|
Induced Genetic Variation, TILLING and NGS-Based Cloning. BIOTECHNOLOGICAL APPROACHES TO BARLEY IMPROVEMENT 2014. [DOI: 10.1007/978-3-662-44406-1_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|